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A NEW EXTENSION OF THE INVERSE POWER LOMAX

DISTRIBUTION

VASILI. B V NAGARJUNA (1) AND CHRISTOPHE CHESNEAU (2)

Abstract. In this article, we propose a new extension of the inverse power Lomax

distribution that takes advantage of the functionalities of the sine transformation.

It is called the sine inverse power Lomax (SIPL) distribution. In the first part,

its primary characteristics are first identified. The heavy-tailed nature of the SIPL

distribution, as well as the versatility of its distribution functions, are emphasized.

Also, among other things, we prove some first-order stochastic dominance struc-

tures and derive expressions for the quantile function, diverse moments, and income

curves. Subsequently, the predictive ability of the SIPL model is investigated. A

maximum likelihood calculation technique is used to estimate the parameters of

the model, and simulations are run to verify its effectiveness. Then, two actual

data sets are considered for analysis. When the SIPL model is compared to other

Lomax-type models, it comes first according to standard statistical metrics.

1. Introduction

Data may have an observational distribution with more weighted tails than classical

probability distributions. For modeling purposes, the so-called heavy-tailed distribu-

tions are ideal candidates in this situation. The Lomax distribution, developed by

[15], has piqued the interest of many researchers due to its flexible, heavy-tailed na-

ture with only two parameters and the simplicity of its corresponding functions. It is

applied in a wide range of fields, including income and wealth measurement, engineer-

ing, industry, and many others. Concerning the Lomax distribution, we may refer to
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[6] for discussions on its heavy-tailed nature, [14] for various estimation methods of

its parameters, [5] for some developments on its record values, and [7] for its applica-

tion to lifetime modeling. Researchers have suggested various novel distributions that

cope with heavy-tailed data in recent decades, including generalizations, extensions,

or modifications of the Lomax distribution, in the spirit of variety and optimality.

One can mention the exponentiated lomax distribution by [1], five-parameter beta

Lomax distribution by [23], power Lomax distribution by [22], inverse power Lomax

(IPL) distribution by [11], type II Topp-Leone power Lomax distribution by [4], Ku-

maraswamy generalized power Lomax distribution by [17] and sine power Lomax

distribution by [18].

A review of the IPL distribution is needed to comprehend the intent of this paper.

First, it was introduced and studied in detail from both a mathematical and an

applied perspective in [11]. The IPL distribution is mathematically identical to the

distribution of the random variable X−1/β , where X has the Lomax distribution with

parameters α and λ, or equivalently, the distribution of Y −1, where Y has the power

Lomax distribution with parameters α, β, and λ, thus explaining the term inverse

in SIPL, or equivalently, the distribution of Z1/β , where Z is the inverse Lomax

distribution with parameters α and λ. More concretely, the IPL distribution is a

three-parameter heavy-tailed distribution defined in terms of functionality by the

following cumulative distribution function (cdf):

GIPL(x; ) =

(

1 +
x−β

λ

)

−α

, x > 0,(1.1)

and GIPL(x; ) = 0 for x ≤ 0, where  = (α, β, λ), α is a strictly positive shape

parameter, and β and λ are strictly positive scale parameters. The probability density

function (pdf) of the IPL distribution is

gIPL(x; ) =
αβ

λ
x−β−1

(

1 +
x−β

λ

)

−α−1

, x > 0,

and gIPL(x; ) = 0 for x ≤ 0, and related hazard rate function (hrf) is expressed as

hIPL(x; ) =
αβ

λ

x−β−1
(

1 + x−β/λ
)

−α−1

1− (1 + x−β/λ)−α , x > 0,

and hIPL(x; ) = 0 for x ≤ 0. These functions have a modest level of complexity

and can be manipulated analytically for various integral calculus problems. The
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figures in [11] show that the pdf and hrf of the IPL distribution have similar curve

behaviors: they are mostly decreasing or upside-down shaped with a heavy right

tail. These characteristics are essential for the statistical modeling of a wide range

of heavy-tailed data. In addition, the IPL distribution has well-defined quantile

and moment characteristics, which is clearly advantageous for further probability or

statistical developments. As described in [11], the inference on the parameters of

the IPL distribution is quite manageable. In particular, the maximum likelihood

method performs quite efficiently under different censoring schemes. In addition, a

comparison study shows that the IPL model fits essential data better than other

models, including those nested within the IPL model, such as the Lomax, power

Lomax, and inverse Lomax models, as well as more distinct models such as the inverse

