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CERTAIN SUBORDINATION RESULTS ON THE CLASS OF
STRONGLY STARLIKE p-VALENT ANALYTIC FUNCTIONS.

RAJESH KUMAR MAURYA

ABSTRACT. In this paper we define and study a class LS, () of p-valent analytic
functions associated with the right half of the lemniscate of Bernoulli. This study
is an attempt to find some symmetry or pattern when function f € A,. Here
we determine Hankel determinant of some initial coefficients of the Taylor series
expansion. Sharp bounds of the Hankel determinant of order 2, bounds of the
initial coefficients, Fekete-Szeg6 type problem and a radius result for this class are

obtained.

1. INTRODUCTION

Let #H[a,n] denotes a class of functions of the form:
f(2) =a+anz" + an12" 4+

which are analytic in the unit disc U = {# € C : |z| < 1}. Function f € H[a,n]
normalized if f(0) =0 and f'(0) = 1.

Definition 1. (See [8]) Let g € (0,1) and define the q-number [A], by

¢ (AeQ)
Ny=1 =
2 qu (A=neN)
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Definition 2. (See [5, 6]) The q-Derivatives D, of a function f is defined in a given

subset of C by

flaa)=fz) 0
(D) =] e E7Y

f10) (=0
provided that f’(0) exists, from definition 2 observe that
flgz) = f(2)

lim (D, f)(2) = lim ~ f(2)

q—1— q—1— (q — 1),2
for a differentiable function f in a given subset of C

lim (Dyf)(2) = 14> _[n]yanz""".

q—1—

Let A, denotes a subclass of functions in [0, p] whose members are of the form:

(1.1) F(2)=2"+) apn 2™ (2 €U).

n=1
Denote the class A; as A.
In Geometric Function Theory, various classes based on geometric consideration of

the image domain of f have been defined, few of them are as follows:

(i)
S = {feA:Re (Z;;ij)) >0 (zeU)}

is well known the class of starlike functions associated with the positive half plane
{w € C: Re(w) > 0}.
(i)

sp={drea re(HR) |G
Vet ()

o )7 1' <V

is associated with the parabolic region {w € C : Re (w) > |w — 1|} in the positive half

plane and is defined by Renning [7].
(iii)

k-ST = {f € A:Re (ZJ{(S)) -k z}‘(iz))

is connected with a conic section symmetric about the real axis in the positive half

—1‘ (O§k<oo;z€U)}.

plane {w € C: Re (w) > k|w — 1,0 < k < oo} introduced by Kanas and Wisniowska
[21]
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(iv)

UCv, = {f €A, Re (1+ ZJ{C/((S)) > ‘1+ z}c/’;(;)) —p‘ (2 ew)}

is defined by Al-Khasani and Al-Hajiry [9, 10] and is connected with the parabolic
region {w € C: Re (w) > |w — p|} in the positive half plane.

A function f € A, is said to be in the class S;(a) of p-valent starlike of order
a (0 < a < p) if and only if

Re (:{ég)) >a (2€D),

where f(z) # 0 for any z € U/ {0} .

Definition 3. Let P denotes a class of functions ¢ € H|[1,n] with Re(p(z)) > 0
inU. For A,B,—1 < A<1,—-1< B < A, denote by P(A, B) the family of functions

P(z)=1+bz+ ..

regular in U, and such that P(z) is in P(A, B) iff

1+ Aw(z)

P(z) = 15 Bl (z €U)

where w(z) is a schwarz class function i.e.w(0) = 0, |jw(z)| < 1 for all z € U.
(v) P(z) maps U onto a slit region on the right half of complex plane, based on this
geometric consideration Janowski [28] defined a subclass of starlike functions S*[A, B|

as
2f'(2)
f(2)
Srivastava et al. [12] combine the concept of Janowski [28] with the above mention

q—calculus and defined S;[A, B]

S*[A,B] = {f € A: = P(2), P(z) € P(4, B)}

Bon(@LE) a1y |
S*A, B] = cA: - — < 2eU) .
o {f P& () 1-a| TTmg Y
Observe that lim S;[A, B] = §*[A, B] is class introduced by Janowski in [28]. Mah-

q—1—
mood et. al. in [22] combine the concept of Srivastava et al. [12] and defined a
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meromorphically g-starlike functions associated with Janowski functions for p-valent

analytic functions as

B—l)(—(qu)(z))—(A—l) 1

. B | ( fie) B 1
qu[A,B]_{feA.i(BH)(_(D;{Z))(Z))_(AH) < (zEIU)}.

