ON REGULAR δ -PREOPEN SETS ## J. B. TORANAGATTI⁽¹⁾ AND T. NOIRI⁽²⁾ ABSTRACT. The aim of this paper is to introduce a new class of sets called regular δ -preopen sets in topological spaces. We characterize these sets and study some of their fundamental properties. Also, new decompositions of complete continuity and perfect continuity are obtained. #### 1. Introduction In 1968, Veličko [20] introduced the concept of δ -open sets as a stronger form of open sets. In 1993, Raychaudhuri and Mukherjee [18] introduced the concept of δ -preopen sets as a generalization of δ -open sets. This paper deals with a new class of sets called regular δ -preopen sets. Some properties and characterizations of regular δ -preopen sets are established. Moreover, we obtain decomposition theorems of completely continuous functions and perfectly continuous functions. Throughout this paper, (U, τ) and (V, η) (or simply U and V) represent topological spaces on which no separation axioms are assumed unless explicitly stated and $f: (U, \tau) \to (V, \eta)$ or simply $f: U \to V$ denotes a function f of a topological space U into a topological space V. Let $N \subseteq U$, then int(N) and cl(N) denote the interior of N and the closure of U, respectively. #### 2. Preliminaries **Definition 2.1.** [19] A set $M \subseteq U$ is called regular-closed if M=cl(int(M)) and regular-open if M=int(cl(M)). $^{2010\} Mathematics\ Subject\ Classification.\quad 54A05; 54A08.$ Key words and phrases. δ-preopen sets, δ-preclosed sets, regular δ-preopen sets, regular δ-preclosed sets, $r\delta$ p-continuity. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: Feb. 18, 2021 Accepted: Jul. 6, 2021. **Definition 2.2.** [20] A subset M is said to be δ -open if for each $p \in M$ there exists a regular open set N such that $p \in N \subset M$. A point $p \in U$ is called a δ -cluster point of M if $\operatorname{int}(\operatorname{cl}(G)) \cap M \neq \phi$ for every open set G containing p. The set of all δ -cluster points of M is called the δ -closure of M and is denoted by δ -cl(M). The set $\{p \in U : p \in G \subset M \text{ for some regular open set G of U}\}$ is called the δ -interior of M and is denoted by δ -int(M). ## **Definition 2.3.** A set $M \subseteq U$ is called - (1) δ -preclosed [18] if $cl(\delta$ -int(M)) \subseteq M and δ -preopen if $M \subseteq int(\delta$ -cl(M)), - (2) a-closed [8] if $cl(int(\delta-cl(M))) \subseteq M$ and a-open if $M \subseteq int(cl(\delta-int(M)))$, - (3) δ -semiclosed [17] if $\operatorname{int}(\delta \operatorname{cl}(M)) \subseteq M$ and δ -semiopen if $M \subseteq \operatorname{cl}(\delta \operatorname{int}(M))$, - (4) e^* -closed [11] if $\operatorname{int}(\operatorname{cl}(\delta \operatorname{int}(M))) \subseteq M$ and e^* -open if $M \subseteq \operatorname{cl}(\operatorname{int}(\delta \operatorname{cl}(M)))$, - (5) e-closed [7] if $cl(\delta-int(M)) \cap int(\delta-cl(M)) \subseteq M$ and e-open if $M \subseteq cl(\delta-int(M)) \cup int(\delta-cl(M))$. The class of closed(resp.,regular open, δ -preopen, δ -preclosed, δ -semiopen, δ -semiclosed, e^* -open, e^* -closed,e-open,e-closed and clopen) sets of (U, τ) is denoted by C(U) (resp., RO(U), δ PO(U), δ PO(U), δ SO(U), δ SO(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U), ϵ C(U) and CO(U)). **Definition 2.4.