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CERTAIN SUBORDINATION RESULTS ON THE CLASS OF

STRONGLY STARLIKE p-VALENT ANALYTIC FUNCTIONS.

RAJESH KUMAR MAURYA

Abstract. In this paper we define and study a class LS∗

p
(α) of p-valent analytic

functions associated with the right half of the lemniscate of Bernoulli. This study

is an attempt to find some symmetry or pattern when function f ∈ Ap. Here

we determine Hankel determinant of some initial coefficients of the Taylor series

expansion. Sharp bounds of the Hankel determinant of order 2, bounds of the

initial coefficients, Fekete-Szegö type problem and a radius result for this class are

obtained.

1. Introduction

Let H[a, n] denotes a class of functions of the form:

f(z) = a + anz
n + an+1z

n+1 + ...,

which are analytic in the unit disc U = {z ∈ C : |z| < 1}. Function f ∈ H[a, n]

normalized if f(0) = 0 and f ′(0) = 1.

Definition 1. (See [8]) Let q ∈ (0, 1) and define the q-number [λ]q by

[λ]q =















1−qλ

1−q
(λ ∈ C)

n−1
∑

k=0

qk (λ = n ∈ N)
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Definition 2. (See [5, 6]) The q-Derivatives Dq of a function f is defined in a given

subset of C by

(Dqf)(z) =







f(qz)−f(z)
(q−1)z

(z 6= 0)

f ′(0) (z = 0)

provided that f ′(0) exists, from definition 2 observe that

lim
q→1−

(Dqf)(z) = lim
q→1−

f(qz)− f(z)

(q − 1)z
= f ′(z)

for a differentiable function f in a given subset of C

lim
q→1−

(Dqf)(z) = 1 +

∞
∑

n=2

[n]qanz
n−1.

Let Ap denotes a subclass of functions in H[0, p] whose members are of the form:

(1.1) f(z) = zp +

∞
∑

n=1

ap+n zp+n (z ∈ U) .

Denote the class A1 as A.

In Geometric Function Theory, various classes based on geometric consideration of

the image domain of f have been defined, few of them are as follows:

(i)

S∗ =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

> 0 (z ∈ U)

}

is well known the class of starlike functions associated with the positive half plane

{w ∈ C : Re (w) > 0}.
(ii)

SP =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

>

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

(z ∈ U)

}

is associated with the parabolic region {w ∈ C : Re (w) > |w − 1|} in the positive half

plane and is defined by Rønning [7].

(iii)

k-ST =

{

f ∈ A : Re

(

zf ′(z)

f(z)

)

> k

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

(0 ≤ k < ∞; z ∈ U)

}

.

is connected with a conic section symmetric about the real axis in the positive half

plane {w ∈ C : Re (w) > k |w − 1| , 0 ≤ k < ∞} introduced by Kanas andWísniowska

[21]
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(iv)

UCVp =

{

f ∈ Ap : Re

(

1 +
zf ′′(z)

f ′(z)

)

>

∣

∣

∣

∣

1 +
zf ′′(z)

f ′(z)
− p

∣

∣

∣

∣

(z ∈ U)

}

is defined by Al-Khasani and Al-Hajiry [9, 10] and is connected with the parabolic

region {w ∈ C : Re (w) > |w − p|} in the positive half plane.

A function f ∈ Ap is said to be in the class S∗
p (α) of p-valent starlike of order

α (0 ≤ α < p) if and only if

Re

(

zf ′(z)

f(z)

)

> α (z ∈ U) ,

where f(z) 6= 0 for any z ∈ U/ {0} .

Definition 3. Let P denotes a class of functions φ ∈ H[1, n] with Re (φ(z)) > 0

in U. For A,B,−1 < A ≤ 1,−1 ≤ B < A, denote by P(A,B) the family of functions

P (z) = 1 + b1z + ...

regular in U, and such that P (z) is in P(A,B) iff

P (z) =
1 + Aw(z)

1 +Bw(z)
, (z ∈ U)

where w(z) is a schwarz class function i.e.w(0) = 0, |w(z)| < 1 for all z ∈ U.

