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ON THE CONNECTIONS BETWEEN PADOVAN NUMBERS AND

FIBONACCI p-NUMBERS

ÖZGÜR ERDAĞ(1) AND ÖMÜR DEVECI(2)

Abstract. In this paper, we define the Fibonacci-Padovan p-sequence and then

we discuss the connection of the Fibonacci-Padovan p-sequence with the Padovan

sequence and Fibonacci p-sequence. In addition, we obtain miscellaneous properties

of the Fibonacci-Padovan p-numbers such as the Binet formulas, the exponential,

combinatorial, permanental and determinantal representations, and the sums of

certain matrices.

1. Introduction

The Padovan sequence is the sequence of the integer {P (n)} defined by the initial

values P (0) = P (1) = P (2) = 1 and the recurrence relation:

P (n) = P (n− 2) + P (n− 3)

for all n ≥ 3.

There are many important generalizations of the Fibonacci sequence. The Fi-

bonacci p-sequence {Fp (n)} (see detailed information in [19, 20]) is the one of them:

Fp (n) = Fp (n− 1) + Fp (n− p− 1)

for n > p and p = 1, 2, 3, . . ., in which Fp (0) = 0, Fp (1) = · · ·Fp (p) = 1. When

p = 1, the Fibonacci p-sequence {Fp (n)} is reduced to the usual Fibonacci sequence

{Fn}.
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It is easy to see that the characteristic polynomials of the Padovan sequence and

Fibonacci p-sequence are q1 (x) = x3 − x− 1 and q2 (x) = xp+1 − xp − 1, respectively.

We use these in the next section.

Suppose that the (n+ k)th term of a sequence be defined recursively by a linear

combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-

form formulas for the generalized sequence by the companion matrix method as fol-

lows:

Let the matrix A be defined by

A = [ai,j]k×k
=



























0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0 · · · 0 1

c0 c1 c2 · · · ck−2 ck−1



























.

Then by an inductive argument he obtained that

An

















a0

a1
...

ak−1

















=

















an

an+1

...

an+k−1

















for n ≥ 0.

Number theoretic properties such as these obtained from homogeneous linear re-

currence relations relevant to this paper have been studied recently by many authors:

see, for example, [2, 5, 10, 11, 17, 18, 21]. In [1, 6, 7, 8, 9, 14, 22], the authors defined

some linear recurrence sequences and gave their various properties by matrix methods.

In this paper, we discuss connections between the Padovan and Fibonacci p-numbers.

Firstly, we define the Fibonacci-Padovan p-sequence and then we give recurrence re-

lation among this sequence, the Padovan sequence and Fibonacci p-sequence. Also,
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using the roots of the characteristic polynomial of the Fibonacci-Padovan p-sequence,

we produce the Binet formula for the Fibonacci-Padovan p-sequence. Finally, we give

the exponential, combinatorial, permanental and determinantal representations, the

generating function, and the sums of the Fibonacci-Padovan p-numbers.

2. On The Connections Between Padovan Numbers and Fibonacci

p-Numbers

Now we define the Fibonacci-Padovan p-sequence
{

F Pa,p
n

}

by the following homo-

geneous linear recurrence relation for any given p (4, 5, 6, . . .) and n ≥ 0

(2.1) F
Pa,p
n+p+4 = F

Pa,p
n+p+3 + F

Pa,p
n+p+2 − F

Pa,p
n+p + F

Pa,p
n+3 − F

Pa,p
n+1 − F Pa,p

n

in which F
Pa,p
0 = · · · = F

Pa,p
p+2 = 0 and F

Pa,p
p+3 = 1.

First, we present relationships between the above the Fibonacci-Padovan p-sequence,

Padovan sequence, and Fibonacci p-sequence.

Theorem 2.1. Let P (n), Fp (n) and F Pa,p
n be the nth Padovan number, Fibonacci

p-number, and Fibonacci-Padovan p-numbers, respectively. Then,

P (n + 2) = Fp (n+ p− 1) + Fp (n) +

n+p−3
∑

i=n+2

F
Pa,p
i

for n ≥ 0 and p ≥ 4.