** [1] A subst M of a space U is called δ -semiregular if it is both δ -semiopen and δ -semiclosed. **Definition 2.5.** [9] A subset M of a space U is said to be δ -dense if δ -cl(M) = U. **Definition 2.6.** [7, 17, 18] For any topological space (U,τ) and $M \subseteq U$, the e-closure, δ -semi closure, δ -preclosure and δ -preinteriour of M are denoted and defined as follows: - $(1) e-cl(M) = \bigcap \{ F \subseteq U : F \in eC(U), M \subseteq F \}.$ - (2) δ -scl(M) = \cap {F \subseteq U : F \in δ SC(U), M \subseteq F}. - (3) δ -pcl(M) = \cap {F \subseteq U : F \in δ PC(U), M \subseteq F}. - (4) δ -pint(M) = \cup {G \subseteq U : G $\in \delta$ PO(U), M \supseteq G}. **Theorem 2.1.** [18] Let M be a subset of a space (U,τ) , then δ -pcl $(M) = M \cup cl(\delta$ -int(M)) and δ -pint $(M) = M \cap int(\delta - cl(M))$. **Theorem 2.2.** [7] Let M be a subset of a space (U,τ) , then - (a) δ -pint(δ -pcl(N)) = δ -pint((e-cl(M)). - (b) $e\text{-}cl(M) = \delta\text{-}pcl(M) \cap \delta\text{-}scl(M)$. - (c) δ -pint(δ -pcl(M)) = δ -pcl(M) \cap int(δ -cl(M). - (d) $int(\delta cl(M)) = \delta int(\delta scl(M)) = \delta scl(\delta pint(M)).$ # **Definition 2.7.** A function $f:(U,\tau)\to (V,\eta)$ is called - (1) perfectly continuous [15] if $f^{-1}(N)$ is clopen in (U, τ) for every $N \in \eta$, - (2) contra-super-continuous [12] if $f^{-1}(N)$ is δ -closed in (U, τ) for every $N \in \eta$, - (3) RC-continuous [4] if $f^{-1}(N)$ is regular closed in (U, τ) for every $N \in \eta$, - (4) completely continuous [2] if $f^{-1}(N)$ is regular open in (U, τ) for every $N \in \eta$, - (5) super-continuous [14] if $f^{-1}(N)$ is δ -open in (U, τ) for every $N \in \eta$, - (6) contra continuous [3] if $f^{-1}(N)$ is closed in (U, τ) for every $N \in \eta$, - (7) δ -semiregular-continuous if $f^{-1}(N)$ is δ -semiregular in (U, τ) for every $N \in \eta$, - (8) a-continuous [8] if $f^{-1}(N)$ is a-open in (U, τ) for every $N \in \eta$, - (9) δ -semicontinuous [5] if $f^{-1}(N)$ is δ -semiopen in (U, τ) for every $N \in \eta$, - (10) e-continuous [7] if $f^{-1}(N)$ is e-open in (U, τ) for every $N \in \eta$, - (11) δ -almost continuous [18] if $f^{-1}(N)$ is δ -preopen in (U, τ) for every $N \in \eta$, - (12) e^* -continuous [11] if $f^{-1}(N)$ is e^* -open in (U, τ) for every $N \in \eta$, - (13) contra e^* -continuous [10] if $f^{-1}(N)$ is e^* -closed in (U, τ) for every $N \in \eta$, - (14) contra δ -semicontinuous [6] if $f^{-1}(N)$ is δ -semiclosed in (U, τ) for every $N \in \eta$. **Lemma 2.1.** [20] For a subset M of a space (U,τ) , the following properties are equivalent: - (a) M is clopen; - (b) M is δ -open and δ -closed; - (c) M is regular-open and regular-closed. **Definition 2.8.** [13] A space (U, τ) is called δ -partition if $\delta O(U) = C(U)$. ## 3. Regular δ -preopen sets **Definition 3.1.