(v) P (z) maps U onto a slit region on the right half of complex plane, based on this

geometric consideration Janowski [28] defined a subclass of starlike functions S∗[A,B]

as

S∗[A,B] =

{

f ∈ A:
zf ′(z)

f(z)
= P (z), P (z) ∈ P(A,B)

}

Srivastava et al. [12] combine the concept of Janowski [28] with the above mention

q−calculus and defined S∗
q [A,B]

S∗
q [A,B] =

{

f ∈ A :

∣

∣

∣

∣

∣

(B − 1)( (Dqf)(z)
f(z)

)− (A− 1)

(B + 1)( (Dqf)(z)
f(z)

)− (A+ 1)
− 1

1− q

∣

∣

∣

∣

∣

<
1

1− q
(z ∈ U)

}

.

Observe that lim
q→1−

S∗
q [A,B] = S∗[A,B] is class introduced by Janowski in [28]. Mah-

mood et. al. in [22] combine the concept of Srivastava et al. [12] and defined a
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meromorphically q-starlike functions associated with Janowski functions for p-valent

analytic functions as

MS∗
q[A,B] =

{

f ∈ A :

∣

∣

∣

∣

∣

(B − 1)(− (Dqf)(z)

f(z)
)− (A− 1)

(B + 1)(− (Dqf)(z)
f(z)

)− (A+ 1)
− 1

1− q

∣

∣

∣

∣

∣

<
1

1− q
(z ∈ U)

}

.

A sufficiency condition based on coefficient estimates, and distortion inequalities has

been studied in [22].

(vi) A function f ∈ A(U) is said to belong to class S∗
q if f(0) = 0 = f ′(0)− 1 and

∣

∣

∣

∣

z

f(z)
(Dqf)(z)−

1

1− q

∣

∣

∣

∣

<
1

1− q
(z ∈ U) .

The notation S∗
q was first used by Sahoo et. al.[24]. Coefficient inequalities for

q-starlike function has been studied in [26]. Combining concept of Sahoo et. al.[24]

and using Ruscheweyh-type q-derivative operator Sahid Mahmood et. al. [23] define

the following subclass of q-starlike functions as

RS∗
q(δ) =

{

f ∈ A :

∣

∣

∣

∣

∣

zDqRδ
qf(z)

f(z)
− 1

1− q

∣

∣

∣

∣

∣

<
1

1− q
(z ∈ U; δ > −1)

}

.

upper bound of third Hankel determinants and sharp bounds for some coefficients has

been determine in [23]. With the help of concepts introduced in the above mentioned

articles we shall study a class of strongly starlike p-valent analytic functions.

We say that an analytic function f is subordinate to the analytic function g in U and

write f ≺ g in U, if and only if there exists a Schwarz class function w analytic in U

such that f(z) = g(w(z)), z ∈ U. In particular, if g is univalent in U, we have the

following equivalence:

f ≺ g in U ⇐⇒ f(0) = g(0) and f(U) ⊆ g(U).

Following Ma and Minda [27], we consider φ ∈ P (see Definition 3), analytic univalent

in U, with φ (U) symmetrical with respect to the real axis and starlike with respect to

φ(0) = 1, and φ′ (0) > 0, for such function φ, we define a class S∗
p (α, [φ]) of functions

f ∈ Ap (f(z) 6= 0 for any z ∈ U \ {0}) satisfying the condition

(1.2)
zf ′(z)− αf(z)

(p− α)f(z)
≺ φ(z) (0 ≤ α < p; z ∈ U) .
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Taking φ(z) =
(

1+z
1−z

)β
(0 < β ≤ 1) , we denote the class S∗

p (α, [φ]) by SS∗
p(α, β) and

functions therein satisfy the condition:
∣

∣

∣

∣

arg

(

zf ′(z)

f(z)
− α

)
∣

∣

∣

∣

< (p− α)β
π

2
(0 ≤ α < p, 0 < β ≤ 1; z ∈ U) .

Note that for p = 1 and for α = 0, the class SS∗
p(α, β) = SS∗

β was introduced earlier

in [4] and [15] and is called a class of strongly starlike functions. Class SS∗
p(α, 1) is

denoted by S∗
p (α).

For the purpose of this paper, we denote in particular, the following classes:

S∗
p

(

α,

[

1 + Az

1 +Bz

])

= S∗
p (α,A,B), −1 ≤ B < A ≤ 1

and

S∗
p

(

α,
[√

1 + z
])

= LS∗
p(α),

where

LS∗
p(α) =

{

f ∈ S∗
p (α) :

∣

∣

∣

∣

∣

(

zf ′(z)− αf(z)

(p− α)f(z)

)2

− 1

∣

∣

∣

∣

∣

< 1

}

.

