ON REGULAR δ -PREOPEN SETS

J. B. TORANAGATTI⁽¹⁾ AND T. NOIRI⁽²⁾

ABSTRACT. The aim of this paper is to introduce a new class of sets called regular δ -preopen sets in topological spaces. We characterize these sets and study some of their fundamental properties. Also, new decompositions of complete continuity and perfect continuity are obtained.

1. Introduction

In 1968, Veličko [20] introduced the concept of δ -open sets as a stronger form of open sets. In 1993, Raychaudhuri and Mukherjee [18] introduced the concept of δ -preopen sets as a generalization of δ -open sets. This paper deals with a new class of sets called regular δ -preopen sets. Some properties and characterizations of regular δ -preopen sets are established. Moreover, we obtain decomposition theorems of completely continuous functions and perfectly continuous functions.

Throughout this paper, (U, τ) and (V, η) (or simply U and V) represent topological spaces on which no separation axioms are assumed unless explicitly stated and $f: (U, \tau) \to (V, \eta)$ or simply $f: U \to V$ denotes a function f of a topological space U into a topological space V. Let $N \subseteq U$, then int(N) and cl(N) denote the interior of N and the closure of U, respectively.

2. Preliminaries

Definition 2.1. [19] A set $M \subseteq U$ is called regular-closed if M=cl(int(M)) and regular-open if M=int(cl(M)).

 $^{2010\} Mathematics\ Subject\ Classification.\quad 54A05; 54A08.$

Key words and phrases. δ-preopen sets, δ-preclosed sets, regular δ-preopen sets, regular δ-preclosed sets, $r\delta$ p-continuity.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Feb. 18, 2021 Accepted: Jul. 6, 2021.

Definition 2.2. [20] A subset M is said to be δ -open if for each $p \in M$ there exists a regular open set N such that $p \in N \subset M$. A point $p \in U$ is called a δ -cluster point of M if $\operatorname{int}(\operatorname{cl}(G)) \cap M \neq \phi$ for every open set G containing p. The set of all δ -cluster points of M is called the δ -closure of M and is denoted by δ -cl(M). The set $\{p \in U : p \in G \subset M \text{ for some regular open set G of U}\}$ is called the δ -interior of M and is denoted by δ -int(M).

Definition 2.3. A set $M \subseteq U$ is called

- (1) δ -preclosed [18] if $cl(\delta$ -int(M)) \subseteq M and δ -preopen if $M \subseteq int(\delta$ -cl(M)),
- (2) a-closed [8] if $cl(int(\delta-cl(M))) \subseteq M$ and a-open if $M \subseteq int(cl(\delta-int(M)))$,
- (3) δ -semiclosed [17] if $\operatorname{int}(\delta \operatorname{cl}(M)) \subseteq M$ and δ -semiopen if $M \subseteq \operatorname{cl}(\delta \operatorname{int}(M))$,
- (4) e^* -closed [11] if $\operatorname{int}(\operatorname{cl}(\delta \operatorname{int}(M))) \subseteq M$ and e^* -open if $M \subseteq \operatorname{cl}(\operatorname{int}(\delta \operatorname{cl}(M)))$,
- (5) e-closed [7] if $cl(\delta-int(M)) \cap int(\delta-cl(M)) \subseteq M$ and e-open if $M \subseteq cl(\delta-int(M)) \cup int(\delta-cl(M))$.

The class of closed(resp.,regular open, δ -preopen, δ -preclosed, δ -semiopen, δ -semiclosed, e^* -open, e^* -closed,e-open,e-closed and clopen) sets of (U, τ) is denoted by C(U) (resp., RO(U), δ PO(U), δ PO(U), δ SO(U), δ SO(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U) and CO(U)).

Definition 2.4. [1] A subst M of a space U is called δ -semiregular if it is both δ -semiopen and δ -semiclosed.

Definition 2.5. [9] A subset M of a space U is said to be δ -dense if δ -cl(M) = U.

Definition 2.6. [7, 17, 18] For any topological space (U,τ) and $M \subseteq U$, the e-closure, δ -semi closure, δ -preclosure and δ -preinteriour of M are denoted and defined as follows:

- $(1) e-cl(M) = \bigcap \{ F \subseteq U : F \in eC(U), M \subseteq F \}.$
- (2) δ -scl(M) = \cap {F \subseteq U : F \in δ SC(U), M \subseteq F}.
- (3) δ -pcl(M) = \cap {F \subseteq U : F \in δ PC(U), M \subseteq F}.
- (4) δ -pint(M) = \cup {G \subseteq U : G $\in \delta$ PO(U), M \supseteq G}.