** A subset N of a space (U,τ) is said to be regular δ -preopen if N = δ -pint $(\delta$ -pcl(N)). The complement of a regular δ -preopen set is called regular δ -preclosed. Clearly, N is regular δ -preclosed if and only if $N = \delta$ -pcl(δ -pint(N)). The collection of all regular δ -preopen (resp. regular δ -preclosed) sets of (U, τ) will be denoted by $R\delta PO(U)$ (resp. $R\delta PC(U)$). **Theorem 3.1.** Let (U, τ) be a topological space and $M, N \subseteq U$. Then the following hold: - (i) If $M \subseteq N$, then δ -pint(δ -pcl(M) $\subseteq \delta$ -pint(δ -pcl(N)). - (ii) If $M \in \delta PO(U)$, then $M \subseteq \delta$ -pint(δ -pcl(M)). - (iii) If $M \in \delta PC(U)$, then $\delta pcl(\delta pint(M)) \subseteq M$. - (iv) δ -pint(δ -pcl(N)) is regular δ -preopen. - (v) If $M \in \delta PC(U)$, then δ -pint(M) is regular δ -preopen. - (vi) If $M \in \delta PO(U)$, then δ -pcl(M) is regular δ -preclosed. Proof. (i) Clear. - (ii) Let $M \in \delta PO(U)$. Since $M \subseteq \delta$ -pcl(M), then $M \subseteq \delta$ -pint(δ -pcl(M). - (iii) Let $M \in \delta PC(U)$. Since δ -pint $(M) \subseteq M$, then δ -pcl $(\delta$ -pint $(M) \subseteq M$. - (iv) We have δ -pint(δ -pcl(δ -pint(δ -pcl(M)) $\subseteq \delta$ -pint(δ -pcl(δ -pcl(M)) = δ -pint(δ -pcl(δ -pint(δ -pcl(δ -pint(δ -pcl(M))) $\supseteq \delta$ -pint(δ -pcl(M)) = δ -pint(δ -pcl(M). Hence δ -pint(δ -pcl(δ -pcl(δ -pcl(M))) = δ -pint(δ -pcl(M). - (v) Suppose that $M \in \delta PC(U)$. By (iii), δ -pint(δ -pcl(δ -pint(M)) $\subseteq \delta$ -pint(M). On the other hand, we have δ -pint(M) $\subseteq \delta$ -pcl(δ -pint(M) and hence δ -pint(M) $\subseteq \delta$ -pint(δ -pcl(δ -pint(M)). Therefore δ -pint(δ -pcl(δ -pint(M)) = δ -pint(M). This shows that δ -pint(M) is a regular δ -preopen set. (vi) Similar to (v). ## **Theorem 3.2.** Let (U,τ) be a topological space and $N \subseteq U$. Then - (i) If N is a regular δ -preopen set, then it is δ -preopen. - (ii) If N is a regular δ -preopen set, then it is e-open and hence e^* -open. - (iii) If N is a regular δ -preopen set, then it is e-closed and hence e^* -closed. Proof. (i) and (ii) are obvious. - (iii) Let N be regular δ -preopen, then $N = \delta$ -pint $(\delta$ -pcl(N)). By (i) and Theorem 2.2[(c) and (d)], we have $N = \delta$ -pcl $(N) \cap \delta$ -scl $(\delta$ -pint $(N)) = \delta$ -pcl $(N) \cap \delta$ -scl $(N) = \epsilon$ -cl(N). Thus N is ϵ -closed. **Remark 1.** By the following example, we show that every δ -preopen set need not be regular δ -preopen. **Example 3.1.** Let $U = \{p, q, r, s\}$ and $\tau = \{U, \phi, \{p\}, \{q\}, \{p, q\}, \{p, r\}, \{p, q, r\}\}\}$. Then $\{p, q\}$ is a δ -preopen set but $\{p, q\} \notin R\delta PO(U)$. **Theorem 3.3.** In a δ -partition space (U, τ) , a subset M of U is δ -preopen if and only if it is regular δ -preopen. Remark 2. The class of regular δ -preopen sets is not closed under finite union as well as finite intersection. It will be shown in the following example. **Example 3.2.