Observe that

L = {w ∈ C : Re {w} > 0, |w2 − 1| < 1}

is the interior of the right half of the lemniscate of Bernoulli:

∂L :=
{

w = u+ iv ∈ C : (u2 + v2)2 − 2(u2 − v2) = 0
}

and

L ⊂ {w ∈ C : | arg w| < π

4
}.

Therefore, we observe the inclusion:

LS∗
p(α) ⊂ SS∗

p

(

α,
1

2

)

⊂ S∗
p (α),

and that the class LS∗
p (α) is a class of strongly starlike p-valent analytic functions

associated with a positive region of lemniscate of Bernoulli, which is being studied in

this paper. Results obtained include a representation formula and an inclusion with

the class S∗
p (α,A,B) which leads some examples for the class LS∗

p (α). A radius result

for certain functions of the class LS∗
p (α), coefficients estimates for initial coefficients

including a Fekete-Szegö problem and a Hankel determinant for the class LS∗
p (α) are



666 RAJESH KUMAR MAURYA

also obtained. Further, a coefficient inequality for this class of functions is obtained.

Based on the bounds of first three coefficients, a conjecture is proposed.

It is mentioned that the class LS∗
1 (0) = SL∗ was introduced and studied in [14] see

also [1, 2, 11, 13, 17].

2. Integral Representation

We first give an integral representation of the function f ∈ LS∗
p(α).

Theorem 1. Let f ∈ LS∗
p(α). Then there exists a function q ∈ H[1, 1] such that q(U)

is in the interior of the right half of the lemniscate of Bernoulli and the function f

is represented by

(2.1) f(z) = zp exp

{

(p− α)

∫ z

0

q(t)− 1

t
dt

}

(z ∈ U) .

The extremal function of the class LS∗
p(α) is given by

(2.2)

f1(z) = zp
(

2

1 +
√
1 + z

)2(p−α)

exp
{

2(p− α)
(√

1 + z)− 1
)}

(0 ≤ α < p; z ∈ U) .

Proof. Let f ∈ LS∗
p(α). Then, there is a function q ∈ H[1, 1] such that

q(z) =
zf ′(z)− αf(z)

(p− α)f(z)
≺

√
1 + z (z ∈ U) ,

describes the interior of the right half of the Lemniscate of Bernoulli and it may be

expressed as

(2.3)
zf ′(z)

f(z)
− α = (p− α)q(z).

On integrating (2.3), we get

log
f(z)

zp
= (p− α)

∫ z

0

q(t)− 1

t
dt (z ∈ U)

and hence, the representation (2.1). If we take q(z) =
√
1 + z in (2.1) and then after

simplifying we get the extremal function f1 of the class LS∗
p(α), which is given by

(2.2). This proves Theorem 1. �

In addition to the example (2.2) of the class LS∗
p(α), we also have

fn(z) = zp exp

{

(p− α)

∫ z

0

√
1 + tn − 1

t
dt

}

∈ LS∗
p(α)
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for any n ∈ N.

We next find the condition on A and B so that S∗
p (α,A,B) ⊂ LS∗

p(α).

Theorem 2. Let −1 < B < A ≤ 1. Then

S∗
p (α,A,B) ⊂ LS∗

p(α).

if and only if

(2.4) A ≤ 1 +
√
2 B√

2 +B
.

Proof. Let f ∈ S∗
p (α,A,B) for −1 < B < A ≤ 1.Then, we get

∣

∣

∣

∣

zf ′(z)− αf(z)

(p− α)f(z)
− 1− AB

1−B2

∣

∣

∣

∣

≤ A−B

1−B2

which shows that w = zf ′(z)−αf(z)
(p−α)f(z)

(z ∈ U) lies in the disc

D(c, r) := {w ∈ C : |w − c| ≤ r} ,

where

c =
1− AB

1− B2
, r =

A−B

1−B2

and
∣

∣

∣

∣

arg

(

zf ′(z)− αf(z)

(p− α)f(z)

)
∣

∣

∣

∣

≤ sin−1 r

c
.

Now S∗
p (α,A,B) ⊂ LS∗

p(α) if and only if the disc D(c, r) ⊂ L or,

sin−1 r

c
≤ π

4

which implies that
r

c
≤ 1√

2
,

or, if (2.4) holds. This proves Theorem 2. �

In view of the above Theorem 2 and the representation of f given by (2.1) we get

following examples for the class LS∗
p(α):

(i) For 0 ≤ α < p and for − 1√
2
< B < 0,

g1(z) = zp exp (−Bz (p− α)) ∈ LS∗
p(α).