Theorem 2.1. [18] Let M be a subset of a space (U,τ) , then δ -pcl $(M) = M \cup cl(\delta$ -int(M)) and δ -pint $(M) = M \cap int(\delta - cl(M))$.

Theorem 2.2. [7] Let M be a subset of a space (U,τ) , then

- (a) δ -pint(δ -pcl(N)) = δ -pint((e-cl(M)).
- (b) $e\text{-}cl(M) = \delta\text{-}pcl(M) \cap \delta\text{-}scl(M)$.
- (c) δ -pint(δ -pcl(M)) = δ -pcl(M) \cap int(δ -cl(M).
- (d) $int(\delta cl(M)) = \delta int(\delta scl(M)) = \delta scl(\delta pint(M)).$

Definition 2.7. A function $f:(U,\tau)\to (V,\eta)$ is called

- (1) perfectly continuous [15] if $f^{-1}(N)$ is clopen in (U, τ) for every $N \in \eta$,
- (2) contra-super-continuous [12] if $f^{-1}(N)$ is δ -closed in (U, τ) for every $N \in \eta$,
- (3) RC-continuous [4] if $f^{-1}(N)$ is regular closed in (U, τ) for every $N \in \eta$,
- (4) completely continuous [2] if $f^{-1}(N)$ is regular open in (U, τ) for every $N \in \eta$,
- (5) super-continuous [14] if $f^{-1}(N)$ is δ -open in (U, τ) for every $N \in \eta$,
- (6) contra continuous [3] if $f^{-1}(N)$ is closed in (U, τ) for every $N \in \eta$,
- (7) δ -semiregular-continuous if $f^{-1}(N)$ is δ -semiregular in (U, τ) for every $N \in \eta$,
- (8) a-continuous [8] if $f^{-1}(N)$ is a-open in (U, τ) for every $N \in \eta$,
- (9) δ -semicontinuous [5] if $f^{-1}(N)$ is δ -semiopen in (U, τ) for every $N \in \eta$,
- (10) e-continuous [7] if $f^{-1}(N)$ is e-open in (U, τ) for every $N \in \eta$,
- (11) δ -almost continuous [18] if $f^{-1}(N)$ is δ -preopen in (U, τ) for every $N \in \eta$,
- (12) e^* -continuous [11] if $f^{-1}(N)$ is e^* -open in (U, τ) for every $N \in \eta$,
- (13) contra e^* -continuous [10] if $f^{-1}(N)$ is e^* -closed in (U, τ) for every $N \in \eta$,
- (14) contra δ -semicontinuous [6] if $f^{-1}(N)$ is δ -semiclosed in (U, τ) for every $N \in \eta$.

Lemma 2.1. [20] For a subset M of a space (U,τ) , the following properties are equivalent:

- (a) M is clopen;
- (b) M is δ -open and δ -closed;
- (c) M is regular-open and regular-closed.

Definition 2.8. [13] A space (U, τ) is called δ -partition if $\delta O(U) = C(U)$.

3. Regular δ -preopen sets

Definition 3.1. A subset N of a space (U,τ) is said to be regular δ -preopen if N = δ -pint $(\delta$ -pcl(N)). The complement of a regular δ -preopen set is called regular δ -preclosed.

Clearly, N is regular δ -preclosed if and only if $N = \delta$ -pcl(δ -pint(N)).

The collection of all regular δ -preopen (resp. regular δ -preclosed) sets of (U, τ) will be denoted by $R\delta PO(U)$ (resp. $R\delta PC(U)$).

