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TOTALLY AND C-TOTALLY REAL SUBMANIFOLDS OF

SASAKIAN MANIFOLDS AND SASAKIAN SPACE FORMS

PAYEL KARMAKAR(1) AND ARINDAM BHATTACHARYYA(2)

Abstract. In the present paper, we study totally real submanifolds of Sasakian

manifolds. Also, we study totally and C-totally real submanifolds of Sasakian space

forms with respect to Levi-Civita connection as well as quarter symmetric metric

connection. We have obtained some results in this regard. Among these results,

we have made an important deduction that the scalar curvatures of a C-totally real

submanifold of a Sasakian space form with respect to both the aforesaid connections

are the same.

1. Introduction

Let (M̃, g) be an n-dimensional Riemannian manifold endowed with an endomor-

phism φ of its tangent bundle TM̃ , a vector field ξ and a 1-form η such that

(1.1) φ2X = −X + η(X)ξ, φξ = 0, η ◦ φ = 0, η(ξ) = 1,

(1.2) g(φX, φY ) = g(X, Y )− η(X)η(Y ), η(X) = g(X, ξ), g(X, φY ) = −g(φX, Y )

for all vector fields X, Y ∈ Γ(TM̃).

The n-dimensional Riemannian manifold M̃ is said to have a contact Riemannian

structure (φ, ξ, η, g) if in addition

(1.3) dη(X, Y ) = g(φX, Y ).
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Moreover, if the structure is normal, i.e., if

(1.4) [φX, φY ] + φ2[X, Y ]− φ[X, φY ]− φ[φX, Y ] = −2dη(X, Y )ξ,

then the contact Riemannian structure is called a Sasakian structure and M̃ is called

a Sasakian manifold. Thus we have for all vector fields X, Y on M̃ ,

(1.5) ∇̃Xξ = −φX, (∇̃Xφ)Y = −η(Y )X + g(X, Y )ξ,

where ∇̃ denotes the Riemannian connection on g.

A plane section σ in TpM̃ of a Sasakian manifold M̃ is called a φ-section if it is

planned by X and φX , where X is a unit tangent vector field orthogonal to ξ. The

sectional curvature K̃(σ) with respect to a φ-section σ is called a φ-sectional curva-

ture c, then the Sasakian manifold M̃ is called a Sasakian space form and is denoted

by M̃(c).

Let M be a submanifold of dimension m of an n-dimensional Riemannian manifold

M̃ (m < n) with induced metric g. Also let ∇ and ∇⊥ be the induced connection

on the tangent bundle TM and the normal bundle T⊥M of M respectively, then the

Gauss and Weingerten formulae are given by

(1.6) ∇̃XY = ∇XY + h(X, Y ),

(1.7) ∇̃XV = −AVX +∇⊥
XV

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where h is the second fundamental form

and AV is the shape operator (corresponding to the normal vector field V ) for the

immersion of M into M̃ and they are related by

(1.8) g(h(X, Y ), V ) = g(AVX, Y ).

The equation of Gauss is given by

(1.9) R̃(X, Y, Z,W ) = R(X, Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y, Z))

for any vector fields X, Y, Z,W of M .
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The normal component of R̃(X, Y )Z is given by

(1.10) (R̃(X, Y )Z)N = (∇̃Xh)(Y, Z)− (∇̃Y h)(X,Z),

also for any vector fields X, Y, Z of M we have,

(1.11) (∇̃Xh)(y, Z) = ∇⊥
Xh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

For any vector fields X, Y and normal vector fields U, V of M we have,

(1.12) R̃(X, Y, U, V ) = g(R⊥(X, Y )U, V )− g([AU , AV ]X, Y ),

where R⊥ is the curvature tensor of the normal induced connection ∇⊥.

Now for a Sasakian space form M̃(c) the curvature tensor R̃ is given by [1]:

(1.13) R̃(X, Y )Z =
c+ 3

4
[g(Y, Z)X − g(X,Z)Y ] +

c− 1

4
[η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ]

for any vector fields X, Y, Z ∈ M̃(c).

