
Jordan Journal of Mathematics and Statistics (JJMS), 15(3B), 2022, pp 591 - 613

DOI: https://doi.org/10.47013/15.3.13

EXISTENCE RESULTS FOR A CLASS OF FIRST-ORDER

FRACTIONAL DIFFERENTIAL EQUATIONS WITH ADVANCED

ARGUMENTS AND NONLOCAL INITIAL CONDITIONS

MOHAMMED ABDELHAKIM BENZIAN (1), MOHAMMED DERHAB (2) AND BACHIR

MESSIRDI (3)

Abstract. This work is concerned with the construction of solutions for a class

of first order fractional differential equations with advanced arguments and with

nonlocal initial conditions. We also give some examples to illustrate our results.

1. Introduction

The purpose of this work is to study the existence of solutions for a class of first order

fractional differential equations with advanced arguments subject to integral initial

conditions. More specifically, we consider the nonlinear initial value problem

(1.1)





CDα

0+u(t) = f(t, u (t) , u (θ (t))), t ∈ J = [0, T ],

u (0) =
∫ T

0
g(s)u(s)ds,

where CDα
0+ is the Caputo fractional derivative of order α with 0 < α ≤ 1, T > 0,

θ : J → J is continuous with θ (t) ≤ t, for all t ∈ J , f : J × R2 → R and g : J → R+

are continuous functions.

Fractional differential equations arise in many scientific fields such as viscoelasticity,

electrical circuits, electroanalytical chemistry, biology, control theory, electromagnetic

theory, biomedical problems and so on (see [32], [27], [25], [20] and the references cited

in [24]). Indeed, fractional differential equations are more realistic than ordinary
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differential equations when studying some models of viscoelasticity and plasticity

(see [5], [32, Chapter 10 Section 10.2] and [34]). On the other hand differential

equations with advanced arguments arises in the problem of analyzing the dynamics

of an overhead current collection system for an electric locomotive (see [31]), number

theory, electrodynamics, quantum mechanics and engineering applications (see [7],

[13], [26], [36] and the references therein).

Differential equations with advanced arguments in the complex plane were first stud-

ied by P. Flamant [12]. More precisely in [12] P. Flamant consider the problem

(1.2)





u′(z) = a(z)u( z

σ
) + b(z), z ∈ D,

u(0) = c0,

where σ ∈ C such that |σ| ≥ 1 and a(z), b(z) are analytic in a closed and simply

connected region D and c0 ∈ C.

By using the method of successive approximation the author proved that the problem

(1.2) admits a unique solution analytic in D. He indicated that the preceding method

can be applied to the problem

(1.3)






u′(z) =
n∑

j=0

ai(z)u(
z
σi
) + b(z), z ∈ D,

u(0) = c0,

where σi ∈ C such that |σi| ≥ 1 and ai are analytic in D, for all i = 1, ..., n.

On the other hand fractional differential equations with deviating arguments have

been studied by several authors using the Banach contraction principle, the upper and

lower solutions method, the upper and lower solutions method coupled with monotone

iterative technique, fixed point theorems in cones and numerical methods(see [2], [3],

[4], [10], [15], [16], [21], [22], [23], [30], [35], [37], [38], [39] and the references therein).

Let us recall some of them.

In [4], the authors studied the existence of solutions for the problem

(1.4)





CDα
0+u(t) = f(t, u (t) , u (λt)), t ∈ J = [0, T ],

u (0) = g(u),

where f : [0, T ] ×X × X → X , g : C(J ;X) → X are continuous with X a Banach

space.
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By using the Banach contraction principle, the authors proved the existence and

uniqueness of solutions for problem (1.4).

In [10], by using the upper and lower solution method coupled with monotone itera-

tive technique, the authors studied the existence and uniqueness of solutions for the

problem




Dqu(t) = f(t, u (t) , u (θ (t))), t ∈ J = [0, T ],

u (0) = λ
∫ 1

0
u(s)ds+ d,

where f ∈ C ([0, T ]× R× R, R), θ : J → J is continuous with θ (t) ≤ t, for all t ∈ J

and Dqu(t) is the q-th Riemann-Liouville fractional derivative of u with respect to t,

which q is such that 0 < q < 1, λ ≥ 0 and d is a real umber.