Weibull, generalized inverse Weibull, and exponentiated Lomax models. Despite its

obvious advantages, the IPL distribution has some drawbacks, such as the lack of

versatility of its left tail, which prevents the capture of some characteristics for small

values in data, and the low diversity of shapes of its hrf, which prevents optimal

modeling of some phenomena with complex attributes.

The aim of this paper is to propose an extended IPL distribution that enhances the

modeling capacities of the IPL distribution while maintaining its mathematical sim-

plicity and three-parameter dependence. To achieve this aim, we use the sinusoidal

transformation as formerly described in [12] and [25, 26, 27]. Hence, the so-called

sine formed class of distributions is applied to the IPL distribution to introduce a

new extended version, that we name the sine inverse power Lomax (SIPL) distribu-

tion. The work of [18], which shows that the sinusoidal transformation of the power

Lomax distribution is stronger on many aspects of the power Lomax distribution,

is a motivational justification for the study of this extended distribution. Accord-

ing to the findings of the investigations, the SIPL is victorious on the following

points: (i) the associated pdf possesses various curves including unimodal, symmet-

rical, asymmetrical on right and left, reversed J-shaped curves, (ii) the associated hrf

exhibits decreasing, increasing, bathtub, reversed bathtub and decreasing-increasing-

decreasing-shaped curves, (iii) the quantile and (ordinary, inverse and incomplete)

moments properties of the SIPL distribution are rather manageable, (iv) in order to
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estimate the parameters of the SIPL model, the standard maximum likelihood esti-

mation technique can be used effectively, and (v) for most of the data sets, the SIPL

model outperforms other Lomax-structured models in terms of fit, including the IPL

model.

These points are developed through the following plan. In Section 2, the primary

functions of the SIPL distribution, as well as their main analytical properties, are

discussed. Some technical properties and useful statistical functions are developed

in Section 3. The theoretical and computational aspects of the maximum likelihood

estimation are developed in Section 4. The SIPL modeling strategy is applied to

referenced data in Section 5. A final discussion is offered in Section 6.

2. The SIPL distribution

The SIPL distribution, as previously mentioned, is a member of the sine formed class

of distributions created by [12] and [25, 26, 27] using the IPL distribution as a parent.

This section focuses on the main relevant functions of the SIPL distribution.

2.1. Cumulative distribution and probability density functions. The follow-

ing definition determines the cdf.

Definition 2.1. The SIPL distribution is defined by the following cdf:

FSIPL(x; ) = sin

[

π

2

(

1 +
x−β

λ

)

−α
]

, x > 0

and FSIPL(x; ) = 0 for x ≤ 0, where the notations of (1.1) have been used, that

is,  = (α, β, λ), α is a strictly positive shape parameter, and β and λ are strictly

positive scale parameters.

Differentiating FSIPL(x; ) yields the pdf of the SIPL distribution. As a result, it is

given as

fSIPL(x; ) =
π

2

αβ

λ
x−β−1

(

1 +
x−β

λ

)

−α−1

cos

[

π

2

(

1 +
x−β

λ

)

−α
]

, x > 0,

and fSIPL(x; ) = 0 for x ≤ 0.

With different values of the parameters, different curvature forms of this pdf are

obtained as shown in Figure 1.
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Figure 1. Curves of the pdf of the SIPL distribution at different parameter values

From Figure 1, the curves may be decreasing or unimodal, with a broad range of

skewness, peakedness, and plateness, but they are often almost symmetrical or right-

skewed. In comparison to the left tail of the IPL distribution, the left tail of the SIPL

distribution clearly profits from more freedom. Because of these properties, the SIPL

can be used to model a wide range of lifetime phenomena.