A submanifold M of a contact metric manifold M̃ is called totally real if each tan-

gent space of M is mapped into the normal space by the contact metric structure φ

on M . A submanifold M of a contact metric manifold M̃ is called a C-totally real

submanifold if every tangent vector of M belongs to the contact distribution [13].

Thus a submanifold M in a contact metric manifold is C-totally real if ξ is a normal

vector field on M . A direct consequence of this definition is that φ(TM) ⊂ T⊥M ,

i.e. a C-totally real submanifold is totally real.

B. Y. Chen and K. Ogiue studied some fundamental properties of totally real man-

ifolds in 1974 [4]. In 1976, K. Yano [15] and in 1977, B. Y. Chen et al. [3] studied

properties of totally real submanifolds of a Kaehler manifold. Noriaki Sato discussed

properties of totally real submanifolds of a complex space form with nonzero parallel

mean curvature vector in 1995 [12]. Zhong Hua Hou studied properties of totally

real submanifolds of a nearly Kahler manifold in 2001 [8]. In 2003, Ion Mihai [11]
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discussed ideal C-totally real submanifolds in Sasakian space forms. Totally real and

C-totally real submanifolds of an (LCS)n-manifold were discussed by S. K. Hui and

T. Pal in 2017 [9]. Motivated from their work in this paper, we have established some

new results on totally real manifolds of a Sasakian manifold and totally and C-totally

real submanifolds of a Sasakian space form.

The notion of semi-symmetric linear connection on a smooth manifold was intro-

duced by A. Friedman and J. Schouten [5]. Then H. A. Hayden introduced the idea

of metric connection with torsion on a Riemannian manifold [7]. Thereafter K. Yano

studied semi-symmetric metric connection on a Riemannian manifold systematically

[14]. As a generalisation of semi-symmetric connection, S. Golab [6] introduced the

idea of quarter symmetric linear connection on smooth manifolds.

Now from (1.9) and (1.13) we get ∀X, Y, Z,W ∈ Γ(TM),

for a totally real submanifold M of a Sasakian space form M̃(c),

(1.14) R(X, Y, Z,W ) = g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W ))

+ c+3
4
[g(Y, Z)g(X,W )−g(X,Z)g(Y,W )]+ c−1

4
[η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )

+η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)]

since g(φX, Y ) = 0 ∀X, Y ∈ Γ(TM),

and for a C-totally real submanifold M of a Sasakian space form M̃(c),

(1.15) R(X, Y, Z,W ) = g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W ))

+ c+3
4
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]

since η(X) = 0, g(φX, Y ) = 0 ∀X, Y ∈ Γ(TM).
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We have used the above two equations in the third section of this paper to obtain

some results related to totally and C-totally real submanifolds of a Sasakian space

form.

2. Totally Real Submanifolds of Sasakian Manifolds

This section deals first with the general study of totally real submanifolds of a

Sasakian manifold and next with the study of totally real submanifolds of a Sasakian

manifold with parallel mean curvature vector.

Let M be an n-dimensional totally real submanifold of a 2m-dimensional Kaehler

manifold M̃ . If there exists a 2r-dimensional parallel holomorphic subbundle Q of

the normal bundle T⊥M (then φQ ⊂ Q), then for any section V in Q and vector

fields X, Y in M we have,

g(h(X, Y ), V ) = g(AVX, Y ) = g(−∇̃XV +∇⊥
XV, Y ) = −g(∇̃XV, Y ) = g(V, ∇̃XY )

= g(φV, ∇̃XφY ) = g(φV,∇⊥
XφY ) = −g(∇⊥

XφV, φY ) = −g(∇̃XφV, φY )−g(AφVX, φY )

= −g(∇XφV, φY )− g(h(X, φV ), φY )− g(h(X, φY ), φV )

= 0.

Thus we have:

Theorem 2.1. LetM be an n-dimensional totally real submanifold of a 2m-dimensional

Sasakian manifold M̃ . If Q is a 2r-dimensional parallel holomorphic subbundle of

T⊥M , then h|Q ≡ 0.