A sufficiency condition based on coefficient estimates, and distortion inequalities has
been studied in [22].
(vi) A function f € A(U) is said to belong to class S; if f(0) = 0= f'(0) — 1 and

1<1
1—gq 1—gq

}%wqf)(z) (zeU).

The notation Sy was first used by Sahoo et. al.[24].  Coefficient inequalities for
g-starlike function has been studied in [26]. Combining concept of Sahoo et. al.[24]
and using Ruscheweyh-type g-derivative operator Sahid Mahmood et. al. [23] define
the following subclass of g-starlike functions as
quRg f(2) 1 _
f(z) 1—q

1
1—gq

ng(a):{feA;

(z€U;0 > —1)}.

upper bound of third Hankel determinants and sharp bounds for some coefficients has
been determine in [23]. With the help of concepts introduced in the above mentioned
articles we shall study a class of strongly starlike p-valent analytic functions.

We say that an analytic function f is subordinate to the analytic function ¢ in U and
write f < ¢ in U, if and only if there exists a Schwarz class function w analytic in U
such that f(2) = g(w(z)),z € U. In particular, if ¢ is univalent in U, we have the

following equivalence:

f=<ginU < f(0)=yg(0) and f(U) C g(U).

Following Ma and Minda [27], we consider ¢ € P (see Definition 3), analytic univalent
in U, with ¢ (U) symmetrical with respect to the real axis and starlike with respect to
#(0) = 1, and ¢’ (0) > 0, for such function ¢, we define a class S;(a, [¢]) of functions
feA, (f(z) #0 for any z € U\ {0}) satisfying the condition

2f'(z) — af(2)
(p—a)f(2)

(1.2) <¢(2) (0<a<pzel).
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Taking ¢(z) = (ﬁ)ﬁ (0 < B <1), we denote the class S;(a, [¢]) by SS;(a, 8) and

1—z

functions therein satisfy the condition:

arg (ZJ{;(Z? —a)‘ <(p—oz)ﬁg 0<a<p0<pf<1;z€l).

Note that for p = 1 and for a = 0, the class SS;(a, 8) = SS}; was introduced earlier
in [4] and [15] and is called a class of strongly starlike functions. Class SS;(a, 1) is
denoted by S;(a).

For the purpose of this paper, we denote in particular, the following classes:

14+ Az
* =S —1 < <
(o[ 2] ) =0, 225 <as

and

S; (o, [VIF2]) = £85(@),

where

EEE af(Z))2 .

LS (a) = {f €S, (a): =7

- 1} |
Observe that

L={weC:Re{w}>0,w*—1] <1}

is the interior of the right half of the lemniscate of Bernoulli:
oL :={w=u+iveC: (u+0v°)°—2(u"—0v*) =0}

and
T
LC{weC:|arg w|<Z}.

Therefore, we observe the inclusion:

1
LS (a) CSS, (a, 5) C S, (a),

and that the class £S; () is a class of strongly starlike p-valent analytic functions
associated with a positive region of lemniscate of Bernoulli, which is being studied in
this paper. Results obtained include a representation formula and an inclusion with
the class Sy (a, A, B) which leads some examples for the class £LS;(a). A radius result
for certain functions of the class LS (), coefficients estimates for initial coefficients

including a Fekete-Szegd problem and a Hankel determinant for the class LS («) are
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also obtained. Further, a coefficient inequality for this class of functions is obtained.
Based on the bounds of first three coefficients, a conjecture is proposed.

It is mentioned that the class £LS7(0) = SL* was introduced and studied in [14] see
also [1, 2, 11, 13, 17].

2. INTEGRAL REPRESENTATION

We first give an integral representation of the function f € LS, («).

Theorem 1. Let f € LS, (). Then there exists a function q € H[1,1] such that ¢(U)
is in the interior of the right half of the lemniscate of Bernoulli and the function f

15 represented by

(2.1) F(2) = Pexp {(p _a) /0 Mdt} (zeU).

t
The extremal function of the class LS, () is given by

(2.2)
2

= P B ———
fils) == (1 Y
Proof. Let f € LS, (). Then, there is a function ¢ € H[1,1] such that

)wﬂgq{%p—®<Vfﬁa_o}(0§a<%Z€U»

R Y CR—
1= " —are Vit EED

describes the interior of the right half of the Lemniscate of Bernoulli and it may be

expressed as

PG ol
(2.3) ) (p — @)q(2).