In [16], the author studied the problem

(1.5)





Dqu(t) = f(t, u (t) , u (θ (t))), t ∈ J = [0, T ],

t1−qu (t)|t=0 = u0,

where f ∈ C ([0, T ]× R× R, R), θ : J → J is continuous with θ (t) ≤ t, for all t ∈ J

and Dqu(t) is the q-th Riemann-Liouville fractional derivative of u with respect to t,

which q is such that 0 < q < 1.

By using the method of upper and lower solutions method coupled with monotone

iterative technique, the author obtained the existence of extremal solutions for the

problem (1.5) and he gave sufficient conditions under which problem (1.5) has a

unique solution.

In [23], the authors studied the problem

(1.6)





D
q
tu(t) = f(t, u (t) , u (β (t))), t ∈ (0, T ] , T > 0,

g (ũ (0) , ũ (T )) = 0,

where f ∈ C ([0, T ]× R× R, R), g ∈ C (R× R, R), β (t) ∈ Cα ([0, T ], [0, T ]), ũ (0) =

t1−qu (t)|t=0, ũ (T ) = t1−qu (t)|t=T andD
q
tu(t) is the q-th Riemann-Liouville fractional

derivative of u with respect to t, which q is such that 0 < q ≤ 1.

By using the method of upper and lower solutions coupled with monotone iterative

technique, the authors studied the existence and the multiplicity of the solutions for

the problem (1.6).
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In [30], the authors studied the problem

(1.7)






D
q
0u(t) + a (t) f(t, u (θ (t))), 0 < t < 1, n− 1 < q ≤ n

u(i) (0) = 0, i = 0, 1, 2, ..., n− 2,[
D

β
0u(t)

]

t=1
= 0, 1 ≤ β ≤ n− 2,

where n > 0 (n ∈ N), Dq
0 is the standard Riemann-Liouville fractional derivative of

order q, f : [0,∞) → [0,∞), a : [0, 1] → (0,∞) and θ : (0, 1) → (0, 1] are continuous

functions.

By using he Banach contraction principle and the Guo-Krasnoselskii fixed point the-

orem, the authors proved the existence and uniqueness results of positive solutions

to problem (1.7).

In [39], by applying fixed point index theory and Leggett-Williams fixed point theo-

rem, the authors established sufficient conditions for the existence of multiple positive

solutions for the boundary value problem (1.7).

It is well know that the method of upper and lower solutions coupled with monotone

iterative technique has been used to prove existence of solutions for first order dif-

ferential equations with advanced arguments by various authors (see [3], [10], [15],

[16], [22], [23] and [38]). The purpose of this work is to show that it can be applied

successfully to problems of type (1.1). We note also that to the best of our knowledge

this is the first paper which gives a correct proof to the comparison result (see Lemma

2.4) for first order fractional differential equations with advanced arguments by using

the mean value theorem for Caputo’s fractional derivative.

The plan of this paper is organized as follows. In Section 2, we give some definitions

and preliminary results. The main result is presented and proved in Section 3, fol-

lowed by some examples in Section 4 illustrating the application of our result and

finally in Section 5, we give a conclusion.

2. Preliminary

In this section we give some definitions and preliminary results that will be used in

the remainder of this paper.
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Definition 2.1. For 0 < q < 1 and h ∈ Lp(J,R) with p ≥ 1. The Riemann-Liouville

integral of order q of h is defined by

I
q

0+h (t) :=
1

Γ (q)

t∫

0

(t− s)q−1
h (s) ds,

where Γ is the Gamma Euler function defined by

Γ (x) =

+∞∫

0

e−ttx−1dt,

where x ∈ R with x > 0.

Remark 1. If q = 0, we put by definition I00+h (t) = h(t).

Definition 2.2. For 0 < q ≤ 1, the Caputo fractional derivative of order q of a

function h is defined by

CD
q

0+h (t) =
RL D

q

0+ (h (t)− h (0)) ,

where RLD
q
0 is the Riemann-Liouville fractional derivative defined by

RLD
q

0+h (t) =
d

dt
I1−qh (t)

=
1

Γ (1− q)

d

dt

t∫

0

(t− s)−q
h (s) ds.

Notation . For h ∈ C (J,R), we note ‖h‖0 the usual norm defined by

||h||0 = max
s∈[0,T ]

|h (s)| .

We have the following result.