Theorem 3.1. Let (U, τ) be a topological space and $M, N \subseteq U$. Then the following hold:

- (i) If $M \subseteq N$, then δ -pint(δ -pcl(M) $\subseteq \delta$ -pint(δ -pcl(N)).
- (ii) If $M \in \delta PO(U)$, then $M \subseteq \delta$ -pint(δ -pcl(M)).
- (iii) If $M \in \delta PC(U)$, then $\delta pcl(\delta pint(M)) \subseteq M$.
- (iv) δ -pint(δ -pcl(N)) is regular δ -preopen.
- (v) If $M \in \delta PC(U)$, then δ -pint(M) is regular δ -preopen.
- (vi) If $M \in \delta PO(U)$, then δ -pcl(M) is regular δ -preclosed. Proof. (i) Clear.
- (ii) Let $M \in \delta PO(U)$. Since $M \subseteq \delta$ -pcl(M), then $M \subseteq \delta$ -pint(δ -pcl(M).
- (iii) Let $M \in \delta PC(U)$. Since δ -pint $(M) \subseteq M$, then δ -pcl $(\delta$ -pint $(M) \subseteq M$.
- (iv) We have δ -pint(δ -pcl(δ -pint(δ -pcl(M)) $\subseteq \delta$ -pint(δ -pcl(δ -pcl(M)) = δ -pint(δ -pcl(δ -pint(δ -pcl(δ -pint(δ -pcl(M))) $\supseteq \delta$ -pint(δ -pcl(M)) = δ -pint(δ -pcl(M). Hence δ -pint(δ -pcl(δ -pcl(δ -pcl(M))) = δ -pint(δ -pcl(M).
- (v) Suppose that $M \in \delta PC(U)$. By (iii), δ -pint(δ -pcl(δ -pint(M)) $\subseteq \delta$ -pint(M). On the other hand, we have δ -pint(M) $\subseteq \delta$ -pcl(δ -pint(M) and hence δ -pint(M) $\subseteq \delta$ -pint(δ -pcl(δ -pint(M)). Therefore δ -pint(δ -pcl(δ -pint(M)) = δ -pint(M).

This shows that δ -pint(M) is a regular δ -preopen set.

(vi) Similar to (v).

Theorem 3.2. Let (U,τ) be a topological space and $N \subseteq U$. Then

- (i) If N is a regular δ -preopen set, then it is δ -preopen.
- (ii) If N is a regular δ -preopen set, then it is e-open and hence e^* -open.
- (iii) If N is a regular δ -preopen set, then it is e-closed and hence e^* -closed. Proof. (i) and (ii) are obvious.
- (iii) Let N be regular δ -preopen, then $N = \delta$ -pint $(\delta$ -pcl(N)). By (i) and Theorem 2.2[(c) and (d)], we have $N = \delta$ -pcl $(N) \cap \delta$ -scl $(\delta$ -pint $(N)) = \delta$ -pcl $(N) \cap \delta$ -scl $(N) = \epsilon$ -cl(N). Thus N is ϵ -closed.

Remark 1. By the following example, we show that every δ -preopen set need not be regular δ -preopen.

Example 3.1. Let $U = \{p, q, r, s\}$ and $\tau = \{U, \phi, \{p\}, \{q\}, \{p, q\}, \{p, r\}, \{p, q, r\}\}\}$. Then $\{p, q\}$ is a δ -preopen set but $\{p, q\} \notin R\delta PO(U)$.

Theorem 3.3. In a δ -partition space (U, τ) , a subset M of U is δ -preopen if and only if it is regular δ -preopen.

Remark 2. The class of regular δ -preopen sets is not closed under finite union as well as finite intersection. It will be shown in the following example.

Example 3.2. Consider (U,τ) as in Example 3.1. Let $A = \{p\}$ and $B = \{q\}$, then A and B are regular δ -preopen sets but $A \cup B = \{p,q\} \notin R\delta PO(U)$. Moreover, $C = \{p,q,s\}$ and $D = \{q,r,s\}$ are regular δ -preopen sets but $C \cap D = \{q,s\} \notin R\delta PO(U)$.

Theorem 3.4. Let $N \in \delta PC(U)$. Then N is regular δ -preopen if and only if it is δ -preopen.

Proof. Necessity: Obvious from Theorem 3.2(i).

Sufficiency: Let N be δ -preopen. Then by hypothesis, we have $N = \delta$ -pint(N) and N = δ -pcl(N). Therefore, δ -pint(δ -pcl(N)) = δ -pint(N) = N.

Theorem 3.5. A subset $N \subseteq U$ is regular δ -preopen if and only if N is e-closed and δ -preopen.

Proof. Necessity: It follows from Theorem 3.2[(i)and (iii)].

Sufficiency: Let N be both e-closed and δ -preopen. Then N = e-cl(N) and $N = \delta$ -pint(N). By Theorem 2.2(a), δ - $pint(\delta$ - $pcl(N)) = \delta$ - $pint(e\text{-}cl(N)) = \delta$ -pint(N) = N.
Hence N is regular δ -preopen.