** Consider (U,τ) as in Example 3.1. Let $A = \{p\}$ and $B = \{q\}$, then A and B are regular δ -preopen sets but $A \cup B = \{p,q\} \notin R\delta PO(U)$. Moreover, $C = \{p,q,s\}$ and $D = \{q,r,s\}$ are regular δ -preopen sets but $C \cap D = \{q,s\} \notin R\delta PO(U)$. **Theorem 3.4.** Let $N \in \delta PC(U)$. Then N is regular δ -preopen if and only if it is δ -preopen. Proof. Necessity: Obvious from Theorem 3.2(i). Sufficiency: Let N be δ -preopen. Then by hypothesis, we have $N = \delta$ -pint(N) and N = δ -pcl(N). Therefore, δ -pint(δ -pcl(N)) = δ -pint(N) = N. **Theorem 3.5.** A subset $N \subseteq U$ is regular δ -preopen if and only if N is e-closed and δ -preopen. Proof. Necessity: It follows from Theorem 3.2[(i)and (iii)]. Sufficiency: Let N be both e-closed and δ -preopen. Then N = e-cl(N) and $N = \delta$ -pint(N). By Theorem 2.2(a), δ - $pint(\delta$ - $pcl(N)) = \delta$ - $pint(e\text{-}cl(N)) = \delta$ -pint(N) = N. Hence N is regular δ -preopen. **Theorem 3.6.** For a subset M of a space (U, τ) , the following properties are equivalent: - (a) M is regular δ -preopen; - (b) $M = \delta pcl(M) \cap int(\delta cl(M);$ - (c) $M = \delta pcl(M) \cap \delta int(\delta scl(M));$ - (d) $M = \delta \operatorname{-pcl}(M) \cap \delta \operatorname{-scl}(\delta \operatorname{-pint}(M));$ - (e) $M = [M \cup cl(\delta int(M))] \cap int(\delta cl(M);$ - (f) $M = \delta \text{-}pint(e\text{-}cl(M)).$ Proof. It follows from Theorems 2.1 and 2.2. **Remark 3.** Let $M \subseteq U$, then $int(\delta - cl(M))$ is regular open in (U, τ) . **Definition 3.2.** A space (U,τ) is called δ -submaximal if every δ -dense subset of U is δ -open **Theorem 3.7.** Let (U,τ) be a topological space, then the following properties are equivalent: - (1) (U, τ) is δ -submaximal; - (2) Every δ -preopen set is δ -open. Proof. (1) \longrightarrow (2): Let $N \subseteq U$ be a δ -preopen set. Then $N \subseteq int(\delta \cdot cl(N) = M, say$. This implies $\delta \cdot cl(M) = \delta \cdot cl(N)$ and hence $\delta \cdot cl((U-M) \cup N) = \delta \cdot cl(U-M) \cup \delta \cdot cl(N)$ $= \delta \cdot cl(U-M) \cup \delta \cdot cl(M) = U$ and thus $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (1), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By (2), $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. By $(U-M) \cup N$ is $\delta \cdot dense$ in U. (2) \longrightarrow (1): Let M be a δ -dense subset of U. Then $int(\delta \text{-}cl(M)) = U$, then $M \subseteq int(\delta \text{-}cl(M))$ and M is δ -preopen. By (2), M is δ -open. **Theorem 3.8.** If a space (U,τ) is δ -submaximal, then any finite intersection of δ -preopen sets is δ -preopen. *Proof.* It follows from the fact that $\delta O(X)$ is closed under finite intersection. **Theorem 3.9.