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CERTAIN SEMIPRIME MODULES

H. KHABAZIAN

Abstract. In this work, we introduce a certain semiprime modules called ”semi-

vital” and show that a ring R is semiprime iff R is a semi-vital R-module. Then,

we collect some basic properties concerning semi-vital modules.

1. Introduction

One of the important properties of a semiprime ring is that for any ideal J , annl(J) is

the unique largest right ideal having zero intersection with J . We show that this prop-

erty exists in every semi-vital module for any annihilator submodule. This property

is very helpful in the decomposition theory. In semiprime and semi-vital modules,

the class of submodules are concerned and in lAI-semiprime rings [4], the class of left

annihilator ideals are concerned. We also introduce AM-semi-vital modules in which

the attention are focused on the class of annihilator submodules. Furthermore, we

introduce EM-semi-oltimate modules in which the attention are focused on the class

of eliminator submodules.

In this paper, these modules are investigated and various facts are obtained.

Through the paper we apply the notations introduced in [5], [6] and [7]. Some of

these notations are as follow.

For any set S of subgroups of an additive group, we set Σ(S) =
∑

I∈S

I. For any class C

of subgroups, a C-subgroup means a subgroup from the class C, the class of minimal

C-subgroups is denoted by Cmn and the set of C-subgroups of M is denoted by 〈C:M〉,

also for a subgroup K ⊆ M , the set of C-subgroups of M having zero intersection
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with K is shown by 〈C |K〉 and we set CC(K) = Σ〈C |K〉.

Moreover, the class of eliminator submodules is shown by EM, the class of submod-

ules is shown by M, the class of annihilator submodules is shown by AM, and the

class of submodules P for which P ∩ P ◦ = 0 and P ◦◦ = P is shown by C, the class

of subgroups P for which P ∩ P • = 0 is shown by ID, and the class of submod-

ules P for which P ∩ P • = 0 and P •• = P is shown by B. Furthermore, we set

P ◦ = annM((P :M)) and EclM(M/P ) is shown by P • [6].

For more information about prime submodules, semiprime submodules, prime mod-

ules and semiprime modules see [2], [9], [10] and [11].

2. IF-submodules and C-submodules

Definition 2.1. The class of subgroups P for which P ∩ P ◦ = 0 is denoted by IF.

Lemma 2.1. Let M be an R-module. If K is an annihilator submodule of L and L

is an annihilator submodule of M , then K is an annihilator submodule of M .

Proof. We have L = annM(annR(L)), so

K = annL(annR(K)) = L ∩ annM(annR(K)) =

annM(annR(L)) ∩ annM(annR(K)) = annM(annR(L) + annR(K))

Thus, K is an annihilator submodule of M .

Lemma 2.2. Let M be an R-module.

(1) For every submodules L and N , L ⊆ N implies N◦ ⊆ L◦.

(2) For every submodule K, CAM(K) ⊆ CM(K) ⊆ K◦.

(3) For every IF-submodule K, CAM(K) = CM(K) = K◦ and CAM(K) ∩K = 0.

Proof. (1) We have annR(M/L) ⊆ annR(M/N). Thus, N◦ ⊆ L◦.

(2) Follows from [5, (3-3)].

(3) K◦ is an annihilator submodule, so K◦ ⊆ CAM(K). Applying (2) completes the

proof.

Lemma 2.3. Let M be a cofaithful R-module and K be a submodule.

(1) CAM(K) ⊆ K× ⊆ CM(K).
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(2) K is an IF-submodule iff K◦ = K×. In this case K is an ID-submodule,

K◦ = K•, K ⊆ K◦◦ and K◦ is closed.

Proof. (1) Every annihilator submodule is an eliminator submodule, so applying [6,

(1-11)] completes the proof.

(2⇒) K◦ is an annihilator submodule, so is an eliminator submodule, thus K◦ ⊆ K×

by [6, (1-11)]. On the other hand K× ⊆ K• ⊆ K◦ by [6, (2-9)] implying K◦ = K• =

K×. Thus, K is an ID-submodule and K◦ is closed by [6, (2-10)]. Finally K ⊆ K◦◦

by [5, (3-3)].