(ii) For 0 ≤ α < p and for 0 < A < 1√
2
,

g2(z) = zp exp (Az (p− α)) ∈ LS∗
p(α).
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(iii) For 0 ≤ α < p and for 0 < A <
√
2− 1,

g3(z) = zp (1− Az)−2(p−α) ∈ LS∗
p(α).

(iv) For 0 ≤ α < p and for 0 < B < 1

g3(z) = zp (1 +Bz)(
1

B
−1)(p−α) ∈ LS∗

p(α).

3. A Radius Result

In this section, we find a radius result for some specific functions f ∈ LS∗
p(α).

Theorem 3. Let f ∈ Ap satisfy

(3.1) Re

(

f(z)

zp

)
1

p−α

> 0 (0 ≤ α < p; z ∈ U) .

Then the radius r0 (0 < r0 < 1) for the function f to be in the class LS∗
p(α) is given

by

(3.2) r0 =

√
2− 1

1 +

√

1 +
(√

2− 1
)2
.

The radius is sharp.

Proof. Let h(z) =
(

f(z)
zp

)
1

p−α

Then

zh′(z)

h(z)
=

1

p− α

(

zf ′(z)

f(z)
− p

)

=
zf ′(z)− αf(z)

(p− α)f(z)
− 1.

Since, in view of (3.1), h ∈ P, we have [25]
∣

∣

∣

∣

zh′(z)

h(z)

∣

∣

∣

∣

≤ 2r

1− r2
(|z| = r < 1) .

Thus, we have

(3.3)

∣

∣

∣

∣

zf ′(z)− αf(z)

(p− α)f(z)
− 1

∣

∣

∣

∣

≤ 2r

1− r2
(|z| = r < 1)

and the function f ∈ LS∗
p(α) if

(3.4)

∣

∣

∣

∣

zf ′(z)− αf(z)

(p− α)f(z)
− 1

∣

∣

∣

∣

≤
√
2− 1.

Therefore, from (3.3) and (3.4), we get for f ∈ LS∗
p(α), the radius r satisfies

2r

1− r2
≤

√
2− 1
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and max
0<r<1

r = r0 is given by (3.2). Sharpness can be verified for the function

f(z) = zp
(

1 + z

1− z

)p−α

(z ∈ U) .

Since, for this function

zf ′(z)− αf(z)

(p− α)f(z)
− 1 =

2z

1− z2

and if z = r0 is given by (3.2) that is if

2r0
1− r20

=
√
2− 1,

we get
∣

∣

∣

∣

∣

(

zf ′(z)− αf(z)

(p− α)f(z)

)2

− 1

∣

∣

∣

∣

∣

= 1.

This proves Theorem 3. �

4. Coefficient estimates and Hankel determinant

In 1976, Noonan and Thomas [16] defined the qth Hankel determinant of

f(z) =
∞
∑

n=0

anz
n (z ∈ U) ,

which is given for q, n ∈ N, by

Hq (n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 ... an+q−1

an+1 an+2 ... an+q

.

.

.

.

.

.

.

.

.

.

.

.

an+q−1 an+q an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The functional H2 (1) is called Fekete-Szegö functional and the problem finding the

upper bound of the generalized functional |a3 − µa22| with real µ is called the Fekete-

Szegö problem. The functional H2 (2) = |a2a4 − a23| is known as 2nd Hankel determi-

nant of f.
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In this section, results on coefficient estimates for initial coefficients including a

Fekete-Szegö problem, Hankel determinant, and a coefficient inequality for the class

LS∗
p(α) are obtained. To obtain the results, we apply following lemmas.

Lemma 1. Let p ∈ P be of the form

(4.1) p(z) = 1 +
∞
∑

n=1

cnz
n (z ∈ U) .

Then

(4.2) |cn| ≤ 2 (n ∈ N)

and

(4.3)
∣

∣c2 − µc21
∣

∣ ≤ 2max {1, |2µ− 1|} .

The result (4.2) may be found in [18] and result (4.3) in [27].

Lemma 2. [19, 20] If p ∈ P is given by (4.1), then

(4.4) 2c2 = c21 +
(

4− c21
)

x

and

(4.5) 4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z

for some x, z such that |x| ≤ 1 and |z| ≤ 1.