On integrating (2.3), we get

log /(z) (p—a) /OZ q(t)%ldt (z € U)

P

and hence, the representation (2.1). If we take ¢(z) =+/1 4+ z in (2.1) and then after
simplifying we get the extremal function f; of the class £S;(a), which is given by

(2.2). This proves Theorem 1. O

In addition to the example (2.2) of the class LS} (), we also have

£u(2) = 2P exp {(p —a) /0 @dt} e £53(a)
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for any n € N.

We next find the condition on A and B so that S;(a, A, B) C LS, («).

Theorem 2. Let —1 < B< A<1. Then
S,(a, A, B) C LS, (a).

if and only if

ASM.
V2+ B

Proof. Let f € Sy(a, A, B) for —=1 < B < A < 1.Then, we get

2f'(z) —af(z) 1-AB < A-B
(p—a)f(z2) 1-B2| 7 1—-B?

(2.4)

which shows that w = % (z € U) lies in the disc

D(c,r) ={weC:|w—c <r},

where
_1-AB _A-B
‘1B T 1 R
and
/ —
e (L)

(p—a)f(2) ¢
Now Si(a, A, B) C LS, («) if and only if the disc D(c,r) C L or,

sin 1l <’
c 4
which implies that
rot
¢~ 2
or, if (2.4) holds. This proves Theorem 2.

667

O

In view of the above Theorem 2 and the representation of f given by (2.1) we get

following examples for the class LS, (a):

(i)For0§a<pandfor—12<B<O,

-
g1(2) = 2P exp (—=Bz (p — o)) € LS, ().

(ii)For0§a<pandforO<A<%,

go(2) = P exp (A2 (p — ) € LS}(a).
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(iii) For0 < a <pand for 0 < A <2 —1,
g3(2) = 27 (1 — A2) 2P € £S(a).
(iv) ForO<a<pand for 0 < B <1
g5(2) = 2 (1 + B2)(570)0) ¢ £5%(a).
3. A RADIUS RESULT

In this section, we find a radius result for some specific functions f € LS} (a).

Theorem 3. Let f € A, satisfy

_1
(3.1) Re(%)p >0 (0<a<p; z€U).
Then the radius 1o (0 < 19 < 1) for the function f to be in the class LS, () is given
by
2—-1
(3.2) V2

1+\/1 2—1

The radius is sharp.

1

Proof. Let h(z) = (f(f,)>ﬁThen

z

ML () SOl
h(z)  p—a\ f(2) p—a)f(z)
Since, in view of (3.1), h € P, we have [25]
2l (2) 2r B
he) | ST (lz| =r<1).
Thus, we have
"(z) — 2
(3.3) Z{ﬁ a)j:(fz(;) - 1‘ < 1_77}2 (2] =r < 1)
and the function f € LS (a) if
Lty <
Therefore, from (3.3) and (3.4), we get for f € LS, (), the radius r satisfies
<V2-1

1—7"2
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and maxr = rq is given by (3.2). Sharpness can be verified for the function

o<r<1
() = (ij)  eu).

Since, for this function

2f'(2) — af(z) = 22

(p—a)f(2) 122
and if z = ry is given by (3.2) that is if

27’0 :\/5_17

1—1r2
we get
(412 —af(Z))2 o
(p—a)f(2)
This proves Theorem 3. U

4. COEFFICIENT ESTIMATES AND HANKEL DETERMINANT

In 1976, Noonan and Thomas [16] defined the gth Hankel determinant of

f(2) =) anz"  (2€D),

which is given for ¢,n € N, by

Qp, any1 .- Aptqg—1
An+1 an+2 ... Aptq
Hy(n) =
Qptqg—1 Qniq An42q—2

The functional Hs (1) is called Fekete-Szego functional and the problem finding the
upper bound of the generalized functional |az — pua?| with real p is called the Fekete-
Szegd problem. The functional Hy (2) = |agas — a3| is known as 2nd Hankel determi-

nant of f.
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In this section, results on coefficient estimates for initial coefficients including a
Fekete-Szego problem, Hankel determinant, and a coefficient inequality for the class

LS () are obtained. To obtain the results, we apply following lemmas.

Lemma 1. Let p € P be of the form

(4.1) p(z) =1+ i oz (2 €T).
Then B

(4.2) lca] <2 (n€N)

and

(4.3) |2 — pei| < 2max {1, 2 — 1|}

The result (4.2) may be found in [18] and result (4.3) in [27].