** If a space (U,τ) is δ -submaximal, then any finite intersection of regular δ -preopen sets is regular δ -preopen. Proof. Let $\{G_i: i=1,2,...,n\}$ be a finite family of regular δ -preopen sets. Since the space (U, τ) is δ -submaximal, then by Theorem 3.8, we have $\bigcap_{i=1}^n G_i \in \delta PO(U)$. By Theorem 3.1(ii), $\bigcap_{i=1}^n G_i \subseteq \delta$ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$). Now, for each i, we have $\bigcap_{i=1}^n G_i \subseteq G_i$ and thus δ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$) $\subseteq \delta$ -pint $(\delta$ -pcl (G_i)) = G_i as δ -pint $(\delta$ -pcl (G_i)) = G_i . Therefore, δ -pint $(\delta$ -pcl $(\bigcap_{i=1}^n G_i)$) $\subseteq \bigcap_{i=1}^n G_i$, in consequence, $\bigcap_{i=1}^n G_i \in R\delta PO(U)$. Recall that a subset M of a space (U, τ) is called δ -preclopen if it is δ -preclosed and δ -preopen **Theorem 3.10.** Every δ -preclopen set is regular δ -preopen but not conversely. Proof. Let N be δ -preclopen, then $N = \delta$ -pint $(N) = \delta$ -pcl(N). Therefore, δ -pint $(\delta$ -pcl $(N)) = \delta$ -pint(N) = N. **Example 3.3.** In Example 3.1, the set $\{q\}$ is regular δ -preopen but it is not δ -preclopen. **Definition 3.3.** A space (U,τ) is called extremally δ -predisconnected if the δ -preclosure of every δ -preopen subset of U is δ -preopen. **Theorem 3.11.** Let (U,τ) be a topological space, then the following are equivalent: - (1) (U,τ) is extremally δ -predisconnected; - (2) Every regular δ -preopen set is δ -preclopen. Proof. (1) \longrightarrow (2): Let M be a regular δ -preopen set, then $M = \delta$ -pint(δ -pcl(M)) = δ -pcl(M). Hence M is δ -preclosed and combined with Theorem 3.2(i), we have M is δ -preclopen. (2) \longrightarrow (1): Let $M \in \delta PO(X)$. Then by Theorem 3.1(vi), δ -pcl(M) is a regular δ -preclosed set which is δ -preclopen by (2). Hence δ -pcl(M) is δ -preopen. **Lemma 3.1.** If $M \subseteq U$ is open, then $int(cl(M)) = int(\delta - cl(M))$. Proof. It is known in Lemma 2 of [20] that $cl(M) = \delta - cl(M)$ for every open subset M of U. Therefore, we have $int(cl(M)) = int(\delta - cl(M))$. **Remark 4.** By the following example, we show that $int(cl(M)) \neq int(\delta - cl(M))$, in general. **Example 3.4.** Let (U,τ) be a space as in Example 3.5. Consider $M = \{r,s\}$. Then δ - $cl(M) = \{p,r,s\}$ and $cl(M) = \{r,s\}$. Therefore $int(cl(M)) = \phi \neq \{p,r\} = int(\delta - cl(M))$. **Lemma 3.2.** A subset M of a space (U,τ) is regular open if and only if M = int(cl(M)) $= int(\delta - cl(M))$. **Theorem 3.12.** Every regular open set is regular δ -preopen. Proof. Let M be regular open. Then $M = int(cl(M)) = int(\delta - cl(M))$. By Theorem 2.2, δ -pint(δ -pcl(M)) = δ -pcl(M) \cap int(δ -cl(M)) = δ -pcl(M) \cap M = M. This shows that M is regular δ -preopen. **Definition 3.4.** A subset N of a space (U,τ) is called q^* -set if $int(\delta-cl(N)) \subseteq cl(\delta-int(N))$ and the family of q^* -sets of (U,τ) is denoted by $q^*O(U)$. **Theorem 3.13.** Every δ -semiopen set is q^* -set but not conversely. Proof. Let M be δ -semiopen, then by Lemma 3.1 of [16], $int(\delta \text{-}cl(M)) \subseteq cl(\delta \text{-}int(M))$. Hence M is q^* -set. **Example 3.5.** In Example 3.1, the set $\{s\}$ is q^* -set but it is not δ -semiopen. **Theorem 3.14.** Every δ -semiclosed set is q^* -set but not conversely. Proof. Let M be δ -semiclosed, then $int(\delta \text{-}cl(M)) \subseteq M$. Therefore $int(\delta \text{-}cl(M)) \subseteq cl(\delta \text{-}int(M))$. Hence M is q^* -set. **Example 3.6.