Lemma 2.1 (See [18, Lemma 1]). For 0 < q ≤ 1, the Riemann-Liouville fractional

integration operator I
q

0+ is bounded from C (J,R) to C (J,R) and

∥∥Iq0+h
∥∥
0
≤ T q

Γ (q + 1)
‖h‖0 .

Definition 2.3. The Mittag–Leffler function with two parameters Eq1,q2 is defined

by

Eq1,q2 (x) =

∞∑

n=0

xn

Γ(q1n+ q2)
, q1 > 0, q2 > 0 and x ∈ R.
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Remark 2. In [29] the authors proved that the Mittag–Leffler function with two

parameters Eα,β(−x) with x ≥ 0 is completely monotonic, that is

(−1)n
dn

dxn
Eq1,q2 (−x) ≥ 0 for all n ∈ N,

if and and only if 0 < q1 ≤ 1 and q2 ≥ q1.

Now, we consider the problem

(2.1)





CD
q

0+u (t) = g̃(t, u (t) , u (θ (t))), t ∈ J,

u(0) = ã,

where 0 < q ≤ 1, g̃ : [0, T ]× R2→ R is continuous and ã ∈ R.

We have the following results.

Lemma 2.2 (See [20, Corollary 3.24]). A function u ∈ C (J,R) is a solution of the

Cauchy problem (2.1) if, and only if, u satisfies the Volterra integral equation

u (t) = ã+
1

Γ (q)

t∫

0

(t− s)q−1
g̃(s, u (s) , u (θ (s)))ds, for all t ∈ J ,

where 0 < q ≤ 1.

Lemma 2.3 (See [11, Corollary 2.4]). For 0 < q ≤ 1 and a < b and assume u ∈
C ([a, b] ,R) with CD

q

0+u ∈ C ([a, b] ,R). Then there exists some c in (a, b) such that

u (b)− u (a)

(b− a)q
=

CD
q

0+u (c)

Γ (q + 1)
.

Notation . For 0 < β ≤ 1, we use the notation

Cβ,0 (J,R) =
{
u ∈ C (J,R) : CD

β

0+u ∈ C (J,R)
}
.

Theorem 2.1. Assume that the function f satisfies the hypothesis

(H) There exists a positive constants L1 and L2 such that

|g̃ (t, u1, v1)− g̃ (t, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| ,

for all t ∈ J , ui ∈ R and vi ∈ R for i = 1, 2.

Then the problem (2.1) admits a unique solution u ∈ Cq,0 (J,R) .
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Proof. From Lemma 2.2 u ∈ Cq,0 (J,R) is a solution of the Cauchy problem (2.1) if,

and only if, u satisfies the Volterra integral equation

u (t) = ã+
1

Γ (q)

t∫

0

(t− s)q−1
g̃(s, u (s) , u (θ (s)))ds, for all t ∈ J.

We define the operator

A : C (J,R) → C (J,R)

u 7→ (Au) (t) = ã + 1
Γ(q)

t∫
0

(t− s)q−1
g̃(s, u (s) , u (θ (s)))ds.

To prove that the operator A admits a unique fixed point, we use the norm

‖x‖∗ = max
t∈J

e−λt |x (t)| ,

where λ > 0 and x ∈ C (J,R).

Since the norms ‖.‖∗ and ‖.‖0 are equivalent, then (C (J,R) , ‖.‖∗) is a Banach space.

Now we are going to prove that A is a contraction on (C (J,R) , ‖.‖∗).
Let u1, u2 ∈ C (J,R), then for all t ∈ J , we have

e−λt |(Au1) (t)− (Au2) (t)|

=
e−λt

Γ (q)

∣∣∣∣∣∣

t∫

0

(t− s)q−1 (g̃(s, u1 (s) , u1 (θ (s)))− g̃(s, u2 (s) , u2 (θ (s)))) ds

∣∣∣∣∣∣

≤ e−λt

Γ (q)

t∫

0

(t− s)q−1 |g̃(s, u1 (s) , u1 (θ (s)))− g̃(s, u2 (s) , u2 (θ (s)))| ds

≤ e−λt

Γ (q)

t∫

0

(t− s)q−1 (L1 |u1 (s)− u2 (s)|+ L2 |u1 (θ (s))− u2 (θ (s))|) ds

≤ e−λt

Γ (q)
(L1 + L2) ‖u1 − u2‖∗

t∫

0

eλs (t− s)q−1
ds
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=
(L1 + L2)