Proof. The assertion may be proved by induction on n. It is clear that P (2) =

Fp (p− 1) +Fp (0) +
p−3
∑

i=2

F
Pa,p
i = 1. Suppose that the equation holds for n ≥ 1. Then

we must show that the equation holds for n+ 1. Since the characteristic polynomial

of Fibonacci-Padovan p-sequence
{

F J,p
n

}

, is

q (x) = xp+4 − xp+3 − xp+2 + xp − x3 + x+ 1

and

q (x) = q1 (x) q2 (x) ,

where q1 (x) and q2 (x) are the characteristic polynomials of the Padovan sequence

and Fibonacci p-sequence, respectively, we obtain the following relations:

P (n + p+ 4) = P (n+ p+ 3)+P (n+ p+ 2)−P (n + p)+P (n + 3)−P (n+ 1)−P (n)
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and

Fp (n+ p+ 4) = Fp (n+ p+ 3)+Fp (n+ p+ 2)−Fp (n+ p)+Fp (n+ 3)−Fp (n+ 1)−Fp (n)

for n ≥ 1. Thus, by a simple calculation, we have the conclusion. �

By the recurrence relation (2.1), we have





















F
Pa,p
n+p+4

F
Pa,p
n+p+3

F
Pa,p
n+p+2

...

F
Pa,p
n+1





















=

























































1 1 0 −1 0 · · · 0 1 0 −1 −1

1 0 0 0 0 · · · 0 0 0 0 0

0 1 0 0 0 · · · 0 0 0 0 0

0 0 1 0 0 · · · 0 0 0 0 0

0 0 0 1 0 · · · 0 0 0 0 0

0 0 0 0 1 · · · 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...

0 0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 0 · · · 0 1 0 0 0

0 0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 0 · · · 0 0 0 1 0













































































F
Pa,p
n+p+3

F
Pa,p
n+p+2

F
Pa,p
n+p

...

F Pa,p
n





















for the Fibonacci-Padovan p-sequence
{

F Pa,p
n

}

. Letting

Bp =

























































1 1 0 −1 0 · · · 0 1 0 −1 −1

1 0 0 0 0 · · · 0 0 0 0 0

0 1 0 0 0 · · · 0 0 0 0 0

0 0 1 0 0 · · · 0 0 0 0 0

0 0 0 1 0 · · · 0 0 0 0 0

0 0 0 0 1 · · · 0 0 0 0 0
...

. . .
. . .

. . .
. . .

. . .
...

...
...

...

0 0 0 0 0 · · · 1 0 0 0 0

0 0 0 0 0 · · · 0 1 0 0 0

0 0 0 0 0 · · · 0 0 1 0 0

0 0 0 0 0 · · · 0 0 0 1 0

























































(p+4)×(p+4).

The companion matrix Bp = [bi,j ](p+4)×(p+4) is said to be the Fibonacci-Padovan p-
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matrix. For detailed information about the companion matrices, see [15, 16]. It can

be readily established by mathematical induction that for p ≥ 4 and n ≥ 2p+ 1

(Bp)
n =































F
Pa,p
n+p+3 F

Pa,p
n+p+4 − F

Pa,p
n+p+3 Fp (n− p + 2)− F

Pa,p
n+p+1 Fp (n− p+ 3)− F

Pa,p
n+p+2 Fp (n− p+ 4) · · ·

F
Pa,p
n+p+2 F

Pa,p
n+p+3 − F

Pa,p
n+p+2 Fp (n− p+ 1) − F

Pa,p
n+p Fp (n− p+ 2)− F

Pa,p
n+p+1 Fp (n− p+ 3) · · ·

F
Pa,p
n+p+1 F

Pa,p
n+p+2 − F

Pa,p
n+p+1 Fp (n− p)− F

Pa,p
n+p−1 Fp (n− p+ 1)− F

Pa,p
n+p Fp (n− p+ 2) · · · B∗

p

..

.
..
.

..

.
..
.

..

.

F
Pa,p
n+1 F

Pa,p
n+2 − F

Pa,p
n+1 Fp (n− 2p)− F

Pa,p
n−1 Fp (n− 2p+ 1)− F

Pa,p
n Fp (n− 2p+ 2) · · ·

F
Pa,p
n F

Pa,p
n+1 − F

Pa,p
n Fp (n− 2p − 1)− F

Pa,p
n−2 Fp (n− 2p)− F

Pa,p
n−1 Fp (n− 2p+ 1) · · ·































,

where

B∗

p =



























Fp (n) Fp (n+ 1)− F
Pa,p
n+p+3 Fp (n+ 2)− F

Pa,p
n+p+4 −F

Pa,p
n+p+2

Fp (n− 1) Fp (n)− F
Pa,p
n+p+2 Fp (n+ 1)− F

Pa,p
n+p+3 −F

Pa,p
n+p+1

Fp (n− 2) Fp (n− 1)− F
Pa,p
n+p+1 Fp (n)− F

Pa,p
n+p+2 −F

Pa,p
n+p

...
...