Theorem 4. Let f ∈ LS∗
p(α) be of the form (1.1).Then

(4.6) |ap+1| ≤
p− α

2

and for µ ∈ C,

(4.7)
∣

∣ap+2 − µa2p+1

∣

∣ ≤ p− α

4

[

max

{

1,

∣

∣

∣

∣

1

4
− p− α

2
(1− 2µ)

∣

∣

∣

∣

}]

In particular, for the range: 0 < (p− α) ≤ 5
2
,

(4.8) |ap+2| ≤
p− α

4
.

The results are sharp.
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Proof. Let f ∈ LS∗
p(α), then for a Schwarz function w(z) analytic in U with w(0) = 0

and |w(z)| < 1 in U, we have

(4.9)
zf ′(z)− αf(z)

(p− α)f(z)
=

√

1 + w(z), (z ∈ U) .

Now, for this w(z), there exists a function p ∈ P such that

p(z) =
1 + w(z)

1− w(z)
= 1 + c1z + c2z

2 + ... .

which implies that
√

1 + w(z) =

(

2p(z)

1 + p(z)

)1/2

(4.10) = 1 +
c1
4
z +

1

4

(

c2 −
5

8
c21

)

z2 +
1

4

(

c3 −
5

4
c1c2 +

13

32
c31

)

z3 + ... .

also, let
zf ′(z)− αf(z)

(p− α)f(z)
= 1 + p1z + p2z

2 + p3z
3 + ...,

then on writing the series expressions of f(z) and f ′(z) form (1.1), and then, on

equating the coefficients of zp+1, zp+2 and zp+2 on both the sides of the equation

zf ′(z)− αf(z) = (p− α)f(z)
(

1 + p1z + p2z
2 + p3z

3 + ...
)

,

we obtain on simplifying for p1, p2, p3 that

(4.11)
zf ′(z)− αf(z)

(p− α)f(z)
= [1 +

ap+1

p− α
z +

2ap+2 − a2p+1

p− α
z2+

+
3ap+3 + a3p+1 − 3ap+1ap+2

p− α
z3 + ... .]

therefore, in view of (4.9), we obtain from (4.10) and (4.11)

(4.12) ap+1 =
p− α

4
c1,

(4.13) ap+2 =
p− α

8

[

c2 − {5− 2(p− α)} c21
8

]

,

ap+3 =
p− α

12

[

c3 − {10− 3(p− α)} c1c2
8

+

{

26− 15 (p− α) + 2(p− α)2
} c31
64

]

.(4.14)



672 RAJESH KUMAR MAURYA

Applying (4.2) of Lemma 1, to (4.12), we obtain result (4.6), and applying (4.3) of

Lemma 2, we get for some µ ∈ C,

(4.15)
∣

∣ap+2 − µa2p+1

∣

∣ =
p− α

8

∣

∣c2 − ηc21
∣

∣ ≤ p− α

4
max (1, |2η − 1|) ,

where

(4.16) η =
5

8
− p− α

4
(1− 2µ) .

This proves inequality (4.7) and in particular, taking µ = 0 in (4.7), we obtain

|ap+2| ≤
p− α

4

[

max

{

1,

∣

∣

∣

∣

1

4
− p− α

2

∣

∣

∣

∣

}]

=
p− α

4
,

since, for 0 < (p− α) ≤ 5
2
, we have

∣

∣

∣

∣

1

4
− p− α

2

∣

∣

∣

∣

≤ 1

and this proves the estimate (4.8). Sharpness of the estimates (4.6) and (4.8) can be

seen, respectively, for the functions f1 and f2 such that

zf ′
1(z)− αf1(z)

(p− α)f1(z)
=

√
1 + z (z ∈ U)

and

zf ′
2(z)− αf2(z)

(p− α)f2(z)
=

√
1 + z2 (z ∈ U),

and the estimate (4.7) is sharp for these f1 and f2. This completes the proof of

Theorem 4. �

Taking µ to be real in Theorem 4, we get following result.

Corollary 1. Let f ∈ LS∗
p(α) be of the form (1.1). Then

(4.17)
∣

∣ap+2 − µa2p+1

∣

∣ ≤



















p−α
16

[2(p− α) (1− 2µ)− 1] if µ ≤ κ,

p−α
4

if κ ≤ µ ≤ κ+ 2
p−α

,

p−α
16

[1− 2(p− α) (1− 2µ)] if µ ≥ κ + 2
p−α

,

where

(4.18) κ =
1

2
− 5

4(p− α)
.