Γ (q)
‖u1 − u2‖∗

t∫

0

e−λ(t−s) (t− s)q−1
ds

=
(L1 + L2)

Γ (q)
‖u1 − u2‖∗

t∫

0

e−λττ q−1dτ

=
(L1 + L2)

λqΓ (q)
‖u1 − u2‖∗

λt∫

0

e−ηηq−1dη

≤ (L1 + L2)

λqΓ (q)
‖u1 − u2‖∗

+∞∫

0

e−ηηq−1dη

=
(L1 + L2)

λq
‖u1 − u2‖∗ ,

which implies that

‖Au1 − Au2‖∗ ≤
(L1 + L2)

λq
‖u1 − u2‖∗ .

Then if we choose λ ≥ (1 + L1 + L2)
1

q , we obtain

‖Au1 − Au2‖∗ < ‖u1 − u2‖∗ ,

which means that A is a contraction on (C (J,R) , ‖.‖∗).
Therefore by the Banach fixed theorem, the operator A admits a unique fixed point

and consequently from Lemma 2.2, it follows that the problem (2.1) admits a unique

solution u ∈ Cq,0 (J,R). �

Remark 3. The idea of the proof is similar to that of [6, Theorem 5.1].

Remark 4. Theorem 2.1 improve and generalize [4, Theorem 3.1].

Now, we state and prove the following comparison result.

Lemma 2.4. Assume that θ ∈ C(J, J) with θ(t) ≤ t on J and u ∈ Cq,0 (J,R) satisfies

the inequalities




CDα
0+u (t) ≤ −M1u (t)−N1u (θ(t)) , t ∈ J,

u (0) ≤ 0,

where 0 < q ≤ 1 and M1 ≥ 0 and N1 ≥ 0.
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If

(M1 +N1)
T α

Γ (1 + α)
≤ 1,

then u (t) ≤ 0, for all t ∈ J.

Proof. We put by definition

uε (t) = u (t)− ε (1 + tα) ,

where ε > 0 and t ∈ J.

For all t ∈ J , we have

CDα
0+uε (t) = CDα

0 u (t)− εCDα
0 (1 + tα)

= CDα
0 u (t)− εΓ (1 + α)

≤ −M1u (t)−N1u (θ(t))− εΓ (1 + α)

< −M1uε (t)−N1uε (θ(t)) .

That is

(2.2) CDα
0+uε (t) < −M1uε (t)−N1uε (θ(t)) , for all t ∈ J .

On the other hand since u (0) ≤ 0, we have

uε (0) = u (0)− ε < 0.

Now, we are going to prove that

uε (t) < 0, for all t ∈ J.

Assume that there exists t∗ ∈ (0, T ] such that

(2.3) uε (t) < 0, for all t ∈ [0, t∗) and uε (t∗) = 0.

We put by definition

uε (η) = min
t∈[0,t∗]

uε (t) < 0.

By Lemma 2.3, there exists σ ∈ (η, t∗) such that

uε (t∗)− uε (η) =
C Dα

0+uε (σ)
(t∗ − η)α

Γ (1 + α)
.
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Then by using (2.2) and (2.3), we obtain

−uε (η) < − (M1uε (σ) +N1uε (θ(σ)))
(t∗ − η)α

Γ (1 + α)
,

which implies that

−uε (η) < − (M1 +N1) uε (η)
(t∗ − η)α

Γ (1 + α)

< − (M1 +N1) uε (η)
T α

Γ (1 + α)
.

That is

(M1 +N1)
T α

Γ (1 + α)
> 1,

which is a contradiction with the assumption

(M1 +N1)
T α

Γ (1 + α)
≤ 1.

Then, we have

uε (t) < 0, for all t ∈ J.

That is

uε (t) < ε (1 + tα) , for all t ∈ J.

Since ε > 0 is arbitrary, we obtain

u (t) ≤ 0, for all t ∈ J.

�

3. Main result

In this section we give some definitions, we state and prove our result.

Definition 3.1. We say that u ∈ Cα,0 (J,R) is a lower solution of (1.1) if




CDα
0+u (t) ≤ f (t, u (t) , u (θ(t))) , t ∈ J,

u (0) ≤
T∫
0

g (s)u (s) ds.