(2⇐) Follows from [6, (1-11)].

Lemma 2.4. Let M be an R-module and K be a submodule.

(1) For any annihilator submodule J , M = K ⊕ J implies that K◦ = J .

(2) For any IF-submodule J , M = K ⊕ J implies that K = J◦.

Proof. (1) We have K◦ = annM(annR(M/K)) = annM(annR(J)) = J .

(2) K ⊆ J◦ by [5, (3-3)], so K = J◦.

Lemma 2.5. Let M be an R-module and K be an IF-submodule.

(1) For any submodule J , K ⊆e J implies that J◦ = K◦ and J is an IF-

submodule.

(2) If K◦ is also an IF-submodule, then K◦ is a C-submodule and K ⊆e K
◦◦.

Proof. (1) We have K◦ ∩ J = 0, implying K◦ ⊆ J◦ by [5, (3-3)]. On the other hand

J◦ ⊆ K◦ by (1-3). Thus, J◦ = K◦. Finally, we have J◦∩K = 0, implying J◦∩J = 0.

(2) We have K ⊆ K◦◦ by (1-4), so K◦◦◦ ⊆ K◦ by (1-3). Also we have K◦ ⊆ K◦◦◦

by (1-4). Thus, K◦◦◦ = K◦. Finally let J ⊆ K◦◦ be a submodule with K ∩ J = 0.

Then, J ⊆ K◦ by [5, (3-3)], implying J = 0.

Lemma 2.6. Let M be an R-module.

(1) For every C-submodule K, K◦ is also a C-submodule.

(2) Every C-submodule is an annihilator submodule.

(3) If M is cofaithful, then every C-submodule is a B-submodule.

(4) Any two IF-submodule with zero intersection are block orthogonal.
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Proof. (1) Set L = K◦. Since L◦ = K◦◦ = K, L◦◦ = K◦ = L. Also, K◦ ∩K◦◦ = 0,

because L ∩ L◦ = 0.

(2) Let K be a C-submodule. Set L = K◦. Then, K = L◦, on the other hand, L◦ is

an annihilator submodule.

(3) Follows from (1-4).

(4) Follows from [5, (3-3)].

Proposition 2.1. Let M be an R-module.

(1) Every B-submodule is a completely EM-closed eliminator submodule.

(2) Every M ∩ IF-summand submodule is an annihilator submodule.

(3) Every AM-summand submodule K is an IF-submodule and M = K ⊕K◦.

(4) Every AM-summand annihilator submodule is a C-summand C-submodule.

(5) Every AM ∩ IF-summand submodule is a C-summand C-submodule.

(6) Every C-summand submodule is a C-summand C-submodule.

(7) Every direct summand annihilator IF-submodule is a C-summand C-submodule.

(8) Every direct summand C-submodule is a C-summand.

(9) If M is cofaithful, then every C-submodule is closed.

(10) For every C-summand C-submoduleK, K◦ is also a C-summand C-submodule.

(11) Every C-submodule is a completely AM-closed annihilator submodule.

Proof. (1) Let K be a B-submodule and L be an eliminator submodule with

K ⊑EM
e L. Then, L ∩K• = 0, implying L ⊆ K•• = K by [6, (2-9)].

(2) Let K be an M∩ IF-summand submodule. There exists an IF-submodule J with

M = K ⊕ J . Then, J◦ = K by (1-5), implying that K is an annihilator submodule.

(3) There exists an annihilator submodule J with M = K ⊕ J . Then, K◦ = J by

(1-5), implying K ∩K◦ = 0.

(4) Let K be an AM-summand annihilator submodule. There exists an annihilator

submodule J with M = K ⊕ J . Then, K◦ = J and J◦ = K by (1-5), implying

K◦◦ = K and J◦◦ = J . Also, K◦ ∩K = 0 and J◦ ∩ J = 0.