** In Example 3.5, the set $\{p,q,r\}$ is q^* -set but it is not δ -semiclosed. Corollary 3.1. Every δ -semi-regular set is q^* -set. **Remark 5.** The above discussions can be summarized in the following diagram: **Remark 6.** The notions of q^* -sets and regular δ -preopen (hence δ -preopen, e-open, e^* -open) sets are independent of each other. **Example 3.7.** Let (U, τ) be a space as in Example 3.1. Then $\{s\}$ is q^* -set but not a e^* -open set and the set $\{p,q,s\}$ is regular δ -preopen but it is not q^* -set. **Theorem 3.15.** A subset M of a space (U,τ) is δ -semiopen if and only if it is both e-open and q^* -set. **Theorem 3.16.** For a subset M of a space (U,τ) , the following properties are equivalent: - (i) M is regular open; - (ii) M is regular δ -preopen and δ -semi-regular; - (iii) M is regular δ -preopen and q^* -set. Proof. (i) \longrightarrow (ii): Clear. - $(ii) \longrightarrow (iii)$: It follows from Corollary 3.1. - (iii) \longrightarrow (i): Let M be regular δ -preopen and q^* -set. Then, by Theorems 2.1 and 2.2, we obtain $M = \delta$ -pint(δ -pcl(M)) $$= (M \cup cl(\delta - int(M))) \cap int(\delta - cl(M))$$ $$= (M \cap int(\delta - cl(M))) \cup (cl(\delta - int(M)) \cap int(\delta - cl(M)))$$ $$= (M \cap int(\delta \text{-}cl(M)) \cup int(\delta \text{-}cl(M))$$ $= int(\delta - cl(M)).$ Therefore, $M = int(\delta - cl(M)) = int(cl(M))$. Hence M is regular open. **Theorem 3.17.** For a subset M of a space (U,τ) , the following properties are equivalent: - (i) M is regular open; - (ii) M is δ -open and regular δ -preopen; - (iii) M is a-open and regular δ -preopen; - (iv) M is a-open and e^* -closed. *Proof.* (i) \longrightarrow (ii) and (ii) \longrightarrow (iii) are obvious. - $(iii) \longrightarrow (iv)$: It follows from Theorem 3.2(iii). - $(iv)\longleftrightarrow (i)$: It is shown in Theorem 3 of [9]. Corollary 3.2. For a subset M of a space (U, τ) , the following properties are equivalent: - (1) M is regular open; - (2) M is δ -semiopen and regular δ -preopen; - (3) M is δ -semiclosed and regular δ -preopen; - (4) M is δ -semi-regular and regular δ -preopen; - (5) M is q^* -set and regular δ -preopen. **Theorem 3.18.** For a subset M of a space (U,τ) , the following properties are equivalent: - (1) M is clopen; - (2) M is regular δ -preopen and δ -closed. *Proof.* (1) \longrightarrow (2): It follows from Lemma 2.1 and Theorem 3.12. (2) \longrightarrow (1): Let M be regular δ -preopen and δ -closed. By Theorem 2.2(c), we have $M = \delta$ -pcl(M) \cap int(δ -cl(M)) = δ -pcl(M) \cap δ -int(δ -cl(M)) = δ -pcl(M) \cap δ -int(M) = δ -int(M). Therefore M is δ -open. Then by Lemma 2.1, M is clopen. #### 4. Decompositions of complete continuity In this section, the notion of regular δ -preopen-continuity is introduced and the decompositions of complete continuity are discussed. **Definition 4.1.** A function $f:(U,\tau)\to (V,\eta)$ is said to be - (1) regular δ -pre continuous (briefly, $r\delta$ p-continuous) if $f^{-1}(N)$ is regular δ -preopen in (U, τ) for each $N \in \eta$, - (2) q*-continuous if $f^{-1}(N)$ is q*-set in X for each $N \in \eta$. **Remark 7.