2.2. Quantile function. The quantile function (qf) is one way of prescribing a prob-

ability distribution. It is a key component in the Monte Carlo methodology and is

used in a variety of mathematical applications. Reference [10] goes into great detail

about the statistical uses of qfs. Mathematically, the qf is defined as the inverse func-

tion of the associated cdf. As a result, the qf of the SIPL distribution is calculated

as

QSIPL(u; ) = F−1
SIPL(u; ) =

{

λ

[

(

2

π
arcsin u

)

−1/α

− 1

]}

−1/β

, u ∈ (0, 1).(2.1)

The presence of the arcsine function in the definition is a characteristic of the SIPL

distribution that the IPL distribution does not have. The median of the SIPL distri-

bution follows by taking u = 1/2 in the above equation. Also, in theory, a sample from
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the SIPL distribution can be obtained by applying this qf to a uniform distribution

sample. More applications in this direction can be found in [10].

2.3. Hazard rate function. The analytical behavior of the hrf of a lifetime distri-

bution is critical for managing its modeling capacity. On this topic, we can consult

[2]. Here, the hrf of the SIPL distribution is written as

hSIPL(x; ) =
fSIPL(x; )

1− FSIPL(x; )

=
π

2

αβ

λ
x−β−1

(

1 +
x−β

λ

)

−α−1

tan

[

π

4
+

π

4

(

1 +
x−β

λ

)

−α
]

, x > 0

and hSIPL(x; ) = 0 for x ≤ 0. The inclusion of the tangent function in the definition

opens up certain curvature possibilities that the hrf of the IPL distribution does

not. This argument is demonstrated in Figure 2, which classifies different types of

curvatures based on their diversity.
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Figure 2. Curves of the hrf of the SIPL distribution at different parameter values
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From Figure 2, we see that the hrf exhibits decreasing, increasing, bathtub, reversed

bathtub, and decreasing-increasing-decreasing-shaped curves, in contrast to the hrf

of the IPL distribution, which is severely limited in this regard. This is yet another

reason why the proposed SIPL distribution is preferable to the IPL distribution.

3. Technical properties and specific functions

This section delves into the technical properties and specific functions of the SIPL

distribution, which can be applied in a variety of theoretical and practical scenarios.

3.1. Stochastic ordering results. The SIPL distribution enjoys some hierarchical

properties that are presented in this portion. We adopt the notion of first-order

stochastic ordering as presented in [24]. First, the following result shows that the

IPL distribution first-order stochastically dominates the SIPL distribution.

Proposition 3.1. For any x ∈ R, the following inequality is satisfied:

GIPL(x; ) ≤ FSIPL(x; ).

Proof. The inequality is an obvious equality for x ≤ 0 sinceGIPL(x; ) = FSIPL(x; ) =

0. The following inequality is well-known: sin(y) ≥ (2/π)y for y ∈ [0, π/2]. Then,

since (π/2)
(

1 + x−β/λ
)

−α
∈ [0, π/2], we immediately obtain:

FSIPL(x; ) = sin

[

π

2

(

1 +
x−β

λ

)

−α
]

≥
2

π

π

2

(

1 +
x−β

λ

)

−α

=
π

2

(

1 +
x−β

λ

)

−α

= GIPL(x; ).

The stated result is established. �

In addition, an intrinsic first-order stochastic dominance of the SIPL distribution is

exhibited in the next result.

Proposition 3.2. For α1 ≥ α2 and λ2 ≥ λ1, by setting 1 = (α1, β, λ1) and 2 =

(α2, β, λ2), we have

FSIPL(x; 1) ≤ FSIPL(x; 2).
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Proof. It is enough to study the monotonicity of FSIPL(x; ) according to the param-

eters. We have

∂

∂α
FSIPL(x; ) = −

π

2

(

1 +
x−β

λ

)

−α

log

(

1 +
x−β

λ

)

cos

[

π

2

(

1 +
x−β

λ

)

−α
]

< 0,

meaning that FSIPL(x; ) is decreasing with respect to α, and

∂

∂λ
FSIPL(x; ) =

π

2

α

λ2
x−β

(

1 +
x−β

λ

)

−α−1

cos

[

π

2

(

1 +
x−β

λ

)

−α
]

> 0,

meaning that FSIPL(x; ) is increasing with respect to λ. �

It follows from Proposition 3.2 that, under some conditions on the parameters, the

SIPL distribution with parameters vector 1 first-order stochastically dominates the

SIPL distribution with parameters vector 2. This hierarchical distributional struc-

ture allows us to better understand the behavior of the SIPL distribution according

to the parameters in terms of cdfs.