The result is sharp.
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Proof. For real values of µ, from (4.7), we get

(4.19)
∣

∣ap+2 − µa2p+1

∣

∣ ≤ p− α

4

if
∣

∣

∣

∣

1

4
− p− α

2
(1− 2µ)

∣

∣

∣

∣

≤ 1.

This proves the inequality(4.17)for κ ≤ µ ≤ κ+ 2
p−α

, where κ is given by (4.18). Also,

from (4.7), we get

(4.20)
∣

∣ap+2 − µa2p+1

∣

∣ ≤ p− α

4

∣

∣

∣

∣

1

4
− p− α

2
(1− 2µ)

∣

∣

∣

∣

if
∣

∣

∣

∣

1

4
− p− α

2
(1− 2µ)

∣

∣

∣

∣

≥ 1

i.e. either
2(p− α) (2µ− 1) + 1

4
≤ −1

or
2(p− α) (2µ− 1) + 1

4
≥ 1.

and hence, (4.20) proves inequalities in (4.17) for µ ≤ κ and µ ≥ κ+ 2
p−α

, where κ is

given by (4.18). Sharpness of (4.17) can be verified as follows: �

(i) For the extreme range of µ, i.e. when µ < κ or µ > κ+ 2
p−α

, the equality holds for

the function f1(z) considered to show the sharpness in the proof of Theorem 4 and

is given by (2.2).

(ii) For the middle range of µ, i.e. when κ < µ < κ + 2
p−α

, the equality holds for

the function f2(z) considered to show the sharpness in the proof of Theorem 4 and

is given by

f2(z) = zp
(

2

1 +
√
1 + z2

)(p−α)

exp
{

(p− α)
(√

1 + z2)− 1
)}

(0 ≤ α < p; z ∈ U) .

(iii) For µ = κ, equality holds for the functions f(z) given by

zf ′(z)− αf(z)

(p− α)f(z)
=

√

1 +
z (z + ǫ)

1 + ǫz
(0 ≤ ǫ ≤ 1) ,

while for µ = κ+ 2
p−α

, the equality holds for the functions f(z) given by

zf ′(z)− αf(z)

(p− α)f(z)
=

√

1− z (z + ǫ)

1 + ǫz
(0 ≤ ǫ ≤ 1) .
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This completes the proof of Corollary 1.

For the range κ ≤ µ ≤ κ + 2
p−α

, although the above upper bound is sharp, it can be

further improved in the next result.

Theorem 5. Let f ∈ A of the form (1.1) belong to the class LS∗
p(α). Then for a real

µ ( κ ≤ µ ≤ κ+ 2
p−α

) :

(4.21)
∣

∣ap+2 − µa2p+1

∣

∣ + (µ− κ) |ap+1|2

≤ p− α

4

(

κ ≤ µ ≤ κ +
1

p− α

)

and

(4.22)
∣

∣ap+2 − µa2p+1

∣

∣+

(

κ+
2

p− α
− µ

)

|ap+1|2

≤ p− α

4

(

κ +
1

p− α
≤ µ ≤ κ +

2

p− α

)

.

where κ is given by (4.18).

Proof. Observe from κ and η given, respectively, by (4.18) and (4.16) that

µ− κ =
2

p− α
η

and hence, using (4.12) and (4.13) and following (4.15), we get for κ < µ ≤ κ+ 1
p−α

ap+2 − µa2p+1 + (µ− κ) a2p+1 =
p− α

8

(

c2 − ηc21
)

+
p− α

8
ηc21

=
p− α

8
c2

which on using result (4.2) of Lemma 1, proves (4.21). Similarly, for κ + 1
p−α

≤ µ <

κ + 2
p−α

ap+2 − µa2p+1 +

(

µ− κ− 2

p− α

)

a2p+1

=
p− α

8

(

c2 − ηc21
)

+
p− α

8
(η − 1) c21

=
p− α

8

(

c2 − c21
)

which on applying result (4.3 ) of Lemma 2, proves (4.22). �
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Theorem 6. If a function f ∈ LS∗
p(α) be of the form (1.1), then for the range

0 < (p− α) <
√
41
2
,

(4.23)
∣

∣ap+1ap+3 − a2p+2

∣

∣ ≤ (p− α)2

16
.

The estimate is sharp.