...
...

Fp (n− p− 2) Fp (n− p− 1)− F
Pa,p
n+1 Fp (n− p)− F

Pa,p
n+2 −F Pa,p

n

Fp (n− p− 3) Fp (n− p− 2)− F Pa,p
n Fp (n− p− 1)− F

Pa,p
n+1 −F

Pa,p
n−1



























.

We easily derive that detBp = (−1)p. In [19], Stakhov defined the generalized

Fibonacci p-matrix Qp and derived the nth power of the matrix Qp. In [13], Kılıc gave

a Binet formula for the Fibonacci p-numbers by matrix method. Now we concentrate

on finding another Binet formula for the Fibonacci-Padovan p-numbers by the aid of

the matrix (Bp)
n.

Lemma 2.1. The characteristic equation of all the Fibonacci-Padovan p-numbers

xp+4 − xp+3 − xp+2 + xp − x3 + x+ 1 = 0 does not have multiple roots for p ≥ 4.

Proof. It is clear that xp+4−xp+3−xp+2+xp−x3+x+1 = (xp+1 − xp − 1) (x3 − x− 1).

In [13], it was shown that the equation xp+1−xp−1 = 0 does not have multiple roots

for p > 1. It is easy to see that the roots of the equation x3 − x− 2 = 0 are

α =
1

3

3

√

27

2
− 3

√
69

2
+

3

√

1
2

(

9 +
√
69
)

3
2
3

,

β = −1

6

(

1− i
√
3
)

3

√

27

2
− 3

√
69

2
−
(

1 + i
√
3
)

3

√

1
2

(

9 +
√
69
)

2× 3
2
3
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and

γ = −1

6

(

1 + i
√
3
)

3

√

27

2
− 3

√
69

2
−
(

1− i
√
3
)

3

√

1
2

(

9 +
√
69
)

2× 3
2
3

.

Since (α)p+1− (α)p−1 6= 0, (β)p+1− (β)p−1 6= 0 and (γ)p+1− (γ)p−1 6= 0 for p > 1,

the equation xp+4 − xp+3 − xp+2 + xp − x3 + x+ 1 = 0 does not have multiple roots

for p ≥ 4. �

Let q (λ) be the characteristic polynomial of the Fibonacci-Padovan p-matrix Bp.

Then q (λ) = λp+4−λp+3−λp+2+λp−λ3+λ+1, which is a well-known fact from the

companion matrices. Let λ1, λ2, . . . , λp+4 be the eigenvalues of Bp. Then, by Lemma

2.1, λ1, λ2, . . . , λp+4 are distinct. Define the (p+ 4) × (p+ 4) Vandermonde matrix

Vp as follows:

Vp =





















(λ1)
p+3 (λ2)

p+3
. . . (λp+4)

p+3

(λ1)
p+2 (λ2)

p+2
. . . (λp+4)

p+2

...
...

...

λ1 λ2 . . . λp+4

1 1 . . . 1





















.

Assume that Vp (i, j) is a (p+ 4) × (p+ 4) matrix derived from the Vandermonde

matrix Vp by replacing the jth column of Vp by Wp (i), where, Wp (i) is a (p+ 4)× 1

matrix as follows:

Wp (i) =

















(λ1)
n+p+4−i

(λ2)
n+p+4−i

...

(λp+4)
n+p+4−i

















.

Then we obtain the Binet formula for the Fibonacci-Padovan p-numbers with the

following Theorem.

Theorem 2.2. Let p be a positive integer such that p ≥ 4 and let (Bp)
n =

[

b
(p,n)
i,j

]

for n ≥ 2p+ 1, then

b
(p,n)
i,j =

det Vp (i, j)

det Vp

.

Proof. Since the equation xp+4−xp+3−xp+2+xp−x3+x+1 = 0 does not have multiple

roots for p ≥ 4, the eigenvalues of the Fibonacci-Padovan p-matrix Bp are distinct.