Let Q be a holomorphic subbundle of T⊥M , then the coholomorphic subbundle Qc

(i.e., the complimentary subbundle of Q in T⊥M where Q ⊕ Qc = T⊥M) contains

φ(TM) as its subbundle and Q is parallel if and only if Qc is parallel (i.e., Qc is

invariant under the parallel translation ∇⊥). Hence from Theorem 2.1 we obtain:

Theorem 2.2. LetM be an n-dimensional totally real submanifold of a 2m-dimensional

Sasakian manifold M̃ . If Q be a parallel coholomorphic subbundle of T⊥M , then

Im(h) ⊂ Q, where Im(h) = {h(X, Y ) : X, Y ∈ TM}.
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Theorem 2.3. LetM be an n-dimensional totally real submanifold of a 2m-dimensional

Sasakian manifold M̃ , then Im(h) ⊂ φ(TM) ⇒ (φ(TM))c is parallel.

Proof. Let V be any section of the holomorphic subbundle (φ(TM))c and Im(h) ⊂

φ(TM), then we have h|(φ(TM))c = 0 and hence for X, Y ∈ TM ,

0 = g(h(X, Y ), φV ) = g(∇̃XY, φV ) = −g(φ∇̃XY, V ) = −g(∇̃XφY, V ) = −g(∇⊥
XφY, V )

= g(∇⊥
XY, φV ). Therefore, (φ(TM))c is parallel. �

Next let us assume that M is an n-dimensional totally real submanifold of a 2n-

dimensional Kaehler manifold M̃ , then from (1.6) and (1.7) we obtain,

∇̃XφY = −AφYX +∇⊥
XφY

⇒ (∇̃Xφ)Y + φ(∇XY + h(X, Y )) = −AφYX +∇⊥
XφY

⇒ [(∇̃Xφ)Y + φh(X, Y )] + φ(∇XY ) = −AφYX +∇⊥
XφY

(2.1) ⇒ ∇⊥
XφY = φ∇XY,

and −AφYX = (∇̃Xφ)Y + φh(X, Y )

⇒ −φAφYX = φ(∇̃Xφ)Y + φ2h(X, Y )

⇒ −φAφYX = φ(∇̃Xφ)Y − h(X, Y ) + η(h(X, Y )ξ)

(2.2) ⇒ φAφYX = h(X, Y ).

∇XφV = ∇̃XφV − h(X, φV )

= (∇̃Xφ)V + φ(∇̃XV )− h(X, φV )

= (∇̃Xφ)V + φ(−AVX +∇⊥
XV )− h(X, φV )

= (∇̃Xφ)V − φ(AVX) + φ(∇⊥
XV )− h(X, φV )

= [(∇̃Xφ)V − φ(AVX)− h(X, φV )] + φ(∇⊥
XV )

(2.3) ⇒ ∇XφV = φ(∇⊥
XV ).

From (2.1) we can conclude:

Theorem 2.4. LetM be an n-dimensional totally real submanifold of a 2n-dimensional

Sasakian manifold M̃ , then the normal bundle T⊥M admits a parallel non-trivial (lo-

cal) section if and only if the tangent bundle admits a parallel non-trivial (local)

section.
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3. Totally and C-totally Real Submanifolds of Sasakian Space Forms

In this section we study totally and C-totally real submanifolds of Sasakian space

forms with respect to Levi-Civita connection as well as quarter symmetric metric

connection.

A linear connection ∇̃ in an n-dimensional smooth manifold M̃ is said to be a quarter

symmetric connection [6] if its torsion tensor T is of the form:

T (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ]

= η(Y )φX − η(X)φY,

where η is a 1-form and φ is a tensor of type (1, 1). In particular, if φX = X then the

quarter symmetric connection reduces to the semi-symmetric connection. Further if

the quarter symmetric connection ∇̃ satisfies the condition (∇̃Xg)(Y, Z) = 0 for all

smooth vector fields X, Y, Z on M̃ , then ∇̃ is said to be a quarter symmetric metric

connection.