Lemma 2. [19, 20] If p € P is given by (4.1), then

(4.4) 200=c+(4—¢c})w
and
(4.5) des =+ 204 —cr — (4 —cD)a® +2(4 — E) (1 — |2z

for some x,z such that |x| <1 and |z| <1.

Theorem 4. Let f € LS, (a) be of the form (1.1).Then

-«
(4.6) ap| < 7
and for p € C,
p—« 1 p—a
(4.7) |apso — pas, | < 1 {max{l, 173 (1-— QM))}}

In particular, for the range: 0 < (p — «) < 2,

(4.8) |apa| <

The results are sharp.
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Proof. Let f € LS, («), then for a Schwarz function w(z) analytic in U with w(0) = 0

and |w(z)| < 1in U, we have

2f'(2) — af(z)
4.9 =+v1+w(z), (z€0).
) p-af ViTrE el
Now, for this w(z), there exists a function p € P such that
1+w(z
p(z) = 1_711}52; =1l+cz+c+.. .
which implies that
2p(z) \'"*
1 —
+ ) (1 +p(2))
c 1 ) 1 5) 13
(4.10) =1+ le +7 <c2 — écf) 22+ 1 <03 —gacet ﬁc‘f) 2+

also, let
2f'(z) —af(z)
(p—a)f(z)

then on writing the series expressions of f(z) and f’(z) form (1.1), and then, on

=14 p1z+pa2® +p32® + ..,

equating the coefficients of zP™!, 2P*2 and 2P*2 on both the sides of the equation

2f'(2) —af(z) = 0 —a)f(2) (L+piz+paz® +p32° + . )

we obtain on simplifying for p, po, p3 that

(4.11) 2f'(z) —af(z2) ~ 1 Ip+1 | 2ap10 = Gy

p—a)f(2) p-a p—a -

3ap+3 + a;il);—l—l - 3ap+1ap+2 23 ]
p—a '
therefore, in view of (4.9), we obtain from (4.10) and (4.11)

p—«

(412) ap+1 = 1

C,

(4.13) Gppr = © 3 {CQ —{5—2(p— )} a ,

—a c1c
ap+3:p12 [03—{10—3(]9—@) %jL

(4.14) {26 — 15 (p—oz)+2(p—oz)2}g—ﬂ :
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Applying (4.2) of Lemma 1, to (4.12), we obtain result (4.6), and applying (4.3) of

Lemma 2, we get for some pu € C,

p—« p—«
(@15)  faper — | = P oo — ] < P ma (1, 20— 1))
where
5 p—a«
(4.16) =35 (1—2u).

This proves inequality (4.7) and in particular, taking g = 0 in (4.7), we obtain

-

-« 1 -«
|apya| < pT [max{lv ’Z P 5

since, for 0 < (p — @) < 2, we have

<1

4 2

‘1 p—«

and this proves the estimate (4.8). Sharpness of the estimates (4.6) and (4.8) can be

seen, respectively, for the functions f; and fy such that

2hGE) =ahl) s e

(p—a)fi(z)
and
/ J—
2f3(2) — afe(?) =1+ 22 (» € U),
(p— @) f2(2)
and the estimate (4.7) is sharp for these f; and fy. This completes the proof of
Theorem 4. O

Taking i to be real in Theorem 4, we get following result.

Corollary 1. Let f € LS, (a) be of the form (1.1). Then

S

re (p—a)(1—2u)— 1] if p< ok,

(A17) apez = pap] < 150 if k<p<r+-2
b 1-2p—a)(1-20)] if  p>e+

S
Q

where

(4.18) K

DN | —

A(p — )

The result is sharp.
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Proof. For real values of p, from (4.7), we get

p—«
(4.19) | — pag | < ==

if

4 2
This proves the inequality(4.17)for k < u < K+ p%a, where £ is given by (4.18). Also,

‘l—p_aa—mng

from (4.7), we get

p—al|ll p—a
(4.20) iz —pata] < P35 - B3 (-2
if
L R P
i.e. either
2(p—a)2u—1)+1 <
1 <
or
2p—a)2u—1)+1 -
1 >
and hence, (4.20) proves inequalities in (4.17) for y < k and p > Kk + ﬁ, where k is
given by (4.18). Sharpness of (4.17) can be verified as follows: O

(i) For the extreme range of y, i.e. when u < Kk or yu > K+ p%a, the equality holds for
the function f;(z) considered to show the sharpness in the proof of Theorem 4 and

is given by (2.2).