Definition 3.2. We say that u ∈ Cα,0 (J,R) is an upper solution of (1.1) if




CDα
0+u (t) ≥ f (t, u (t) , u (θ(t))) , t ∈ J,

u (0) ≥
T∫
0

g (s)u (s) ds.
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Definition 3.3. We say that u is a solution of (1.1) if u ∈ Cα,0 (J,R) and satisfies

(1.1).

We have the following result.

Theorem 3.1. Assume that θ ∈ C(J, J) with θ(t) ≤ t on J and u and u be lower

and upper solutions respectively for problem (1.1) such that u ≤ u in J .

If there exists two constants M ≥ 0, N ≥ 0 satisfying

(H1) f(t, x1, y1)− f (t, x2, y2) ≥ −M (x1 − x2)−N (y1 − y2), for all t ∈ J , u (t) ≤
x2 ≤ x1 ≤ u (t) and u (θ(t)) ≤ y2 ≤ y1 ≤ u (θ(t)) .

(H2) (M +N)
T α

Γ (1 + α)
≤ 1.

Then the problem (1.1) has a minimal solution u∗ and a maximal solution u∗ such

that for every solution u of (1.1) with u ≤ u ≤ u in J , we have

u ≤ u∗ ≤ u ≤ u∗ ≤ u in J.

Proof. We take u0 = u, and we define the sequences (un)n≥1 by

(3.1)





CDα
0+un+1 (t) +Mun+1 (t) +Nun+1 (θ(t)) = fn (t) , t ∈ J,

un+1(0) =
∫ T

0
g(s)un(s)ds,

where

fn (t) = f(t, un (t) , un (θ(t))) +Mun (t) +Nun (θ(t)) .

Analogously, we take u0 = u and we define the sequences (un)n≥1 by

(3.2)





CDα

0+un+1 (t) +Mun+1 (t) +Nun+1 (θ(t)) = f̃n (t) , t ∈ J,

un+1(0) =
∫ T

0
g(s)un(s)ds,

where

f̃n (t) = f(t, un (t) , un (θ(t))) +Mun (t) +Nun (θ(t)) .

Step 1: For all n ∈ N, we have

un ≤ un+1 ≤ un+1 ≤ un in J.

Let

w0 (t) := u1 (t)− u0 (t) , t ∈ J.
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By (3.1) and using the definition of lower solution, we have




CDα
0+w0 (t) +Mw0 (t) +Nw0 (θ(t)) ≥ 0, t ∈ J,

w0 (0) ≥ 0.

Then by Lemma 2.4, we obtain

w0 (t) ≥ 0 for all t ∈ J.

That is

(3.3) u0 ≤ u1 in J.

Similarly, we can prove that

(3.4) u1 ≤ u0 in J.

Now, we put by definition

p1 (t) = u1 (t)− u1 (t) , t ∈ J.

By (3.1) and (3.2), we have




CDα

0+p1 (t) +Mp1 (t) +Np1 (θ(t)) = f0 (t)− f̃0 (t) , t ∈ J,

p1(0) =
∫ T

0
g(s) (u0(s)− u0 (s)) ds,

Since u0 = u ≤ u = u0 in J and using the hypothesis (H1), we obtain




CDα

0+p1 (t) +Mp1 (t) +Np1 (θ(t)) ≤ 0, t ∈ J,

p1(0) =
∫ T

0
g(s) (u0(s)− u0 (s)) ds ≤ 0,

and then by hypothesis (H2) Lemma 2.4 implies

p1 (t) ≤ 0 for all t ∈ J.

That is

(3.5) u1 ≤ u1 in J.

Then by (3.3), (3.4) and (3.5), we have

u0 ≤ u1 ≤ u1 ≤ u0 in J.

Assume for fixed n ≥ 1, we have

un ≤ un+1 ≤ un+1 ≤ un in J,
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and we show that

un+1 ≤ un+2 ≤ un+2 ≤ un+1 in J.

We put by definition

wn+1 (t) := un+2 (t)− un+1 (t) , t ∈ J.