Let M be an m-dimensional submanifold of an n-dimensional Sasakian space form

M̃ and {ei}
n
i=1 be an orthonormal basis of the tangent space M̃ such that, refracting

to M , {ei}
m
i=1 is the orthonormal basis to the tangent space TxM with respect to the

induced connection.

We write hr
ij = g(h(ei, ej), er).

Then the length of h, i.e., ‖h‖ satisfies−

‖h‖2 = 1
m

∑m

i,j=1 g(h(ei, ej), h(ei, ej)).

The quarter symmetric metric connection ¯̃∇ and Riemannian connection ∇̃ on a

Sasakian space form M̃ are related by the equation (3.6) given in [10] as

(3.1) ¯̃∇XY = ∇̃XY + η(Y )φX − g(φX, Y )ξ.

Let L be a k-plane section of TxM and X be a unit vector in L. We choose an

orthonormal basis {ei}
k
i=1 of L such that e1 = X , then the Ricci curvature RicL of L
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at X is defined by

RicL(X) = K12 +K13 + ...+K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei, ej .

Such a curvature is called a k-Ricci curvature.

The scalar curvature τ of the k-plane section L is given by

τ(L) =
∑

1≤i<j≤k Kij .

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on an n-dimensional

Riemannian manifold M is defined by

Θk(x) =
1

k−1
infL,XRicL(X), x ∈ M,

where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.

The relative null space for a submanifold M of a Riemannian manifold at a point

x ∈ M is defined by Nx = {X ∈ TxM : h(X, Y ) = 0, Y ∈ TxM}.

Now we prove the following:

Theorem 3.1. LetM be a totally realm-dimensional submanifold of an n-dimensional

Sasakian space form (m < n), then

(3.2) 2τ = m2‖H‖2 − ‖h‖2 +
(c+ 3)(m− 1)m

8
−

(c− 1)(m− 1)

2
,

where τ is the scalar curvature of M .

Proof. From (1.14) we have ∀X, Y, Z,W ∈ Γ(TM),

R(X, Y, Z,W ) = g(h(Y, Z), h(X,W ))− g(h(X,Z), h(Y,W ))

+ c+3
4
[g(Y, Z)g(X,W )−g(X,Z)g(Y,W )]+ c−1

4
[η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )

+η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)].

Applying the above equation for X = W = ei, Y = Z = ej and taking summation

over 1 ≤ i < j ≤ m, we get,

2τ = m2‖H‖2−‖h‖2+ c+3
4
[(m−1)+(m−2)+ ...+3+2+1]+ c−1

4
[−(m−1)−(m−1)]

= m2‖H‖2 − ‖h‖2 + (c+3)(m−1)m
8

− (c−1)(m−1)
2

. �
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Corollary 3.1. Let M be a C-totally real m-dimensional submanifold of an n-

dimensional Sasakian space form (m < n), then

(3.3) 2τ = m2‖H‖2 − ‖h‖2 +
(c+ 3)(m− 1)m

8
,

where τ is the scalar curvature of M .

Proof. Applying (1.15) for X = W = ei, Y = Z = ej and taking summation over

1 ≤ i < j ≤ m, we get,

2τ = m2‖H‖2 − ‖h‖2 + (c+3)(m−1)m
8

.

�

Now let M be a submanifold of dimension m (m < n) of an n-dimensional Sasakian

space form M̃ with respect to the quarter symmetric metric connection ¯̃∇ and ∇̄ be

the induced connection of M associated to the quarter symmetric metric connection.

Also let h̄ be the second fundamental form of M with respect to ∇̄, then the Gauss

formula can be written as

(3.4) ¯̃∇XY = ∇̄XY + h̄(X, Y )

and hence by virtue of (1.6) and (3.1) we get,

(3.5) ∇̄XY + h̄(X, Y ) = ∇XY + h(X, Y ) + η(Y )φX − g(φX, Y )ξ.