Proof. Putting the values of ap+1, ap+2 and ap+3 from (4.12), (4.13) and (4.14), re-

spectively, we get

ap+1ap+3 − a2p+2

=
(p− α)2

48

[

c1c3 − {10− 3(p− α)} c21c2
8

+

{

26− 15 (p− α) + 2(p− α)2
} c41
64

]

− (p− α)2

64

[

c2 − {5− 2(p− α)} c21
8

]2

=
(p− α)2

48

[

c1c3 −
3

4
c22 −

5

16
c21c2 +

{

29− 4(p− α)2
} c41
256

]

.(4.24)

Putting the values of c2 and c3 from (4.4) and (4.5), respectively, and taking c1 = c ∈
[0, 2] in (4.24), by simple arrangement of terms get,

∣

∣ap+1ap+3 − a2p+2

∣

∣(4.25)

=
(p− α)2

3072

∣

∣

∣

∣

{

5

4
− (p− α)2

}

c4 − 4
(

4− c2
) (

c2 + 12
)

x2 − 2c2
(

4− c2
)

x

+32c(4− c2 )(1− |x|2)z
∣

∣ .

Therefore, on using the triangle inequality with non-negative coefficients and putting

|x| = ρ (≤ 1) , we get

∣

∣ap+1ap+3 − a2p+2

∣

∣ ≤ (p− α)2

3072

[
∣

∣

∣

∣

5

4
− (p− α)2

∣

∣

∣

∣

c4 + 4
(

4− c2
) (

c2 + 12
)

ρ2+

2c2
(

4− c2
)

ρ+ 32c(4− c2 )(1− ρ2)
]

=:
(p− α)2

3072
G (ρ, c) .

Observe that for 0 < ρ < 1, and for fixed c ∈ [0, 2] ,

∂G (ρ, c)

∂ρ
=

∣

∣5− 4(p− α)2
∣

∣ c3 + 8ρ
(

4− c2
)

(c− 6) (c− 2) + 2c2
(

4− c2
)

> 0
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and hence, for c ∈ [0, 2] ,

∣

∣ap+1ap+3 − a2p+2

∣

∣ ≤ (p− α)2

3072
lim
ρ→1

G (ρ, c)

=
(p− α)2

3072

[
∣

∣

∣

∣

5

4
− (p− α)2

∣

∣

∣

∣

c4 + 4
(

4− c2
) (

c2 + 12
)

+ 2c2
(

4− c2
)

]

=:
(p− α)2

3072
g (c) .

further, observe that for c ∈ [0, 2] , and for the given range of (p− α),

g′ (c) =
∣

∣5− 4(p− α)2
∣

∣ c3 + 4
[

−2c
(

c2 + 12
)

+ 2c
(

4− c2
)]

+
[

4c
(

4− c2
)

− 4c3
]

=
[{
∣

∣5− 4(p− α)2
∣

∣− 24
}

c2 − 48
]

c = 0

only if c = 0 and

g′′ (c) = 3
{
∣

∣5− 4(p− α)2
∣

∣− 24
}

c2 − 48 < 0

at c = 0. Thus, we obtain

∣

∣ap+1ap+3 − a2p+2

∣

∣ ≤ (p− α)2

3072
g (0) =

(p− α)2

16
.

this proves the estimate (4.23). Sharpness may be verified for the function f ∈ LS∗
p(α)

given by

(4.26)
zf

′

(z)− αf(z)

(p− α)f(z)
=

√
1 + z2 (z ∈ U) .

�

Remark 1. From the results obtained in Theorem 4, Corollary 1 and Theorem 6, we

get results of Raza and Malik [17] for the class SL∗.

Obtain following coefficient inequality for the class LS∗
p(α):

Theorem 7. Let f ∈ LS∗
p(α) be of the form (1.1). Then

(4.27)

∞
∑

k=1

[

(

k − α

p− α

)2

− 2

]

|ak|2 ≤ 1.
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Proof. Let f ∈ LS∗
p(α) be of the form (1.1). Then, for a Schwarz function w(z)

analytic in U with w(0) = 0 and |w(z)| < 1 in U, from (4.9), we have

(

zf ′(z)− αf(z)

p− α

)2

− (f(z))2 = (f(z))2w(z)

and hence, on using the Parseval’s identity for |z| = r (r < 1) ,

2π

∞
∑

k=0

|ap+k|2 r2k =
∫ 2π

0

∣

∣f(reiθ)
∣

∣

2
dθ (ap = 1)

≥
∫ 2π

0

∣

∣f(reiθ)
∣

∣

2 ∣
∣w(reiθ)

∣

∣ dθ

=

∫ 2π

0

(

reiθf ′(reiθ)− αf(reiθ)

p− α

)2

dθ −
∫ 2π

0

∣

∣f(reiθ)
∣

∣

2
dθ

which on writing the series expansions of f and f ′, proves that

4π

∞
∑

k=0

|ap+k|2 r2k ≥ 2π

∞
∑

k=0

(

p+ k − α

p− α

)2

|ap+k|2 r2(p+k).