Then, it is clear that Bp is diagonalizable. Let Dp = diag (λ1, λ2, . . . , λp+4), then we
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may write BpVp = VpDp. Since the matrix Vp is invertible, we obtain the equation

(Vp)
−1

BpVp = Dp. Therefore, Bp is similar to Dp; hence, (Bp)
n
Vp = Vp (Dp)

n for

n ≥ 2p+ 1. So we have the following linear system of equations:






























b
(p,n)
i,1 (λ1)

p+3 + b
(p,n)
i,2 (λ1)

p+2 + · · ·+ b
(p,n)
i,p+4 = (λ1)

n+p+4−i

b
(p,n)
i,1 (λ2)

p+3 + b
(p,n)
i,2 (λ2)

p+2 + · · ·+ b
(p,n)
i,p+4 = (λ2)

n+p+4−i

...

b
(p,n)
i,1 (λp+4)

p+3 + b
(p,n)
i,2 (λp+4)

p+2 + · · ·+ b
(p,n)
i,p+4 = (λp+4)

n+p+4−i .

Then we conclude that

b
(p,n)
i,j =

det Vp (i, j)

det Vp

for each i, j = 1, 2, . . . , p+ 4. So the proof is complete. �

Thus by Theorem 2.2 and the matrix (Bp)
n, we have the following useful result for

the Fibonacci-Padovan p-numbers.

Corollary 2.1. Let p be a positive integer such that p ≥ 4 and let F Pa,p
n be the nth

element of Fibonacci-Padovan p-sequence, then

F Pa,p
n =

det Vp (p+ 4, 1)

det Vp

and

F Pa,p
n = −det Vp (p+ 3, p+ 4)

det Vp

for n ≥ 2p+ 1.

Now we give the generating function of the Fibonacci-Padovan p-numbers:

Let

g (x) = F
Pa,p
p+3 + F

Pa,p
p+4 x+ F

Pa,p
p+5 x2 + · · ·+ F

Pa,p
n+p+3x

n + F
Pa,p
n+p+4x

n+1 + · · · .

By the definition of the Fibonacci-Padovan p-numbers, we can write

g (x)− xg (x)− x2g (x) + x4g (x)− xp+1g (x) + xp+3g (x) + xp+4g (x) = xp+3.

So we get

g (x) =
xp+3

1− x− x2 + x4 − xp+1 + xp+3 + xp+4
,

for 0 ≤ x+ x2 − x4 + xp+1 − xp+3 − xp+4 < 1.
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Then we can give an exponential representation for the Fibonacci-Padovan p-

numbers by the aid of the generating function with the following Theorem.

Theorem 2.3. The Fibonacci-Padovan p-sequence
{

F Pa,p
n

}

have the following expo-

nential representation:

g (x) = xp+3 exp

(

∞
∑

i=1

(x)i

i

(

1 + x− x3 + xp − xp+2 − xp+3
)i

)

,

where p ≥ 4.

Proof. Since

ln g (x) = ln xp+3 − ln
(

1− x− x2 + x4 − xp+1 + xp+3 + xp+4
)

and

− ln
(

1− x− x2 + x4 − xp+1 + xp+3 + xp+4
)

= −[−x
(

1 + x− x3 + xp − xp+2 − xp+3
)

−
1

2
x2
(

1 + x− x3 + xp − xp+2 − xp+3
)2 − · · ·

−1

i
xi
(

1 + x− x3 + xp − xp+2 − xp+3
)i − · · · ]

it is clear that

g (x) = xp+3 exp

(

∞
∑

i=1

(x)i

i

(

1 + x− x3 + xp − xp+2 − xp+3
)i

)

by a simple calculation, we obtain the conclusion. �

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =

















k1 k2 · · · kv

1 0 0
...

. . .
...

0 · · · 1 0

















.

Theorem 2.4. (Chen and Louck [4]) The (i, j) entry k
(n)
i,j (k1, k2, . . . , kv) in the matrix

Kn (k1, k2, . . . , kv) is given by the following formula:

(2.2) k
(n)
i,j (k1, k2, . . . , kv) =

∑

(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv

t1 + t2 + · · ·+ tv
×
(

t1 + · · ·+ tv

t1, . . . , tv

)

kt1
1 · · · ktv

v
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where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv =

n − i + j,
(

t1+···+tv
t1,...,tv

)

= (t1+···+tv)!
t1!···tv!

is a multinomial coefficient, and the coefficients in

(2.2) are defined to be 1 if n = i− j.