If M is a totally real submanifold of M̃ , then for any X ∈ TM , φX ∈ T⊥M and

hence g(φX, Y ) = 0 for X, Y ∈ TM. So, equating the normal part from (3.5) we get,

(3.6) h̄(X, Y ) = h(X, Y ) + η(Y )φX.

Further, if M is C-totally real submanifold of M̃ , then ξ ∈ T⊥M and hence η(Y ) = 0

for all Y ∈ TM . So, from (3.6) we get,

(3.7) h̄(X, Y ) = h(X, Y ).

Let U be a unit tangent vector at x ∈ M̃ and {ei}
n
i=1 be an orthonormal basis of the

tangent space of M̃ such that e1 = U refracting to M , {ei}
m
i=1 is the orthonormal basis

to the tangent space TxM with respect to the induced symmetric metric connection,

then we have the following:



584 PAYEL KARMAKAR AND ARINDAM BHATTACHARYYA

Theorem 3.2. Let M be a totally real submanifold of a Sasakian space form M̃ with

respect to the quarter symmetric metric connection, then

(3.8) 2τ̄ = m2‖H‖2 − ‖h‖2 +
(c+ 3)m(m− 1)

8
+

(c+ 3)

4
[1− η2(U)m],

where τ̄ is the scalar curvature of M with respect to the induced connection associated

to the quarter symmetric metric connection.

Proof. If ¯̃
R and R̃ are the curvature tensors of M̃ with respect to the quarter sym-

metric metric connection ¯̃∇ and Riemannian connection ∇̃ respectively, then the

equation (1.9) becomes

(3.9) ¯̃
R(X, Y, Z,W ) = R̄(X, Y, Z,W ) + g(h̄(X,Z), h̄(Y,W ))− g(h̄(X,W ), h̄(Y, Z)).

Similarly the equation R̃(X, Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z becomes

¯̃
R(X, Y )Z = ¯̃∇X

¯̃∇Y Z − ¯̃∇Y
¯̃∇XZ − ¯̃∇[X,Y ]Z.

Applying (3.1) and then (1.5) on the above equation we obtain,

¯̃
R(X, Y )Z = R̃(X, Y )Z−g(Z, φY )φX+g(Z, φX)φY+[−g(Y, Z)η(X)+g(X,Z)η(Y )]ξ

+ η(Z)[−η(Y )X + η(X)Y ].

Hence we have,

(3.10) ¯̃
R(X, Y, Z,W ) = R̃(X, Y, Z,W )+[−g(φY, Z)g(φX,W )+g(φX,Z)g(φY,W )]

+η(W )[−g(Y, Z)η(X) + g(X,Z)η(Y )] + η(Z)[−η(Y )g(X,W ) + η(X)g(Y,W )].

Now from (3.9) and (3.10) we get,

(3.11) R̄(X, Y, Z,W ) = R̃(X, Y, Z,W )+ [−g(φY, Z)g(φX,W )+ g(φX,Z)g(φY,W )]

+η(W )[−g(Y, Z)η(X) + g(X,Z)η(Y )] + η(Z)[−η(Y )g(X,W ) + η(X)g(Y,W )]

−g(h̄(X,Z), h̄(Y,W )) + g(h̄(X,W ), h̄(Y, Z)).

Using (1.13) and g(φX, Y ) = 0 (since M is totally real) on (3.11) we obtain,

R̄(X, Y, Z,W ) = g(h̄(X,W ), h̄(Y, Z))− g(h̄(X,Z), h̄(Y,W )) + c+3
4
[g(Y, Z)g(X,W )
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− g(X,Z)g(Y,W )] + c+3
4
[η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)

− η(X)η(W )g(Y, Z)].

Using (3.6) on the above equation we get,

(3.12) R̄(X, Y, Z,W ) = g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W ))

+η(Z)g(h(X,W ), φY ) + η(W )g(φX, h(Y, Z))− η(Z)g(φX, h(Y,W ))

−η(W )g(h(X,Z), φY )+ c+3
4
[g(Y, Z)g(X,W )−g(X,Z)g(Y,W )]+ c+3

4
[η(X)η(Z)g(Y,W )

−η(Y )η(Z)g(X,W ) + η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)].