By (3.1)), we have




CDα

0+wn+1 (t) +Mwn+1 (t) +Nwn+1 (θ(t)) = fn+1 (t)− fn (t) , t ∈ J,

wn+1(0) =
∫ 1

0
g(s)

(
un+1(s)− un (s)

)
ds,

Since by the hypothesis of recurrence, we have un ≤ un+1 in J and by using the

hypothesis (H1), we obtain




CDα
0+wn+1 (t) +Mwn+1 (t) +Nwn+1 (θ(t)) ≥ 0, t ∈ J,

wn+1(0) ≥ 0,

and then by hypothesis (H2) Lemma 2.4 implies

wn+1 (t) ≥ 0 for all t ∈ J.

That is

(3.6) un+1 (t) ≤ un+2 (t) for all t ∈ J.

Similarly, we can prove that

(3.7) un+2 ≤ un+1 in J,

and

(3.8) un+2 ≤ un+2 in J.

Then by (3.6), (3.7) and (3.8), we have

un+1 ≤ un+2 ≤ un+2 ≤ un+1 in J.

Hence for all n ∈ N, we have

un ≤ un+1 ≤ un+1 ≤ un in J.

The proof of Step 1 is complete.

Step 2: The sequence (un)n∈N converges to a minimal solution of (1.1).
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By Step 1 and using Dini’s theorem it follows that the sequence of functions (un)n∈N

converges uniformly to u∗.

Let n ∈ N∗ and t ∈ J , then by Lemma 2.2 we have

un+1(t) = un+1 (0) +
1

Γ (α)

∫ t

0

(t− s)α−1 (fn (s)−Mun+1 (s)−Nun+1 (θ(s)))ds.

Now, as n tends to +∞, we obtain

fn (s)−Mun+1 (s)−Nun+1 (θ(s)) → f(s, u∗ (s) , u∗ (θ(s))).

Then by Lemma 2.1, one has

(3.9) u∗(t)− u∗(0) =
1

Γ (α)

∫ t

0

(t− s)α−1
f(s, u∗ (s) , u∗ (θ(s)) ds,

and from Lemma 2.2, we deduce

CDα
0+u∗(t) = f(t, u∗ (t) , u∗ (θ(t)) , t ∈ J .

On the other hand it is not difficult to prove that

u∗(0) =

∫ 1

0

g(s)u∗(s)ds,

and consequently it follows that u∗ is a solution of (1.1).

Now, we prove that if u is another solution of (1.1) such that u ≤ u ≤ u, then u∗ ≤ u.

Since u is an upper solution of (1.1), then by Step 1, we have

∀n ∈ N, un ≤ u.

Letting n → +∞, we obtain

u∗ = lim
n→+∞

un ≤ u,

and consequently it follows that u∗ is a minimal solution of problem (1.1).

The proof of Step 2 is complete.

Similarly, we can prove that the sequence (un)n∈N converges to a maximal solution

u∗ of (1.1).

The proof of Theorem 3.1 is complete. �
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4. Applications

In this section we give some examples illustrating the application of our result.

Example 4.1. We consider the problem

(4.1)





CD
1

2

0+u (t) =
√
tu (t)− u (t2) + cos t, t ∈

[
0, 1

2

]
,

u(0) =

1

2∫
0

√
su (s) ds,

We put by definition u(t) =
99

100

√
t and u(t) =

√
t+ 1, for all t ∈

[
0, 1

2

]
.

First u is a lower solution for the problem (4.1) if we have




CD
1

2

0+u (t) ≤
√
tu (t)− u (t2) + cos t, t ∈

[
0, 1

2

]
,

u(0) ≤
1

2∫
0

√
su (s) ds.

That is 



99

100
Γ
(
3
2

)
≤ cos t, t ∈

[
0, 1

2

]
,

0 ≤ 99

100

1

2∫
0

sds =
99

800
.

Since
99

100
Γ
(
3
2

)
= 0.87736 < 0.87758 = cos 1

2
≤ cos t for all t ∈

[
0, 1

2

]
, we obtain u is

an upper solution for the problem (4.1).

Now u is an upper solution for the problem (4.1) if we have




CD
1

2

0+u (t) ≥
√
tu (t)− u (t2) + cos t, t ∈

[
0, 1

2

]
,

u(0) ≥
1

2∫
0

√
su (s) ds.

That is 



Γ
(
3
2

)
≥

√
t
(√

t+ 1
)
− (t + 1) + cos t, t ∈

[
0, 1

2

]
,

1 ≥
1

2∫
0

√
s (

√
s+ 1) ds.