(5) Let K be an AM ∩ IF-summand submodule. There exists an annihilator IF-

submodule J with M = K ⊕ J . Then, K◦ = J and J◦ = K by (1-5), implying

K◦◦ = K and J◦◦ = J . Also, K◦ ∩K = 0 and J◦ ∩ J = 0.
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(6) Follows from (5).

(7) Let K be a direct summand annihilator IF-submodule. There exists a submodule

J with M = K ⊕ J . Then, K◦ = J and J◦ = K by (1-5), implying K◦◦ = K and

J◦◦ = J . Also, K◦ ∩K = 0 and J◦ ∩ J = 0.

(8) Follows from (7).

(9) Let K be a C-submodule. Set L = K◦. L is a C-submodule by (1-7), so L◦ is

closed by (1-4). On the other hnd, L◦ = K.

(10) We have M = K ⊕K◦ by (3). Also K◦ is a C-submodule by (1-7).

(11) Let K be a C-submodule and L be an annihilator submodule with K ⊑AM
e L.

Then, L∩K◦ = 0, implying L ⊆ K◦◦ = K by [5, (3-3)]. Notice that (1-8) shows that

the classes AM ∩AM⊕ and C ∩C⊕ are identical. It means that in every module M ,

〈C ∩C⊕:M〉 = 〈AM ∩AM⊕:M〉, thus 〈(C∩C⊕)⋗⋉:M〉 = 〈(AM ∩AM⊕)⋗⋉:M〉. Also

every AM-summand annihilator submodule is a EM-summand eliminator submodule.

It means that in every module M , 〈AM ∩ AM⊕:M〉 ⊆ 〈EM ∩ EM
⊕:M〉. Moreover,

〈C:M〉 ⊆ 〈B:M〉.

Lemma 2.7. Let M be an R-module and K be an IF-submodule. The following are

equivalent:

(1) K is essential in a C-summand C-submodules.

(2) K◦ is C-summand C-submodules and K ⊆e K
◦◦.

(3) K◦ is an IF-submodule and K◦◦ is a direct summand.

(4) K◦ is a direct summand IF-submodule.

(5) K is essential in a direct summand annihilator submodule.

Proof. (5⇒1 and 2) K is essential in a direct summand annihilator submodule J .

Then, K◦ = J◦ and J is an IF-submodule by (1-6). So, J is C-summand C-submodule

by (1-8), implying K◦◦ = J . Thus, K◦ and K◦◦ are C-summand C-submodules by

(1-8) and K ⊆e K
◦◦.

(2⇒3 and 4) We have M = K◦ ⊕K◦◦ by (1-8).

(3⇒5) K◦ is a C-submodule and K ⊆e K
◦◦ by (1-6).

(4⇒5) K◦ is a C-summand C-submodule by (1-8) and K ⊆e K◦◦ by (1-6). Thus,

K◦◦ is a C-summand C-submodule by (1-8).
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Lemma 2.8. Let M be an R-module. Every annihilator IF-submodule is essential

in a direct summand annihilator IF-submodule iff

(1) For any annihilator IF-submodule K, K◦ is an IF-submodule.

(2) Any C-submodules is a direct summand.

In this case, every C-submodules is a C-summand. Proof. (⇒) (1) K is essential

in a direct summand annihilator IF-submodule. Then, K◦ is an IF-submodule by

(1-9).

(2) Let K be a C-submodule. K is essential in a direct summand annihilator IF-

submodule J . Then, K = J because K is closed by (1-8). Thus, K is a direct

summand. Therefore, K is a C-summand by (1-8).

(⇐) Let K be an annihilator IF-submodule. K◦ is an IF-submodule, so K◦◦ is a

C-submodule and K ⊆e K
◦◦ by (1-6). On the other hand, K◦◦ is a direct summand.

Proposition 2.2. For every module, the map given by I −→ I◦ is a C-organizer

map.

Proof. The map is well defined by (1-7). The rest is obvious by [5, (3-3)].

Proposition 2.3. Every module is AM-intersection, M ∩ IF-intersection and C-

intersection.