Then we can give combinatorial representations for the Fibonacci-Padovan p-

numbers by the following Corollary.

Corollary 2.2. Let F Pa,p
n be the nth Fibonacci-Padovan p-number for n ≥ 2p + 1.

Then

i.

F Pa,p
n =

∑

(t1,t2,...,tp+4)

(

t1 + t2 + · · ·+ tp+4

t1, t2, · · · , tp+4

)

(−1)t4+tp+3+tp+4

where the summation is over nonnegative integers satisfying t1+2t2+· · ·+(p+ 4) tp+4 =

n− p− 3.

ii.

F Pa,p
n = −

∑

(t1,t2,...,t4)

tp+4

t1 + t2 + · · ·+ tp+4

×
(

t1 + t2 + · · ·+ tp+4

t1, t2, · · · , tp+4

)

(−1)t4+tp+3+tp+4

where the summation is over nonnegative integers satisfying t1+2t2+· · ·+(p+ 4) tp+4 =

n + 1.

Proof. If we take i = p+ 4, j = 1 for the case i. and i = p+ 3, j = p+ 4 for the case

ii. in theorem 2.4, then we can directly see the conclusions from (Bp)
n. �

Now we consider the relationship between the Fibonacci-Padovan p-numbers and

the permanent of a certain matrix which is obtained using the Fibonacci-Padovan

p-matrix (Bp)
n.

Definition 2.1. A u×v real matrix M = [mi,j] is called a contractible matrix in the

kth column (resp. row.) if the kth column (resp. row.) contains exactly two non-zero

entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M . If M is contractible

in the kth column such that mi,k 6= 0, mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1)

matrix Mij:k obtained from M by replacing the ith row with mi,kxj + mj,kxi and
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deleting the jth row. The kth column is called the contraction in the kth column

relative to the ith row and the jth row.

In [3], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix

of order α > 1 and N is a contraction of M.

Now we concentrate on finding relationships among the Fibonacci-Padovan p-

numbers and the permanents of certain matrices which are obtained by using the

generating matrix of the Fibonacci-Padovan p-numbers. Let EF,Pa
m,p =

[

e
(p)
i,j

]

be the

m×m super-diagonal matrix, defined by

e
(p)
i,j =



































































































1

if i = ε and j = ε for 1 ≤ ε ≤ m,

i = ε and j = ε+ 1 for 1 ≤ ε ≤ m− 1,

i = ε and j = ε+ p for 1 ≤ ε ≤ m− p

and

i = ε+ 1 and j = ε for 1 ≤ ε ≤ m− 1,

−1

if i = ε and j = ε+ 3 for 1 ≤ ε ≤ m− 3,

i = ε and j = ε+ p+ 2 for 1 ≤ ε ≤ m− p− 2

and

i = ε and j = ε+ p+ 3 for 1 ≤ ε ≤ m− p− 3,

0 otherwise.

, for m ≥ p+ 4.

Then we have the following Theorem.

Theorem 2.5. For m ≥ p+ 4,

perEF,Pa
m,p = F

Pa,p
m+p+3.

Proof. Let us consider matrix EF,Pa
m,p and let the equation be hold for m ≥ p + 4.

Then we show that the equation holds for m+ 1. If we expand the perEF,Pa
m,p by the

Laplace expansion of permanent with respect to the first row, then we obtain

perE
F,Pa
m+1,p = perEF,Pa

m,p +perE
F,Pa
m−1,p−perE

F,Pa
m−3,p+perE

F,Pa
m−p,p−perE

F,Pa
m−p−2,p−perE

F,Pa
m−p−3,p.

Since

perEF,Pa
m,p = F

Pa,p
m+p+3,

perE
F,Pa
m−1,p = F

Pa,p
m+p+2,

perE
F,Pa
m−3,p = F

Pa,p
m+p ,
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perE
F,Pa
m−p,p = F

Pa,p
m+3 ,

perE
F,Pa
m−p−2,p = F

Pa,p
m+1

and

perE
F,Pa
m−p−3,p = F Pa,p

m ,

we easily obtain that perEF,Pa
m+1,p = F

Pa,p
m+p+4. So the proof is complete. �

Let GF,Pa
m,p =

[

g
(p)
i,j

]

be the m×m matrix, defined by

g
(p)
i,j =



































































































1

if i = ε and j = ε for 1 ≤ ε ≤ m− 2,

i = ε and j = ε+ 1 for 1 ≤ ε ≤ m− 2,

i = ε and j = ε+ p for 1 ≤ ε ≤ m− p− 1

and

i = ε+ 1 and j = ε for 1 ≤ ε ≤ m− 1,

−1

if i = ε and j = ε+ 3 for 1 ≤ ε ≤ m− p− 1,

i = ε and j = ε+ p+ 2 for 1 ≤ ε ≤ m− p− 3

and

i = ε and j = ε+ p+ 3 for 1 ≤ ε ≤ m− p− 3,

0 otherwise.