That is 



Γ
(
3
2

)
≥

√
t− 1 + cos t, t ∈

[
0, 1

2

]
,

1 ≥ 1
8
+ 2

3

(
1
2

) 3

2 = 0.3607.

Since
√
t− 1 + cos t < 1√

2
= 0.70711 < 0.88623 = Γ

(
3
2

)
, for all t ∈

[
0, 1

2

]
, we obtain

u is an upper solution for the problem (4.1).
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Now if we choose M = 0 and N = 1, then
1

√
2Γ

(
1 +

1

2

) = 0.79788 ≤ 1 and the

function t 7→
√
tu (t) − u (t2) + cos t satisfies the assumption of Theorem 3.1 and

consequently it follows that the problem (4.1) admits a minimal solution u∗ and a

maximal solution u∗.

Example 4.2. We consider the problem

(4.2)






CD
1

3

0+u (t) =
3
√
t

3
u (t)− u (t2)−

3
√
t

3
+ 1 + e−t, t ∈

[
0, 1

3

]
,

u(0) =

1

3∫
0

e2su (s) ds,

We put by definition u(t) = 3
√
t and u(t) = 2 3

√
t+ 1, for all t ∈

[
0, 1

3

]
.

First u is a lower solution for the problem (4.2) if we have





CD
1

3

0+u (t) ≤
3
√
t

3
u (t)− u (t2)−

3
√
t

3
+ 1 + e−t, t ∈

[
0, 1

3

]
,

u(0) ≤
1

3∫
0

e2su (s) ds.

That is 



Γ
(
1
3
+ 1
)
≤ −2

3
3
√
t2 −

3
√
t

3
+ 1 + e−t, t ∈

[
0, 1

3

]
,

0 ≤ 0.25782.

Since

Γ

(
1

3
+ 1

)
= 0.89298,

and

min
t∈[0, 13 ]

(
−2

3

3
√
t2 −

3
√
t

3
+ 1 + e−t

)
= 1.1649,

we obtain u is a lower solution for the problem (4.2).

Now u is an upper solution for the problem (4.2) if we have




CD
1

3

0+u (t) ≥
3
√
t

3
u (t)− u (t2)−

3
√
t

3
+ 1 + e−t, t ∈

[
0, 1

3

]
,

u(0) ≥
1

3∫
0

e2su (s) ds.

That is 




2Γ
(
1
3
+ 1
)
≥ −4

3

3
√
t2 + e−t, t ∈

[
0, 1

3

]
,

1 ≥
1

3∫
0

e2s (2 3
√
s+ 1) ds = 0.9895.
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Since

−4

3

3
√
t2 + e−t ≤ 1, for all t ∈

[
0,

1

3

]
,

and

2Γ

(
1

3
+ 1

)
= 1.786,

we obtain u is an upper solution for the problem (4.2).

Now if we choose M = 0 and N = 1, then
1

3
√
3Γ

(
1 +

1

3

) = 0.77646 ≤ 1 and the

function t 7→
3
√
t

3
u (t)−u (t2)−

3
√
t

3
+ 1+ e−t satisfies the assumption of Theorem 3.1

and consequently it follows that the problem (4.2) admits a minimal solution u∗ and

a maximal solution u∗.

Example 4.3. We consider the problem

(4.3)





CD
3

4

0+u (t) =
u2
(
t
2

)

2
− u (t) +

1

Γ

(
5

4

) +
2

3
, t ∈

[
0,

4

5

]
,

u(0) =

4

5∫
0

s
3

4u (s) ds,

We put by definition u(t) = 1− e−t and u(t) = 1 + 2t
3

4 , for all t ∈
[
0, 4

5

]
.

First u is a lower solution for the problem (4.3) if we have





CD
3

4

0+u (t) ≤
u2
(
t
2

)

2
− u (t) +

1

Γ

(
5

4

) +
2

3
, t ∈

[
0,

4

5

]
,

u(0) ≤
4

5∫
0

s
3

4u (s) ds.

That is 



t
1

4E1, 5
4

(−t) ≤ 3
2
e−t − e−

t
2 +

1

Γ

(
5

4

) +
2

3
, t ∈

[
0, 4

5

]
,

0 ≤
4

5∫
0

s
3

4 (1− e−s) ds = 0.14951.