Proof. Let M be an R-module. It is easy to see that M is AM-intersection. Also,

M is M ∩ IF-intersection by [5, (3-3)]. Let I and J be be a C-submodules. I ∩ J

is a IF-submodule, so (I ∩ J) ∩ (I ∩ J)◦ = 0, implying I ∩ J ⊆ (I ∩ J)◦◦ by [5,

(3-3)]. On the other hand, (I ∩ J)◦◦ ⊆ I◦◦ = I and similarly, (I ∩ J)◦◦ ⊆ J , implying

(I ∩ J)◦◦ ⊆ I ∩ J . Thus, (I ∩ J)◦◦ = I ∩ J .

Lemma 2.9. Let M be an R-module and I1, I2, ..., In be annihilator submodules. For

any submodule N , if Ij∩N = 0 for all 1 ≤ j ≤ n, then annM(annR(I1)annR(I2) · · · annR(In))∩

N = 0.

Proof. By the induction on n. Set J = annR(I1)annR(I2) · · · annR(In−1) and K =

annM(JannR(In))∩N . Then, KJannR(In) = 0, so KJ ⊆ In, thus KJ ⊆ In∩N = 0,

implying K ⊆ annM(J). On the other hand annM(J) ∩ N = 0 by the induction.

Therefore, K = 0.
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Lemma 2.10. In any AM-Noetherian module, every submodule is AM-separable and

AM-perfect.

Proof. Let M be a AM-Noetherian module and K be a submodule. Consider an

AM-complement J to K. It is enough to show that for every annihilatoe submodule

I, K ∩I = 0 implies I ⊆ J . We have annM(annR(I)annR(J))∩K = 0 by (1-13). On

the other hand, J ⊆ annM(annR(I)annR(J)), so I ⊆ annM(annR(I)annR(J)) = J .

Proposition 2.4. Every AM-Noetherian module is AM-cute.

Proof. Follows from (1-14).

Proposition 2.5. Every AM-Noetherian module is generalized AM∩AM-intersection

and the map given by I −→ CAM(I) is a AM ∩ AM-organizer map.

Proof. Follows from [7, (1-12) and (1-13)].

Lemma 2.11. Let M be an R-module. If every C-submodule is a direct summand,

then

(1) Every C-submodule is a C-summand.

(2) 〈AM ∩ AM⊕:M〉 = 〈C:M〉.

(3) 〈(AM ∩ AM⊕)⋗⋉:M〉 = 〈C⋗⋉:M〉.

Proof. (1) Follows from (1-8).

(2) We have 〈C ∩ C⊕:M〉 = 〈AM ∩ AM⊕:M〉 by (1-8). Applying (1) completes the

proof.

(3) Follows from (2).

Lemma 2.12. Let M be an R-module. The following are equivalent:

(1) Every C-submodule is a direct summand and M is AM ∩ AM⊕-semisimple.

(2) M is C-semisimple.

(3) 〈(AM ∩ AM⊕)⋗⋉:M〉 = 〈C⋗⋉:M〉 and M is AM ∩ AM⊕-semisimple.

Proof. (1⇒2) Follows from (1-17).

(2⇒1) Follows from (1-11), (1-12), [5, (2-9)] and (1-17).

(1⇒3) Follows from (1-17).

(3⇒2) It is obvious.
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Lemma 2.13. Let M be a module. The following conditions are equivalent.

(1) M is cofaithful.

(2) M ∈ 〈B:M〉.

(3) M ∈ 〈C:M〉.

Proof. (1⇔2) and (1⇔3) Straightforward.

3. AM-semi-vital modules.

Definition 3.1. Let M be an R-module. (F is an arbitrary class of subgroups).

(1) M is said to be neat if annR(M) is a prime ideal.

(2) M is said to be semi-neat if annR(M) is a semiprime ideal.

(3) M is said to be symetric if for every ideals I and J , IJ ⊆ annR(M) implies

JI ⊆ annR(M).

(4) M is said to be F-semiprime if every F-subgroup N of M is a semi-neat

R-module (annR(N) is a semiprime ideal).