Theorem 3.6. For a subset M of a space (U, τ) , the following properties are equivalent:

- (a) M is regular δ -preopen;
- (b) $M = \delta pcl(M) \cap int(\delta cl(M);$
- (c) $M = \delta pcl(M) \cap \delta int(\delta scl(M));$
- (d) $M = \delta \operatorname{-pcl}(M) \cap \delta \operatorname{-scl}(\delta \operatorname{-pint}(M));$

- (e) $M = [M \cup cl(\delta int(M))] \cap int(\delta cl(M);$
- (f) $M = \delta \text{-}pint(e\text{-}cl(M)).$

Proof. It follows from Theorems 2.1 and 2.2.

Remark 3. Let $M \subseteq U$, then $int(\delta - cl(M))$ is regular open in (U, τ) .

Definition 3.2. A space (U,τ) is called δ -submaximal if every δ -dense subset of U is δ -open

Theorem 3.7. Let (U,τ) be a topological space, then the following properties are equivalent:

- (1) (U, τ) is δ -submaximal;
- (2) Every δ -preopen set is δ -open.

Proof. (1) \longrightarrow (2): Let $N \subseteq U$ be a δ -preopen set. Then $N \subseteq int(\delta \cdot cl(N) = M, say$. This implies $\delta \cdot cl(M) = \delta \cdot cl(N)$ and hence $\delta \cdot cl((U-M) \cup N) = \delta \cdot cl(U-M) \cup \delta \cdot cl(N)$ $= \delta \cdot cl(U-M) \cup \delta \cdot cl(M) = U$ and thus $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (2), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U.

(2) \longrightarrow (1): Let M be a δ -dense subset of U. Then $int(\delta \text{-}cl(M)) = U$, then $M \subseteq int(\delta \text{-}cl(M))$ and M is δ -preopen. By (2), M is δ -open.

Theorem 3.8. If a space (U,τ) is δ -submaximal, then any finite intersection of δ -preopen sets is δ -preopen.

Proof. It follows from the fact that $\delta O(X)$ is closed under finite intersection.

Theorem 3.9. If a space (U,τ) is δ -submaximal, then any finite intersection of regular δ -preopen sets is regular δ -preopen.

Proof. Let $\{G_i: i=1,2,...,n\}$ be a finite family of regular δ -preopen sets. Since the space (U, τ) is δ -submaximal, then by Theorem 3.8, we have $\bigcap_{i=1}^n G_i \in \delta PO(U)$. By Theorem 3.1(ii), $\bigcap_{i=1}^n G_i \subseteq \delta$ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$). Now, for each i, we have $\bigcap_{i=1}^n G_i \subseteq G_i$ and thus δ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$) $\subseteq \delta$ -pint $(\delta$ -pcl (G_i)) = G_i as δ -pint $(\delta$ -pcl (G_i)) = G_i . Therefore, δ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$) $\subseteq \bigcap_{i=1}^n G_i$, in consequence, $\bigcap_{i=1}^n G_i \in R\delta PO(U)$.

Recall that a subset M of a space (U, τ) is called δ -preclopen if it is δ -preclosed and δ -preopen

Theorem 3.10. Every δ -preclopen set is regular δ -preopen but not conversely. Proof. Let N be δ -preclopen, then $N = \delta$ -pint $(N) = \delta$ -pcl(N). Therefore, δ -pint $(\delta$ -pcl $(N)) = \delta$ -pint(N) = N.

Example 3.3. In Example 3.1, the set $\{q\}$ is regular δ -preopen but it is not δ -preclopen.

Definition 3.3. A space (U,τ) is called extremally δ -predisconnected if the δ -preclosure of every δ -preopen subset of U is δ -preopen.

Theorem 3.11. Let (U,τ) be a topological space, then the following are equivalent:

- (1) (U,τ) is extremally δ -predisconnected;
- (2) Every regular δ -preopen set is δ -preclopen.

Proof. (1) \longrightarrow (2): Let M be a regular δ -preopen set, then $M = \delta$ -pint(δ -pcl(M)) = δ -pcl(M). Hence M is δ -preclosed and combined with Theorem 3.2(i), we have M is δ -preclopen.

(2) \longrightarrow (1): Let $M \in \delta PO(X)$. Then by Theorem 3.1(vi), δ -pcl(M) is a regular δ -preclosed set which is δ -preclopen by (2). Hence δ -pcl(M) is δ -preopen.