** By Diagram I, we have the following diagram: #### DIAGRAM II $complete\ continuity \rightarrow super-continuity \rightarrow a\text{-}continuity \rightarrow \delta\text{-}semicontinuity \rightarrow q^*\text{-}continuity$ $r\delta p\text{-}continuity \longrightarrow \delta\text{-}almost\ continuity \longrightarrow e\text{-}continuity$ **Theorem 4.1.** For a function $f:(U,\tau)\to (V,\eta)$, the following properties are equivalent: (1) f is completely continuous; \downarrow - (2) f is super continuous and $r\delta p$ -continuous; - (3) f is a-continuous and $r\delta p$ -continuous; - (4) f is a-continuous and contra e*-continuous; - (5) f is δ -semicontinuous and $r\delta p$ -continuous; - (6) f is contra δ -semicontinuous and $r\delta p$ -continuous; - (7) f is δ -semiregular-continuous and $r\delta p$ -continuous; - (8) f is q^* -continuous and $r\delta p$ -continuous. Proof. This is an immediate consequence of Theorem 3.17 and Corollary 3.2. **Remark 8.** The following properties are shown by Example 4.1 (below). - (1) $r\delta p$ -continuity and super continuity (hence a-continuity, δ -semicontinuity, q^* -continuity) are independent of each other. - (2) $r\delta p$ -continuity and δ -semiregular-continuity (hence contra δ -semicontinuity) are independent of each other. **Example 4.1.** Let (U,τ) be a space as in Example 3.1 and let $\eta = \{U, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}\}\}$ - (1) Define $f:(U,\tau)\to (V,\eta)$ by f(p)=f(r)=p, f(q)=q and f(s)=s. Clearly f is super continuous but for $\{p,q\}\in \eta$, $f^{-1}(\{p,q\})=\{p,q,r\}\notin R\delta PO(U)$. Therefore f is not $r\delta p$ -continuous. Define $g:(U,\tau)\to (V,\eta)$ by g(p)=q, g(q)=g(r)=g(s)=p. Then g is $r\delta p$ -continuous but for $\{p\}\in \eta$, $g^{-1}(\{p\})=\{q,r,s\}\notin q^*O(U)$. Therefore g is not q^* -continuous. - (2) Define $f:(U,\tau)\to (V,\eta)$ by f(p)=f(r)=f(s)=q and f(q)=p. Clearly f is δ -semiregular-continuous but for $\{q\}\in \eta$, $f^{-1}(\{q\})=\{p,r,s\}\notin R\delta PO(U)$. Therefore f is not $r\delta p$ -continuous. Define $g:(U,\tau)\to (V,\eta)$ by g(p)=g(q)=g(s)=p, g(r)=q. Then g is $r\delta p$ -continuous but for $\{p\}\in \eta$, $g^{-1}(\{p\})=\{p,q,s\}\notin \delta SC(U)$. Therefore g is not contra δ -semicontinuous. #### 5. Decompositions of Perfect Continuity In this section, the decompositions of perfect continuity are obtained. **Theorem 5.1.** For a function $f:(U,\tau)\to (V,\eta)$, the following are equivalent: - (i) f is perfectly continuous; - (ii) f is super continuous and contra super continuous; - (iii) f is completely continuous and RC-continuous; - (iv) f is $r\delta p$ -continuous and contra super continuous. Proof. It is a direct consequence of Theorem 3.18 and Lemma 2.1 **Remark 9.** As shown by the following examples, $r\delta p$ -continuity and contra super continuity are independent of each other. **Example 5.1.