(5) M is said to be F-vital if for every nonzero F-subgroup N of M , N◦ = 0.

(6) M is said to be F-semi-vital if for every nonzero F-subgroup N of M , N 6⊆

N◦.

(7) M is said to be F-multiplication if for every F-subgroup N of M , M(N :

M) = N .

(8) M is said to be F-firm if for every F-subgroup N of M , annR(M(N :M)) =

annR(N).

(9) M is said to be F-bounded if for every F-subgroup N of M , M(N :M) = 0

implies N = 0, in other words for every nonzero F-subgroup N of M , there

exists a ∈ R with 0 6= Ma ⊆ N .

It is clear that if every F -subgroup is an IF-subgroup, then M is F -semi-vital.

Definition 3.2. (1) The class of semiprime submodules is denoted by SM.

(2) A M-semi-vital module is also called semi-vital.

(3) A M-vital module is also called vital.

(4) A M-firm module is also called firm.

(5) A M-bounded module is also called bounded.
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It is clear that M-semiprime module means semiprime module [2] and [11, INTRO-

DUCTION], M-multiplication module means multiplication module [12] and [1], SM-

multiplication module means semiprime multiplication module in [3, Definition 3.2]

and N being a semiprime submodule in [2] and [11, INTRODUCTION] means that

M/N is a semiprime module. Also, ”multiplication” implies ”firm” and ”bounded”,

and for any submodule N , N ⊆ N◦ iff N(N :M) = 0.

Definition 3.3. Let R be a ring.

(1) R is called middle-faithful if for any a, b ∈ R, aRb = 0 implies ab = 0.

(2) R is called right F-firm if RR is F-firm, in other words, if for any F-

subgroup N , annr(R(N :R)r) = annr(N).

(3) R is called right F-bounded if RR is F-bounded, in other words, if for any

nonzero F-subgroup N , there exists a ∈ R with 0 6= Ra ⊆ N .

Lemma 3.1. Let M be a right R-module. For any K ⊆ M and N = K ∩ K◦ we

have N ⊆ N◦.

Proof. We have K◦annR(M/K) = 0, N ⊆ K◦ and annR(M/N) ⊆ annR(M/K).

Thus, NannR(M/N) = 0.

Lemma 3.2. Let M be a right R-module. For any annihilator submodule N , N ∩

N◦ ⊆ Z(M).

Proof. Since N◦ is an annihilator submodule, we may assume that N ⊆ N◦ by

(2-4). So, it is enough to show that annR(N) ⊆rI
e R. Let J be a right ideal with

annR(N) ∩ J = 0. We have JannR(N) = 0, so MJannR(N) = 0, thus MJ ⊆

annM(annR(N)) = N , then J ⊆ annR(M/N) ⊆ annR(N), implying J = 0.

Proposition 3.1. Let M be a module. M is AM-semi-vital iff every annihilator

submodule is an IF-submodule.

Proof. (⇒) LetK be an annihilator submodule. SetN = K∩K◦. N is an annihilator

submodule, and N ⊆ N◦ by (2-4), so N = 0. Thus, K is an IF-submodule.

(⇐) Let N be an annihilator submodule with N ⊆ N◦. N is an an IF-submodule,

so N = N ∩N◦ = 0.
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Lemma 3.3. Let M be a AM-mini R-module. If every minimal annihilator submod-

ule is a IF-submodules, then M is AM-semi-vital.

Proof. Temporarily suppose it is not so. There exist a nonzero annihilator submodule

K with K ⊆ K◦ (2-4). K contains a minimal annihilator submodule I. I is an IF-

submodules, also I ⊆ K ⊆ K◦ ⊆ I◦ by (1-3), implying I = 0 which is a contradiction.

Lemma 3.4. Let M be an AM-ind.finite R-module. If every AM-uniform annihilator

submodule is an IF-submodules, then M is AM-semi-vital.

Proof. Temporarily suppose it is not so. There exist a nonzero annihilator submodule

K with K ⊆ K◦ by (2-4). K contains an AM-uniform annihilator submodule I by

[5, (2-3)]. I is an IF-submodules, also I ⊆ K ⊆ K◦ ⊆ I◦ by (1-3), implying I = 0

which is a contradiction.