Lemma 3.1. If $M \subseteq U$ is open, then $int(cl(M)) = int(\delta - cl(M))$.

Proof. It is known in Lemma 2 of [20] that $cl(M) = \delta - cl(M)$ for every open subset M of U. Therefore, we have $int(cl(M)) = int(\delta - cl(M))$.

Remark 4. By the following example, we show that $int(cl(M)) \neq int(\delta - cl(M))$, in general.

Example 3.4. Let (U,τ) be a space as in Example 3.5. Consider $M = \{r,s\}$. Then δ - $cl(M) = \{p,r,s\}$ and $cl(M) = \{r,s\}$. Therefore $int(cl(M)) = \phi \neq \{p,r\} = int(\delta - cl(M))$.

Lemma 3.2. A subset M of a space (U,τ) is regular open if and only if M = int(cl(M)) $= int(\delta - cl(M))$.

Theorem 3.12. Every regular open set is regular δ -preopen.

Proof. Let M be regular open. Then $M = int(cl(M)) = int(\delta - cl(M))$. By Theorem 2.2, δ -pint(δ -pcl(M)) = δ -pcl(M) \cap int(δ -cl(M)) = δ -pcl(M) \cap M = M. This shows that M is regular δ -preopen.

Definition 3.4. A subset N of a space (U,τ) is called q^* -set if $int(\delta-cl(N)) \subseteq cl(\delta-int(N))$ and the family of q^* -sets of (U,τ) is denoted by $q^*O(U)$.

Theorem 3.13. Every δ -semiopen set is q^* -set but not conversely.

Proof. Let M be δ -semiopen, then by Lemma 3.1 of [16], $int(\delta \text{-}cl(M)) \subseteq cl(\delta \text{-}int(M))$. Hence M is q^* -set.

Example 3.5. In Example 3.1, the set $\{s\}$ is q^* -set but it is not δ -semiopen.

Theorem 3.14. Every δ -semiclosed set is q^* -set but not conversely.

Proof. Let M be δ -semiclosed, then $int(\delta \text{-}cl(M)) \subseteq M$. Therefore $int(\delta \text{-}cl(M)) \subseteq cl(\delta \text{-}int(M))$. Hence M is q^* -set.

Example 3.6. In Example 3.5, the set $\{p,q,r\}$ is q^* -set but it is not δ -semiclosed.

Corollary 3.1. Every δ -semi-regular set is q^* -set.

Remark 5. The above discussions can be summarized in the following diagram:

Remark 6. The notions of q^* -sets and regular δ -preopen (hence δ -preopen, e-open, e^* -open) sets are independent of each other.

Example 3.7. Let (U, τ) be a space as in Example 3.1. Then $\{s\}$ is q^* -set but not a e^* -open set and the set $\{p,q,s\}$ is regular δ -preopen but it is not q^* -set.

Theorem 3.15. A subset M of a space (U,τ) is δ -semiopen if and only if it is both e-open and q^* -set.

Theorem 3.16. For a subset M of a space (U,τ) , the following properties are equivalent:

- (i) M is regular open;
- (ii) M is regular δ -preopen and δ -semi-regular;
- (iii) M is regular δ -preopen and q^* -set.

Proof. (i) \longrightarrow (ii): Clear.

- $(ii) \longrightarrow (iii)$: It follows from Corollary 3.1.
- (iii) \longrightarrow (i): Let M be regular δ -preopen and q^* -set. Then, by Theorems 2.1 and 2.2, we obtain $M = \delta$ -pint(δ -pcl(M))

$$= (M \cup cl(\delta - int(M))) \cap int(\delta - cl(M))$$
$$= (M \cap int(\delta - cl(M))) \cup (cl(\delta - int(M)) \cap int(\delta - cl(M)))$$

$$= (M \cap int(\delta \text{-}cl(M)) \cup int(\delta \text{-}cl(M))$$

 $= int(\delta - cl(M)).$

Therefore, $M = int(\delta - cl(M)) = int(cl(M))$. Hence M is regular open.

Theorem 3.17. For a subset M of a space (U,τ) , the following properties are equivalent:

- (i) M is regular open;
- (ii) M is δ -open and regular δ -preopen;
- (iii) M is a-open and regular δ -preopen;
- (iv) M is a-open and e^* -closed.