Applying the above equation for X = W = ei, Y = Z = ej and taking summation

over 1 ≤ i < j ≤ m we obtain,

2τ̄ = m2‖H‖2 − ‖h‖2 + c+3
4
.
m(m−1)

2
+ c+3

4
[−{−1 + η2(U)}m− (m− 1)]

⇒ 2τ̄ = m2‖H‖2 − ‖h‖2 + (c+3)m(m−1)
8

+ (c+3)
4

[1− η2(U)m]. �

Corollary 3.2. Let M be a C-totally real submanifold of a Sasakian space form M̃

with respect to the quarter symmetric metric connection, then

(3.13) 2τ̄ = m2‖H‖2 − ‖h‖2 +
(c+ 3)m(m− 1)

8
,

where τ̄ is the scalar curvature of M with respect to the induced connection associated

to the quarter symmetric metric connection.

Proof. If M a is C-totally real submanifold of M̃ , then η(X) = 0 ∀X ∈ TM and

hence (3.12) implies

R̄(X, Y, Z,W ) = g(h(X,W ), h(Y, Z))− g(h(X,Z), h(Y,W )) + c+3
4
[g(Y, Z)g(X,W )

− g(X,Z)g(Y,W )].

Applying the above equation for X = W = ei, Y = Z = ej and taking summation

over 1 ≤ i < j ≤ m, we obtain the equation (3.13). �

From Corollary 3.1 and Corollary 3.2 we can state:

Theorem 3.3. Let M be a C-totally real submanifold of a Sasakian space form M̃ ,

then the scalar curvatures of M with respect to the induced Levi-Civita connection
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and the induced quarter symmetric metric connection are same.

Next we prove the following:

Theorem 3.4. LetM be an m-dimensional totally real submanifold of an n-dimensional

Sasakian space form M̃ , (m < n). We have−

(i) For each unit vector X ∈ TxM ,

(3.14) 2Ric(X) ≤
m2

2
‖H‖2−

c + 3

8
(3m2−15m+16)−

c − 1

2
[−m+3+2(m−2)η2(X)];

(ii) In case of H(x) = 0, a unit tangent vector X at x satisfies the equality case of

(3.14) if and only if X lies in the relative null space Nx at x;

(iii) The equality case of (3.14) holds identically for all unit tangent vectors at x if

and only if either x is a totally geodesic point or m = 2 and x is a totally umbilical

point.

Proof. (i) Let X ∈ TxM be a unit tangent vector at x. We choose an orthonormal

basis {e1, e2, ..., em−1, em, em+1, ..., en} such that ei’s are tangent to M at x for i =

1, ..., m and e1 = X , then from (3.2) we have,

m2‖H‖2 = 2τ +
∑n

r=m+1{(h
r
11)

2 + (hr
22 + ...+ hr

mm)
2}+ 2

∑n

r=m+1

∑

i<j(h
r
ij)

2

−2
∑n

r=m+1

∑

2≤i<j≤m hr
iih

r
jj −

(c+3)m(m−1)
8

+ (c−1)(m−1)
2

(3.15) ⇒ m2‖H‖2 = 2τ +
1

2

n
∑

r=m+1

{(hr
11+hr

22+ ...+hr
mm)

2+(hr
11−hr

22− ...−hr
mm)

2}

+2
∑n

r=m+1

∑

i<j(h
r
ij)

2 − 2
∑n

r=m+1

∑

2≤i<j≤m hr
iih

r
jj −

(c+3)m(m−1)
8

+ (c−1)(m−1)
2

.