Proposition 3.2. (1) Every F-bounded and semi-neat module is F-semi-vital.

(2) Every F-semi-vital module is F-bounded.

(3) Every F-bounded and prime module is F-vital.

(4) Every F-firm semi-neat module is F-semiprime.

(5) Every cofaithful F-firm module is F-bounded.

Proof. (1) Let M be a F -bounded and semi-neat right R- module. Now let N be a

F -subgroup with N ⊆ N◦. Then N(N :M) = 0, on the other hand M(N :M) ⊆ N ,

so M(N :M)2 = 0, thus M(N :M) = 0, implying N = 0.

(2) Let M be a F -semi-vital right R-module and N be a F -subgroup with M(N :

M) = 0. Then, N◦ = M , thus N ⊆ N◦, implying N = 0.

(3) Let M be a F -bounded and neat right R- module. Now let N be a F -subgroup

with N◦ 6= 0. Since N◦(N :M) = 0, M(N :M) = 0, implying N = 0.

(4) Let M be a F -firm semi-neat right R-module. Now let N be a F -subgroup and I

be an ideal with NI2 = 0. SinceM(N :M) ⊆ N , M(N :M)I2 = 0, soM(N :M)I = 0,

implying NI = 0.

(5) Let M be a cofaithful F -firm right R-module and N be a F -subgroup with

M(N :M) = 0. Then, annR(N) = R, implying N = 0.

Lemma 3.5. (1) Every bounded and semi-neat module is semi-vital.
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(2) Every semi-vital module is bounded.

(3) Every bounded and prime module is vital.

(4) Every firm semi-neat module is semiprime.

(5) Every cofaithful firm module is bounded.

(6) Every semi-vital symetric module is semiprime.

Proof. (1 to 5) Follows from (2-9).

(6) LetM be a semi-vital symetric right R-module, I be an ideal and N be submodule

with NI2 = 0. We have M(NI :M) ⊆ NI, so M(NI :M)I = 0, thus MI(NI :M) =

0, implying NI(NI :M) = 0. Thus, NI = 0.

Lemma 3.6. Let R be a ring. The following conditions are equivalent.

(1) R is semiprime.

(2) RR is semiprime and faithful.

(3) RR is I-semiprime and faithful.

(4) RR is semi-neat and faithful.

Proof. (1⇒2) Set M = R. Let I be an ideal and N ⊆ M be a submodule with

NI2 = 0. Then, (NI)2 ⊆ NI2 = 0, implying NI = 0.

(2⇒3) It is obvious.

(3⇒1) Let I be an ideal with I2 = 0. Then, MI2 = 0, so MI = 0, implying I = 0.

(1⇔4) It is obvious.

Lemma 3.7. Let R be a ring. Considering R as a right R-module,

(1) For any left ideal I, I◦ ⊆ annl(I).

(2) For any left annihilator I, I◦ = annl(I).

Proof. (1) Set M = R. It is clear that I ⊆ (I :M). Thus, I◦ = annM((I :M)) =

annl((I :M)) ⊆ annl(I).

(2) We haveM(I :M) ⊆ I, so (I :M)annr(I) = 0, implying (I :M) ⊆ annl(annr(I)) =

I. On the other hand, it is clear that I ⊆ (I :M). Thus, I◦ = annl(I).

Lemma 3.8. Let R be a middle-faithful ring. Considering R as a right R-module,

for any left ideal I, I◦ = annl(I).
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Proof. Set M = R. We have M(I :M) ⊆ I, , so annl(I)R(I :M) = 0, thus

annl(I)(I : M) = 0, implying annl(I) ⊆ annl((I : M)) = annM((I : M)) = I◦.

Applying (2-12) completes the proof.

Lemma 3.9. Let R be a right faithful ring. RR is a lI-firm and lI-bounded.