2
p—a’

(ii) For the middle range of u, i.e. when Kk < p < Kk + the equality holds for
the function fs(2) considered to show the sharpness in the proof of Theorem 4 and
is given by

2

)= ————

)= (=

(iii) For u = k, equality holds for the functions f(z) given by

S —alz) _ [ 2Grd

(p—a)f(z) 1+ez

while for =k + p%a, the equality holds for the functions f(z) given by

) —afe) _ [ 2t

(p—a)f(z) 1+ ez

>(p_a)exp{(p—a) (W)-O} O<a<pzel).

(0<e<),
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This completes the proof of Corollary 1.
For the range k < u < Kk + p%a, although the above upper bound is sharp, it can be

further improved in the next result.

Theorem 5. Let f € A of the form (1.1) belong to the class LS, (). Then for a real

p(RSpS Rt )

(4.21) ‘ap+2 - /~L%21+1‘ + (0 — k) ‘ap+1‘2
pP—« 1
< K< u<k+
4 p—
and
2
(4.22) Upra — pag | + </‘f + p—a M) |apaf’

pP—« 1 2
< k+t ——<pu<kK+ .
4 p—« p—«

where K is given by (4.18).

Proof. Observe from k and 7 given, respectively, by (4.18) and (4.16) that

2
p—

p—K= n

and hence, using (4.12) and (4.13) and following (4.15), we get for k < u < kK + p%a

2 p—«

Qp+2 — ,Ua;+1 + (1 —K)a,,, = 3

p—«
et C2

8

(e2 = %) + F=ne?

which on using result (4.2) of Lemma 1, proves (4.21). Similarly, for x + p%a <p<

2
I{—pra

2 2 2
Apyp — Py g + | o — K — api1

p—Q
e CEL R U
:p;a(CQ—C%)

which on applying result (4.3 ) of Lemma 2, proves (4.22). O
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Theorem 6. If a function f € LS («) be of the form (1.1), then for the range
0<(p—a)< @,
(p — )

(4'23) }ap-i-lap—i-?) - %2;4_2} < 16

The estimate is sharp.

Proof. Putting the values of a,i1,a,+2 and a3 from (4.12), (4.13) and (4.14), re-

spectively, we get

2
Ap+10p+3 = Appo

= (p ;860 [0103 —{10-3(p—a)} ClT:sz
{26 -15(p— ) +2(p — a)?} g—ﬂ _ gf) |iC2 — {5—2(]3—04)}%]
(p—a)’ 3, 5, 2y O
(4.24) = P 18 |:0103 — 12~ 1gae +{29—4(p — a)*} %} .

Putting the values of ¢o and ¢z from (4.4) and (4.5), respectively, and taking ¢; = ¢ €
[0,2] in (4.24), by simple arrangement of terms get,

(4.25) ‘ap+lap+3 _'a§+2‘

{Z—(p—a)2}c4—4(4—02) (F+12)2* -2 (4—P)x

_(p—a)

3072
+32c(4 — ¢ )(1 — |z*)z|.

Therefore, on using the triangle inequality with non-negative coefficients and putting

7| =p (< 1), we get

% H§—(p—a)2

4
2% (4= ) p+32c(4 — & )(1 - p?)]

‘ap+1ap+3 — a12)+2‘ < 44 (4 — 02) (02 + 12) PP+

_ (p—a)?
Observe that for 0 < p < 1, and for fixed ¢ € [0, 2],

%:}5—4@—@2}0%&)(4—8) (c—6)(c—2)+2 (4—c*) >0



676 RAJESH KUMAR MAURYA

and hence, for ¢ € [0, 2],

(p—a),.
‘Clp+1ap+3 - a]2)+2‘ S 3072 il_l’)I%G (p7 C)
2
— 5
= (p?,()?Z) HZ —(p—a)P|t+4(4—-) (F+12) +2¢° (4= &)
(»—a)®
= 3072 919

further, observe that for ¢ € [0,2], and for the given range of (p — a),
g =—-4p—a)|+4[-2c(+12) +2c (4 = )] + [4c (4 — ) — 4]
=[{|5-4(p—a)’|—24} *— 48] c=0
only if ¢ = 0 and
g"(c)=3{]p—4(p—a)?| - 24} * - 48 <0

at ¢ = 0. Thus, we obtain

(p—a)? (p— o)
‘ap+1ap+3 - a;21+2‘ < 3072 Y (0) = :

this proves the estimate (4.23). Sharpness may be verified for the function f € LS, ()
given by

() =af) s
(4.26) o V1t (zeD).