From (1.14) we find,

Kij =
∑n

r=m+1[h
r
iih

r
jj − (hr

ij)
2] + c+3

4
− c−1

4
[η2(ei) + η2(ej)],

and consequently,

(3.16)
∑

2≤i<j≤m

Kij =

n
∑

r=m+1

∑

2≤i<j≤m

[hr
iih

r
jj − (hr

ij)
2] +

(c+ 3)

4
(m− 2)2

− c−1
2
(m− 2)[1− η2(X)] + c−1

4
(m− 2)[η2(e2) + η2(em)].
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Using (3.16) in (3.15) we obtain,

m2‖H‖2 ≥ 2τ + m2

2
‖H‖2 + 2

∑n

r=m+1

∑m

j=2(h
r
1j)

2 − 2
∑

2≤i<j≤mKij +
c+3
2
(m− 2)2

− (c− 1)(m− 2)[1− η2(X)]− (c+3)m(m−1)
8

+ (c−1)(m−1)
2

⇒ m2

2
‖H‖2 ≥ 2Ric(X) + c+3

8
(3m2 − 15m+ 16) + c−1

2
[−m+ 3 + 2(m− 2)η2(X)],

from which we get (3.14).

(ii) Let H(X) = 0, then the equality holds in (3.14) if and only if

hr
11 = hr

12 = ... = hr
1m = 0 and hr

11 = hr
22 + ...+ hr

mm, r ∈ {m+ 1, m+ 2, ..., n− 1, n},

then hr
ij = 0 ∀j ∈ {1, 2, ..., m}, r ∈ {m+ 1, ..., n}, i.e., X ∈ Nx.

(iii) Equality in (3.14) holds for every tangent vector at x if and only if

hr
ij = 0, i 6= j and hr

11 + hr
22 + ...+ hr

mm − 2hr
ii = 0.

We distinguish two cases:

a) m 6= 2 ⇒ x is a totally geodesic point;

b) m = 2 ⇒ x is a totally umbilical point and the converse is trivial. �

Next we obtain:

Theorem 3.5. Let M be a totally real submanifold of dimension m of an n-

dimensional Sasakian space form M̃ (m < n), then we have,

(3.17) ‖H‖2 ≥
2τ

m(m− 1)
−

1

8
(c+ 3) +

1

2m
(c− 1).

Proof. We choose an orthonormal basis {e1, ..., em, em+1, ...en} at x such that em+1

is parallel to the mean curvature vector H(x) and e1, ..., em diagonalise the shape

operator Aem+1
, then the shape operator takes the form

(3.18) Aem+1
=



























a1 0 0 ... 0

0 a2 0 ... 0

. . . . .

. . . . .

. . . . .

0 0 0 ... an



























,
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where Aer = (hr
ij), i, j = 1, ..., m; r = m+ 2, ..., n, traceAer =

∑m

i=1 h
r
ii = 0.

Now from (3.2) we get,

(3.19) m2‖H‖2 = 2τ +
m
∑

i=1

a2i +
n

∑

r=m+2

m
∑

i,j=1

(hr
ij)

2 −
(c+ 3)

8
m(m− 1) +

c− 1

2
(m− 1).

Also we have,

0 ≤
∑

i<j(ai − aj)
2 = (m− 1)

∑

i a
2
i − 2

∑

i<j aiaj ,

from which we get,

m2‖H‖2 = (
∑m

i=1 ai)
2 =

∑

i a
2
i + 2

∑

i<j aiaj ≤ m
∑m

i=1 a
2
i

(3.20) ⇒

m
∑

i=1

a2i ≥ m‖H‖2.

Applying (3.20) on (3.19) we obtain,

m2‖H‖2 ≥ 2τ +m‖H‖2 − (c+3)
8

m(m− 1) + c−1
2
(m− 1)

which implies (3.17). �

Theorem 3.6. Let M be a totally real submanifold of dimension m of a Sasakian

space form M̃ (m < n), then for any integer k, 2 ≤ k ≤ m, and any point x ∈ M ,

we have,

(3.21) ‖H‖2(x) ≥ Θk(x)−
1

8
(c+ 3) +

1

2m
(c− 1).

Proof. Let {ei}
m

i=1 be an orthonormal basis of TxM . We denote the k-plane section

spanned by {eir}
k
r=1, by Li1,...,ik , then from the relation (3.5) given in [2] we have,

(3.22) τ(x) ≥
m(m− 1)

2
Θk(x).

Using (3.22) in (3.17) we get (3.21). �
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