Taking limit r → 1−, we obtain

∞
∑

k=1

[

(

1 +
k

p− α

)2

− 2

]

|ap+k|2 ≤ 1

which is the inequality (4.27). �

Corollary 2. Let f ∈ LS∗
p(α) be of the form (1.1). Then for the range 0 < (p− α) <

1√
2−1

,

(4.28)

∞
∑

k=1

|ap+k|2 ≤
1

(

1 + 1
p−α

)2

− 2
.

Theorem 8. Let f ∈ LS∗
p(α) be of the form (1.1). Then for the range 0 < (p− α) <

7
2
,

(4.29) |ap+3| ≤
p− α

6
(k ∈ N) .

The result is sharp.
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Proof. Putting the values of c2 and c3 from (4.4) and (4.5), respectively, and taking

c1 = c ∈ [0, 2] in (4.14), we obtain on simple arrangement of terms

ap+3 =
p− α

192

[

{

2− 3 (p− α) + 2(p− α)2
} c3

4
− 4c(4− c2)x2+

8(4− c2)(1− |x|2)z + {3 (p− α)− 2} c
(

4− c2
)

x
]

.

Therefore, on using the triangle inequality with non-negative coefficients and putting

|x| = ρ (≤ 1) , we get

|ap+3| ≤
p− α

192

[

{

2− 3 (p− α) + 2(p− α)2
} c3

4
+ 4c(4− c2)ρ2+

8(4− c2)(1− ρ2) + |3 (p− α)− 2| c
(

4− c2
)

ρ
]

=:
p− α

192
F (ρ, c) .

Observe that for any ρ ∈ [0, 1] , as c → 2,

(4.30) |ap+3| ≤
p− α

48

{

(

p− α− 3

4

)2

+
7

16

}

and for 0 < ρ < 1 and c → 0,

∂F (ρ, c)

∂ρ
= [8cρ− 16ρ+ |3 (p− α)− 2| c]

(

4− c2
)

< 0.

Thus, for c → 0,

(4.31) |ap+3| ≤
p− α

192
lim
ρ→0

F (ρ, c)

=
p− α

192

[

{

2− 3 (p− α) + 2(p− α)2
} c3

4
+ 8(4− c2)

]

≤ p− α

6

when c → 0. But for the range 0 < (p− α) ≤ 7
2
, we observe from (4.30) and ∈(4.31)

that
p− α

48

{

(

p− α− 3

4

)2

+
7

16

}

≤ p− α

6
.

This proves the result (4.29). Sharpness of the estimate (4.29) can be seen for the

function f3 such that

zf ′
3(z)− αf3(z)

(p− α)f3(z)
=

√
1 + z3 (z ∈ U).

This completes Theorem 8. �

In view of bounds given by (4.6), (4.8) and (4.29), we propose the following conjecture.
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Conjecture 1. Let f ∈ LS∗
p(α) be of the form (1.1). Then for bounded value of

(p− α) ,

(4.32) |ap+n| ≤
p− α

2n
(n ∈ N)

and hence,
∞
∑

n=1

|ap+n|2 ≤
π2 (p− α)2

12
.

Remark 2. The bounds given by (4.32) in Conjecture 1 , improves the result given

by (4.28) for the range 0 < (p− α) < 1√
2−1

.

Remark 3. Taking p = 1, α = 0, our estimates given by (4.6), (4.8) and (4.29)

coincides with the estimates obtained by Sokó l in [13], where based on the estimates

the conjecture: |an| ≤ 1
2n

(n ∈ N) was proposed for the class SL∗.

Conclusion

In this article, we have introduced and studied a class of strongly starlike p-valent

analytic functions associated with the positive region of lemniscate of Bernoulli,We

have given an integral representation for this class, and determined radius of the circle

which p-valent analytic function f lies in this class. Based on coefficient estimates,

Fekete-Szegö inequality and a Sharp bound for 2nd Hankel determinant have been

found. It has been observed that for p = 1 the class considered in this article have

analogous properties as of class of univalent function .
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