Proof. (i) \longrightarrow (ii) and (ii) \longrightarrow (iii) are obvious.

- $(iii) \longrightarrow (iv)$: It follows from Theorem 3.2(iii).
- $(iv)\longleftrightarrow (i)$: It is shown in Theorem 3 of [9].

Corollary 3.2. For a subset M of a space (U, τ) , the following properties are equivalent:

- (1) M is regular open;
- (2) M is δ -semiopen and regular δ -preopen;
- (3) M is δ -semiclosed and regular δ -preopen;
- (4) M is δ -semi-regular and regular δ -preopen;
- (5) M is q^* -set and regular δ -preopen.

Theorem 3.18. For a subset M of a space (U,τ) , the following properties are equivalent:

- (1) M is clopen;
- (2) M is regular δ -preopen and δ -closed.

Proof. (1) \longrightarrow (2): It follows from Lemma 2.1 and Theorem 3.12.

(2) \longrightarrow (1): Let M be regular δ -preopen and δ -closed. By Theorem 2.2(c), we have $M = \delta$ -pcl(M) \cap int(δ -cl(M)) = δ -pcl(M) \cap δ -int(δ -cl(M)) = δ -pcl(M) \cap δ -int(M) = δ -int(M). Therefore M is δ -open. Then by Lemma 2.1, M is clopen.

4. Decompositions of complete continuity

In this section, the notion of regular δ -preopen-continuity is introduced and the decompositions of complete continuity are discussed.

Definition 4.1. A function $f:(U,\tau)\to (V,\eta)$ is said to be

- (1) regular δ -pre continuous (briefly, $r\delta$ p-continuous) if $f^{-1}(N)$ is regular δ -preopen in (U, τ) for each $N \in \eta$,
- (2) q*-continuous if $f^{-1}(N)$ is q*-set in X for each $N \in \eta$.

Remark 7. By Diagram I, we have the following diagram:

DIAGRAM II

 $complete\ continuity \rightarrow super-continuity \rightarrow a\text{-}continuity \rightarrow \delta\text{-}semicontinuity \rightarrow q^*\text{-}continuity$

 $r\delta p\text{-}continuity \longrightarrow \delta\text{-}almost\ continuity \longrightarrow e\text{-}continuity$

Theorem 4.1. For a function $f:(U,\tau)\to (V,\eta)$, the following properties are equivalent:

(1) f is completely continuous;

 \downarrow

- (2) f is super continuous and $r\delta p$ -continuous;
- (3) f is a-continuous and $r\delta p$ -continuous;
- (4) f is a-continuous and contra e*-continuous;
- (5) f is δ -semicontinuous and $r\delta p$ -continuous;
- (6) f is contra δ -semicontinuous and $r\delta p$ -continuous;

- (7) f is δ -semiregular-continuous and $r\delta p$ -continuous;
- (8) f is q^* -continuous and $r\delta p$ -continuous.

Proof. This is an immediate consequence of Theorem 3.17 and Corollary 3.2.

Remark 8. The following properties are shown by Example 4.1 (below).

- (1) $r\delta p$ -continuity and super continuity (hence a-continuity, δ -semicontinuity, q^* -continuity) are independent of each other.
- (2) $r\delta p$ -continuity and δ -semiregular-continuity (hence contra δ -semicontinuity) are independent of each other.

Example 4.1. Let (U,τ) be a space as in Example 3.1 and let $\eta = \{U, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}\}\}$

- (1) Define $f:(U,\tau)\to (V,\eta)$ by f(p)=f(r)=p, f(q)=q and f(s)=s. Clearly f is super continuous but for $\{p,q\}\in \eta$, $f^{-1}(\{p,q\})=\{p,q,r\}\notin R\delta PO(U)$. Therefore f is not $r\delta p$ -continuous. Define $g:(U,\tau)\to (V,\eta)$ by g(p)=q, g(q)=g(r)=g(s)=p. Then g is $r\delta p$ -continuous but for $\{p\}\in \eta$, $g^{-1}(\{p\})=\{q,r,s\}\notin q^*O(U)$. Therefore g is not q^* -continuous.
- (2) Define $f:(U,\tau)\to (V,\eta)$ by f(p)=f(r)=f(s)=q and f(q)=p. Clearly f is δ -semiregular-continuous but for $\{q\}\in \eta$, $f^{-1}(\{q\})=\{p,r,s\}\notin R\delta PO(U)$. Therefore f is not $r\delta p$ -continuous. Define $g:(U,\tau)\to (V,\eta)$ by g(p)=g(q)=g(s)=p, g(r)=q. Then g is $r\delta p$ -continuous but for $\{p\}\in \eta$, $g^{-1}(\{p\})=\{p,q,s\}\notin \delta SC(U)$. Therefore g is not contra δ -semicontinuous.