Proof. Set M = RR. Let N be a left ideal. Then, N ⊆ (N : M), so RN ⊆

M(N : M) ⊆ N , thus annR(N) ⊆ annR(M(N : M)) ⊆ annR(RN) = annR(N).

Therefore, annR(M(N :M)) = annR(N). Now let N be a nonzero left ideal. Consider

0 6= a ∈ N . Then, 0 6= Ma = Ra ⊆ N .

Lemma 3.10. A ring R is lAI-semiprime [4] iff RR is AM-semi-vital. Proof. (⇒)

Let I be an annihilator submodule with I ⊆ I◦. I is a left annihilator ideal and

I ⊆ annl(I) by (2-12), so I2 = 0, implying I = 0.

(⇐) Let I be a left annihilator ideal with I2 = 0. I is an annihilator submodule and

I ⊆ annl(I) = I◦ by (2-12). Thus, I = 0. Applying [4, Proposition 2.7] completes

the proof.

Lemma 3.11. A ring R is semiprime iff RR is I-semi-vital and R is middle-faithful.

Proof. (⇒) Let a, b ∈ R with aRb = 0. Set I = RaR + aR and J = RbR + Rb. I

and J are ideals and IJ = 0, so I ∩ J = 0. On the other hand ab ∈ I ∩ J , so ab = 0.

Thus, R is middle-faithful. Let I be an ideal with I ⊆ I◦. Then, I ⊆ annl(I) by

(2-13), so I2 = 0, implying I = 0.

(⇐) Let I be an ideal with I2 = 0. Then, I ⊆ annl(I) = I◦ by (2-13). Thus, I = 0.

Lemma 3.12. Let R be a right rI-bounded ring. For any right ideal N , R(N :R)r ⊆
rI
e

N .

Proof. Let L ⊆ N be a nonzero right ideal. There exists a ∈ R with 0 6= Ra ⊆ L.

Then, a ∈ (N :R)r, so Ra ∈ R(N :R)r, thus L ∩ R(N :R)r 6= 0.

Lemma 3.13. Any semiprime right rI-bounded ring R is right rI-firm and RR is

semi-vital.

Proof. Let N be a nonzero right ideal. Set J = R(N : R)r. J is an ideal and

J ⊆rI
e N by (2-17). On the other hand, J ∩ annr(J) = 0, so N ∩ annr(J) = 0, thus,
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Nannr(J) = 0, then annr(J) ⊆ annr(N), implying annr(J) = annr(N). Thus, R is

right rI-firm. This means that RR is bounded and firm. On the other hand, RR is

semipriem. Therefore, RR is semi-vital by (2-9).

4. EM-semi-oltimate modules.

Definition 4.1. Let M be an R-module.

(1) M is said to be F-semi-oltimate if for every F-subgroup N , N ⊆ N• implies

N = 0.

(2) M is said to be F-oltimate if for every F-subgroup N , N• 6= 0 implies

N = 0.

It is clear that if every F-subgroup is an ID-subgroup, then M is F-semi-oltimate.

Lemma 4.1. For any K ⊆ M and N = K ∩K• we have N ⊆ N•.

Proof. Let c ∈ N . There exists a nonempty finite set A ⊆ M with cannR(A/K) = 0.

On the other had, annR(A/N) ⊆ annR(A/K), so cannR(A/N) = 0, implying c ∈ N•.

Lemma 4.2. Let M be a cofaithful weakly polyform right R-module. If N is an

annihilator-like submodule N , then for any 0 6= n ∈ N ∩N•, there exists r ∈ R with

0 6= nr ∈ Z(M).

Proof. Since N• is an eliminator submodule, we may assume that N ⊆ N• by (3-2).

There exists a finite set A ⊆ M with n(N : A) = 0, then there exists r ∈ R and

a ∈ M with nr 6= 0 and nr(N : a) = 0 by [6, (2-1)]. Let J be a rI-complement to

(N : a). Then N ∩ aJ = 0. On the other hand, for each b ∈ J , nrb(N : ab) = 0,

so annR(ab) = (N : ab) ⊆ annR(nrb), implying nrb = 0 by [8, (1-3)] and [7, (3-8)].