** Let (U,τ) be a space as in Example 3.1 and let $\eta = \{U, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}\}\}$. Define $f: (U,\tau) \to (V,\eta)$ by f(p) = f(r) = f(s) = p and f(q) = r. Then f is contra super continuous but it is not $r\delta p$ -continuous since $\{p\} \in \eta$, $f^{-1}(\{p\}) = \{p,r,s\} \notin R\delta PO(U)$. Define $g: (U,\tau) \to (V,\eta)$ by g(p) = q, g(q) = g(r) = g(s) = p. Then g is $r\delta p$ -continuous but it is not contra super continuous since $\{p\} \in \eta$, $g^{-1}(\{p\}) = \{q,r,s\} \notin \delta C(U)$. ## Acknowledgement We would like to thank the referees for their valuable suggestions. #### References - Z. A. Ameen, B. A. Asaad ,R. A. Muhammed, On superclasses of δ-open sets in topological spaces, Int. J. Appl. Math., 32(2019), 259–277. - [2] S. P. Arya, R. Gupta, On Strongly continuous mappings, Kyungpook Math. J. 14(1974), 131– 143. - [3] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Int. J. Math. Math. Sci.*, 19(2)(1996), 303–310. - [4] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10(1999), 159– 168. - [5] E. Ekici and G. Navalagi,δ-semicontinuous functions, Mathematical Forum, 17(2004-2005), 29–42. - [6] E. Ekici, On a weaker form of RC-continuity, Analele Universitii de Vest din Timisoara: Seria Matematică-Informatică, 42, fasc., 1(2004), 79–91. - [7] E. Ekici, On e-open sets, DP^* -sets and DPE^* -sets and decompositions of continuity, $Arab.\ J.$ $Sci.\ Eng.,\ 33(2008),\ 269-282.$ - [8] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and supercontinuity, Ann. Univ. Sci. Budapest. Ectvos Sect. Math., 51(2008), 39–51. - [9] E. Ekici, A note on a-open sets and e^* -sets, Filomat, 22(1)(2008), 89-96. - [10] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37–45. - [11] E. Ekici, On e^* -open sets and $(D, S)^*$ -sets and decompositions of continuous functions, Math. Moravica, 13(2009), 29-36. - [12] S. Jafari and T. Noiri, Contra-super-continuous functions, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 42(1999), 27–34. - [13] J. K. Kohli and D. Singh, δ -perfectly continuous functions, *Demonstr. Math.*, **42(1)**(2009), 221–231. - [14] B. M. Munshi and D. S. Bassan, Super-continuous mappings, Indian J. Pure Appl. Math., 13(2)(1982), 229–236. - [15] T. Noiri, Super-continuity and some strong forms of continuity, *Indian J. Pure Appl. Math.*, **15(3)**(1984), 241–250. - [16] T. Noiri, Remarks on δ -semi-open sets and δ -preopen sets, *Demonstr. Math.*, **36**(4)(2003), 1007–1020. - [17] J. H. Park, B. Y. Lee and M. J. Son, On δ -semiopen sets in topological space, J. Indian Acad. Math., 19(1)(1997), 59–67. - [18] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21(4)(1993),357–366. - [19] M. Stone, Application of the theory of boolean rings to general topology, *Trans. Amer. Math. Soc.*, 41(1937), 371–381. - [20] N.V.Veličko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103–118. - (1) (Corresponding Author) Department of Mathematics, Karnatak University's Karnatak Arts College, Dharwad-580 001 India Email address: jagadeeshbt2000@gmail.com (2) Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan *Email address*: t.noiri@nifty.com