, for m ≥ p+ 4.

Then we have the following Theorem.

Theorem 2.6. For m ≥ p+ 4,

perGF,Pa
m,p = −F

Pa,p
m−1 .

Proof. Let us consider matrix GF,Pa
m,p and let the equation be hold for m ≥ p + 4.

Then we show that the equation holds for m+ 1. If we expand the perGF,Pa
m,p by the

Laplace expansion of permanent with respect to the first row, then we obtain

perG
F,Pa
m+1,p = perGF,Pa

m,p +perG
F,Pa
m−1,p−perG

F,Pa
m−3,p+perG

F,Pa
m−p,p−perG

F,Pa
m−p−2,p−perG

F,Pa
m−p−3,p.

Since

perGF,Pa
m,p = −F

Pa,p
m−1 ,

perG
F,Pa
m−1,p = −F

Pa,p
m−2 ,

perG
F,Pa
m−3,p = −F

Pa,p
m−4 ,
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perG
F,Pa
m−p,p = −F

Pa,p
m−p−1,

perG
F,Pa
m−p−2,p = −F

Pa,p
m−p−3

and

perG
F,Pa
m−p−3,p = −F

Pa,p
m−p−4,

we easily obtain that perGF,Pa
m+1,p = −F Pa,p

m . So the proof is complete. �

Assume that HF,Pa
m,p =

[

h
(p)
i,j

]

be the m×m matrix, defined by

HF,Pa
m,p =







































(m− p− 4) th

↓
1 · · · 1 0 · · · 0

1

0
... G

F,Pa
m−1,p

0

0







































, for m > p+ 4,

then we have the following results:

Theorem 2.7. For m > p+ 4,

perHF,Pa
m,p = −

m−2
∑

i=0

F
Pa,p
i .

Proof. If we extend per HF,Pa
m,p with respect to the first row, we write

perHF,Pa
m,p = perH

F,Pa
m−1,p + perG

F,Pa
m−1,p.

Thus, by the results and an inductive argument, the proof is easily seen. �

A matrix M is called convertible if there is an n × n (1,−1)-matrix K such that

perM = det (M ◦K), where M ◦K denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci-Padovan p-numbers and the de-

terminants of certain matrices which are obtained by using the matrix EF,Pa
m,p , GF,Pa

m,p
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and HF,Pa
m,p . Let m > p+ 4 and let R be the m×m matrix, defined by

R =



























1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...

1 · · · 1 −1 1 1

1 · · · 1 1 −1 1



























.

Corollary 2.3. For m > p+ 4,

det
(

EF,Pa
m,p ◦R

)

= F
Pa,p
m+p+3,

det
(

GF,Pa
m,p ◦R

)

= −F
Pa,p
m−1

and

det
(

HF,Pa
m,p ◦R

)

= −
m−2
∑

i=0

F
Pa,p
i .

Proof. Since perEF,Pa
m,p = det

(

EF,Pa
m,p ◦R

)

, perGF,Pa
m,p = det

(

GF,Pa
m,p ◦R

)

and perHF,Pa
m,p

= det
(

HF,Pa
m,p ◦R

)

for m > p+4, by Theorem 2.5, Theorem 2.6 and Theorem 2.7, we

have the conclusion. �

Now we consider the sums of the Fibonacci-Padovan p-numbers. Let

Sα =

α
∑

i=0

F
Pa,p
i

for n ≥ 2p+1 and p ≥ 4, and let AF,Pa
p and

(

AF,Pa
p

)n
be the (p+ 5)× (p + 5) matrix

such that

AF,Pa
p =



























1 0 0 · · · 0 0

1

0
... Bp

0

0



























.
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If we use induction on n, then we obtain

(

AF,Pa
p

)n
=



























1 0 0 · · · 0 0

Sn+p+2

Sn+p+1

... (Bp)
n

Sn−1

Sn



























.
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