O

Remark 1. From the results obtained in Theorem 4, Corollary 1 and Theorem 6, we

get results of Raza and Malik [17] for the class SL*.
Obtain following coefficient inequality for the class LS} (a):

Theorem 7. Let f € LS, («) be of the form (1.1). Then

(4.27) : [(ﬁ:z)z - 2] lap? < 1.
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Proof. Let f € LS, (a) be of the form (1.1). Then, for a Schwarz function w(z)
analytic in U with w(0) =0 and |w(z)| < 1 in U, from (4.9), we have

(Zf’(Z) —af(z)

p—«

2
) -GN = () el
and hence, on using the Parseval’s identity for |z| =7 (r < 1),
o 2w .
273 lapal % = [ |fe) a0, = 1)
k=0 0

- T€i€2w7”€i€
> [ 1) uwtren)] ab

- /0 " (Tewf (re?) —af (Tew))zde— /0 %} fre®)|* do

p—

which on writing the series expansions of f and f’, proves that

> > p+k—« 2

Taking limit » — 17, we obtain

E\? )
1+ -2 |ap+k| <1
p—«

which is the inequality (4.27). O

o0

k=1

Corollary 2. Let f € LS, (a) be of the form (1.1). Then for the range 0 < (p — a) <
1

V2-17

it 1
(4.28) > lapuil? < —
k=1 (1 + p%a> -2

Theorem 8. Let f € LS (a) be of the form (1.1). Then for the range 0 < (p — a) <

7
2

—
(4.29) apal < P (kEN).

The result is sharp.
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Proof. Putting the values of ¢ and ¢3 from (4.4) and (4.5), respectively, and taking

¢ =c€10,2] in (4.14), we obtain on simple arrangement of terms

p—« 2y C 2,2
Up+3 = o5 {2—3(P—a)+2(29—a)}2—40(4—0)934'

84— (1—|z)z+{8(p—a)—2}c(4— ) x].

Therefore, on using the triangle inequality with non-negative coefficients and putting

7] =p (1), we get

3
— C
opial < P [{2= 30— a) 20 @)%} T el = gt

8(4—)(1—p) +[3(p—a)—2[c(4—¢)p]

.
= To5 F(p,c).

Observe that for any p € [0,1], as ¢ — 2,

(4.30) s <2 (p—a-3 i
' rl =T VP 4 16

and for 0 < p <1 and ¢ — 0,
OF (p,c)
dp

Thus, for ¢ — 0,

= [8cp—16p+[3(p —a) = 2| (4 =) <0.

p—oa
< —

:% {{Q—B(P—a)+2(p—a)2}cz+8(4—cz)] gpgo‘

when ¢ — 0. But for the range 0 < (p — ) < I, we observe from (4.30) and €(4.31)

2
p—« 3 7 p—«
—a-—= —\< )
18 {(p “ 4) +16}_ 6

This proves the result (4.29). Sharpness of the estimate (4.29) can be seen for the

that

function f3 such that

O ARy —
oz~ ViTE Eel)

This completes Theorem 8. U

In view of bounds given by (4.6), (4.8) and (4.29), we propose the following conjecture.
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Conjecture 1. Let f € LS () be of the form (1.1). Then for bounded value of

(p—a),
(4.32) japinl <222 (neN)
and hence,
o) 2
> lopul” < T o)

Remark 2. The bounds given by (4.32) in Conjecture 1 , improves the result given

by (4.28) for the range 0 < (p — a) < \/51_1.

Remark 3. Taking p = 1,a = 0, our estimates given by (4.6), (4.8) and (4.29)
coincides with the estimates obtained by Sokdt in [13|, where based on the estimates

the conjecture: |a,| < 5= (n € N) was proposed for the class SL*.

CONCLUSION

In this article, we have introduced and studied a class of strongly starlike p-valent
analytic functions associated with the positive region of lemniscate of Bernoulli,We
have given an integral representation for this class, and determined radius of the circle
which p-valent analytic function f lies in this class. Based on coefficient estimates,
Fekete-Szego inequality and a Sharp bound for 2nd Hankel determinant have been
found. It has been observed that for p = 1 the class considered in this article have

analogous properties as of class of univalent function .
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