5. Decompositions of Perfect Continuity

In this section, the decompositions of perfect continuity are obtained.

Theorem 5.1. For a function $f:(U,\tau)\to (V,\eta)$, the following are equivalent:

- (i) f is perfectly continuous;
- (ii) f is super continuous and contra super continuous;
- (iii) f is completely continuous and RC-continuous;
- (iv) f is $r\delta p$ -continuous and contra super continuous.

Proof. It is a direct consequence of Theorem 3.18 and Lemma 2.1

Remark 9. As shown by the following examples, $r\delta p$ -continuity and contra super continuity are independent of each other.

Example 5.1. Let (U,τ) be a space as in Example 3.1 and let $\eta = \{U, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}\}\}$. Define $f: (U,\tau) \to (V,\eta)$ by f(p) = f(r) = f(s) = p and f(q) = r. Then f is contra super continuous but it is not $r\delta p$ -continuous since $\{p\} \in \eta$, $f^{-1}(\{p\}) = \{p,r,s\} \notin R\delta PO(U)$. Define $g: (U,\tau) \to (V,\eta)$ by g(p) = q, g(q) = g(r) = g(s) = p. Then g is $r\delta p$ -continuous but it is not contra super continuous since $\{p\} \in \eta$, $g^{-1}(\{p\}) = \{q,r,s\} \notin \delta C(U)$.

Acknowledgement

We would like to thank the referees for their valuable suggestions.

References

- Z. A. Ameen, B. A. Asaad ,R. A. Muhammed, On superclasses of δ-open sets in topological spaces, Int. J. Appl. Math., 32(2019), 259–277.
- [2] S. P. Arya, R. Gupta, On Strongly continuous mappings, Kyungpook Math. J. 14(1974), 131– 143.
- [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Int. J. Math. Math. Sci.*, 19(2)(1996), 303–310.
- [4] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10(1999), 159– 168.
- [5] E. Ekici and G. Navalagi,δ-semicontinuous functions, Mathematical Forum, 17(2004-2005), 29–42.
- [6] E. Ekici, On a weaker form of RC-continuity, Analele Universitii de Vest din Timisoara: Seria Matematică-Informatică, 42, fasc., 1(2004), 79–91.
- [7] E. Ekici, On e-open sets, DP^* -sets and DPE^* -sets and decompositions of continuity, $Arab.\ J.$ $Sci.\ Eng.,\ 33(2008),\ 269-282.$
- [8] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and supercontinuity, Ann. Univ. Sci. Budapest. Ectvos Sect. Math., 51(2008), 39–51.
- [9] E. Ekici, A note on a-open sets and e^* -sets, Filomat, 22(1)(2008), 89-96.
- [10] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37–45.
- [11] E. Ekici, On e^* -open sets and $(D, S)^*$ -sets and decompositions of continuous functions, Math. Moravica, 13(2009), 29-36.
- [12] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 42(1999), 27–34.

- [13] J. K. Kohli and D. Singh, δ -perfectly continuous functions, *Demonstr. Math.*, **42(1)**(2009), 221–231.
- [14] B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math., 13(2)(1982), 229–236.
- [15] T. Noiri, Super-continuity and some strong forms of continuity, *Indian J. Pure Appl. Math.*, **15(3)**(1984), 241–250.
- [16] T. Noiri, Remarks on δ -semi-open sets and δ -preopen sets, *Demonstr. Math.*, **36**(4)(2003), 1007–1020.
- [17] J. H. Park, B. Y. Lee and M. J. Son, On δ -semiopen sets in topological space, J. Indian Acad. Math., 19(1)(1997), 59–67.
- [18] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(4)(1993),357–366.
- [19] M. Stone, Application of the theory of boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41(1937), 371–381.
- [20] N.V.Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103–118.
- (1) (Corresponding Author) Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad-580 001 India

Email address: jagadeeshbt2000@gmail.com

(2) Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan *Email address*: t.noiri@nifty.com