From Remark 2, we deduce

t
1

4E1, 5
4

(−t) ≤ E1, 5
4

(−t) ≤ 1

Γ

(
5

4

) = 1.1033, for all t ∈
[
0,

4

5

]
,
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and since

min
t∈[0, 45 ]

(
3

2
e−t − e−

t
2 +

1

Γ

(
5

4

) +
2

3
) = 1.6033,

we obtain u is a lower solution for the problem (4.3).

Now u is an upper solution for the problem (4.3) if we have





CD
3

4

0+u (t) ≥
u2
(
t
2

)

2
− u (t) +

1

Γ

(
5

4

) +
2

3
, t ∈

[
0,

4

5

]
,

u(0) ≥
4

5∫
0

s
3

4u (s) ds.

That is





2Γ
(
7
4

)
≥ 2

(
t

2

) 3

2

+ 2

((
t

2

) 3

4

− t
3

4

)
+

1

Γ

(
5

4

) +
1

6
, t ∈

[
0,

4

5

]
,

1 ≥
4

5∫
0

s
3

4

(
1 + 2s

3

4

)
ds = 0.84464.

Since

2Γ

(
7

4

)
= 1.8381,

and

max
t∈[0, 45 ]

(2

(
t

2

) 3

2

+ 2

((
t

2

) 3

4

− t
3

4

)
+

1

Γ

(
5

4

) +
1

6
) =

1

Γ

(
5

4

) +
1

6
= 1.2699,

we obtain u is an upper solution for the problem (4.3).

Now if we choose M = 1 and N = 0, then

(
4
5

) 3

4

Γ

(
1 +

3

4

) = 0.92039 ≤ 1 and the

function t 7→ u2
(
t
2

)

2
− u (t) +

1

Γ

(
5

4

) +
2

3
satisfies the assumption of Theorem 3.1

and consequently it follows that the problem (4.3) admits a minimal solution u∗ and

a maximal solution u∗.
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Example 4.4. We consider the problem

(4.4)






CD
1

2

0+u (t) =
√
tu (t)−

√
tu

(
t

4

)
+

√
π

2
, t ∈

[
0,

3

4

]
,

u(0) =

3

4∫
0

√
su (s) ds,

We put by definition u(t) =
√
t and u(t) = 2

√
t + 1, for all t ∈

[
0, 3

4

]
.

First u is a lower solution for the problem (4.4) if we have





CD
1

2

0+u (t) ≤
√
tu (t)−

√
tu

(
t

4

)
+

√
π

2
, t ∈

[
0,

3

4

]
,

u(0) ≤
3

4∫
0

√
su (s) ds,

That is 



√
π

2
≤ t

2
+

√
π

2
, t ∈

[
0,

3

4

]
,

0 ≤
3

4∫
0

sds = 9
32
.

Since
t

2
≥ 0, for all t ∈

[
0,

3

4

]
, we obtain u is a lower solution for the problem (4.4).

Now u is an upper solution for the problem (4.4) if we have




CD
1

2

0+u (t) ≥
√
tu (t)−

√
tu

(
t

4

)
+

√
π

2
, t ∈

[
0,

3

4

]
,

u(0) ≥
3

4∫
0

√
su (s) ds.

That is 



√
π ≥ t+

√
π

2
, t ∈

[
0,

3

4

]
,

u(0) = 1 ≥
3

4∫
0

√
s (2

√
s+ 1) ds = 0.99551.

Since √
π

2
= 0.88623,

we obtain u is an upper solution for the problem (4.4).

Now if we chooseM = 1 and N = 0, then

√
3

4

Γ

(
3

2

) = 0.97721 ≤ 1 and the function t 7→

√
tu (t)−

√
tu

(
t

4

)
+

√
π

2
satisfies the assumption of Theorem 3.1 and consequently it
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follows that the problem (4.4) admits a minimal solution u∗ and a maximal solution

u∗.

5. Conclusion

In this paper, based on the upper and lower solutions method and monotone iterative

technique, we proved the existence of extremal solutions for a class of fractional dif-

ferential equations with deviating arguments and integral initial conditions. Several

examples are given illustrating the applications of our results. On the other hand, it

could be interesting to study the existence of solutions when the function g changes

its sign.
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