Thus, (N :a) + J ⊆ annR(nr), implying 0 6= nr ∈ Z(M).

Proposition 4.1. Let M be a module. M is EM-semi-oltimate iff every eliminator

submodule is an ID-submodule.

Proof. (⇒) Let K be an eliminator submodule. Set N = K∩K•. N is an eliminator

submodule, and N ⊆ N• by (3-2), so N = 0. Thus, K is an ID-submodule.

(⇐) Let N be an eliminator submodule with N ⊆ N•. N is an an ID-submodule, so

N = N ∩N• = 0.
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Lemma 4.3. Let M be a EM-mini R-module. If every minimal eliminator submodule

is a ID-submodules, then M is EM-semi-oltimate.

Proof. Temporarily suppose it is not so. There exist a nonzero eliminator submodule

K with K ⊆ K• by (3-2). K contains a minimal eliminator submodule I. I is an

ID-submodules, also I ⊆ K ⊆ K• ⊆ I• by [6, (2-11)], implying I = 0 which is a

contradiction.

Lemma 4.4. Let M be an EM-ind.finite R-module. If every EM-uniform eliminator

submodule is an ID-submodules, then M is EM-semi-oltimate.

Proof. Temporarily suppose it is not so. There exist a nonzero eliminator submodule

K with K ⊆ K• (3-2). K contains an EM-uniform eliminator submodule I by [5,

(2-3)]. I is an ID-submodules, also I ⊆ K ⊆ K• ⊆ I◦ by [6, (2-11)], implying I = 0

which is a contradiction.

Lemma 4.5. Any F-semi-vital module is F-semi-oltimate.

Proof. Let M be a F-semi-vital module and N be a F-subgroup with N ⊆ N•. Since

N• ⊆ N◦, N ⊆ N◦, implying N = 0.

Proposition 4.2. Every eliminator submodule of an EM-semi-oltimate module is a

EM-semi-oltimate module.

Proof. Let M be a EM-semi-oltimate module and L be an eliminator submodule of

M . Now let N be a nonzero eliminator submodule of L. N is a eliminator submodule

of M by [6, (2-8)], so there exists n ∈ N such that for every finite set A ⊆ M ,

n(N :A) 6= 0. Thus, for every finite set A ⊆ L, n(N :A) 6= 0.

Lemma 4.6. Let M be a module and J be an EM-summand submodule. If J is a

EM-semi-oltimate module, then for every eliminator submodule I ⊆ M , I•∩I∩J = 0.

Proof. There exists an eliminator submodules K such that M = J ⊕ K. Let

b ∈ I• ∩ I ∩ J . There exists a finite set A ⊆ M with b(I : A) = 0. For each

a ∈ A, there exist unique aJ ∈ J and aK ∈ K with a = aJ + aK. Set B = {aJ |

a ∈ A} and C = {aK | a ∈ A}. Let r ∈ annR(C). Then, br(I : Ar) = 0, on the
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other hand, (I : Ar) = (I : Br) = (I ∩ J : Br), so br(I ∩ J : Br) = 0, implying

br ∈ (I ∩ J)• ∩ (I ∩ J) = 0 because I ∩ J is an eliminator submodule of J . Thus,

bannR(C) = 0, implying b ∈ J ∩K = 0.

Proposition 4.3. Let M be a cofaithful module and A be an independent set of

eliminator submodules such that M =
⊕
(A). Then, M is EM-semi-oltimate iff each

element of A is EM-semi-oltimate.

Proof. (⇒) Follows from (3-8).

(⇐) Let I be aneliminator submodule with I ⊆ I•. Then, I =
⊕
{I ∩ J | J ∈ A}

bay [7, (3-5)]. On the other, for any J ∈ A, M = J ⊕ J×, so J is an EM-summand

eliminator submodule, implying I ∩ J = 0 by (3-9). Thus, I = 0.

Lemma 4.7. EM-CS ⇒ B-CS ⇒ C-CS and AM-CS ⇒ C-CS
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