One can remark that there is no first-order stochastic dominance with respect to the

parameter β since

∂

∂β
FSIPL(x; ) =

π

2

α

λ
x−β(log x)

(

1 +
x−β

λ

)

−α−1

cos

[

π

2

(

1 +
x−β

λ

)

−α
]

,

which can be negative or positive according to x < 1 and x > 1, respectively.

3.2. Linear representation. The following finding demonstrates how the pdf of the

SIPL distribution can be reduced to a manageable sum.

Proposition 3.3. The pdf of the SIPL distribution can be expanded as

fSIPL(x; ) =

+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1 αβ

λ
x−β−1

(

1 +
x−β

λ

)

−(2k+1)α−1

,

for x > 0.

Proof. The proof is based on the Taylor series expansion of the sine function. Pre-

cisely, for x > 0, we have

FSIPL(x; ) = sin

[

π

2

(

1 +
x−β

λ

)

−α
]

=

+∞
∑

k=0

(−1)k

(2k + 1)!

[

π

2

(

1 +
x−β

λ

)

−α
]2k+1

=

+∞
∑

k=0

(−1)k

(2k + 1)!

(π

2

)2k+1
(

1 +
x−β

λ

)

−(2k+1)α

.
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Now, the differentiation of FSIPL(x; ) with respect to x gives

fSIPL(x; ) =

+∞
∑

k=0

(−1)k

(2k + 1)!

(π

2

)2k+1 αβ

λ
(2k + 1)x−β−1

(

1 +
x−β

λ

)

−(2k+1)α−1

.

The stated result is obtained after the simplification of the terms 2k + 1. �

Based on Proposition 3.3, one can remark that fSIPL(x; ) is written as an infinite

mixture of pdfs of the IPL distribution as

fSIPL(x; ) =

+∞
∑

k=0

(−1)k

(2k + 1)!

(π

2

)2k+1

gIPL(x; (2k + 1)α, β, λ).

Therefore, some properties of the IPL distribution can be transferred to the proposed

SIPL distribution. In the next, we will use Proposition 3.3 with direct calculus,

instead of this indirect approach.

3.3. Ordinary moments. The following result emphasizes the existence of the or-

dinary moments of the SIPL distribution. A series expansion for the r-th ordinary

moment is provided.

Proposition 3.4. Let r ≥ 1 be an integer and X be a random variable with the SIPL

distribution. Then, for r < 2β, the r-th ordinary moment of X exists. In the case

r < β, it can be expanded as

E(Xr) = αλ−r/β

+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B

(

1−
r

β
, (2k + 1)α +

r

β

)

,

where E denotes the mathematical expectation and B(a, b) refers to the standard beta

function given as B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt =

∫ +∞

0
ta−1(1+ t)−(a+b)dt for a, b > 0.

Proof. The convergence of the integral
∫ +∞

0
xrfSIPL(x; )dx leads to the existence

of E(Xr). The Riemann integrability criterion is useful in this regard. When x is

in the neighborhood of 0, we have xrfSIPL(x; ) ∼ (π/2)(βα/λ)xr+αβ−1, which is

integrable over an interval of the form (0, c) with c > 0 if and only if r + αβ −

1 > −1, which is always fulfilled. For the case x → +∞, we have xrfSIPL(x; ) ∼

[(π2/4)βα2/λ2]xr−2β−1, which is integrable over an interval of the form (c,+∞) with

c > 0 if and only if r − 2β − 1 < −1, implying that r < 2β. Hence, the condition

r < 2β is necessary to ensure the existence of E(Xr).



726 VASILI. B V NAGARJUNA AND CHRISTOPHE CHESNEAU

Let us now suppose that r < β < 2β. By using Proposition 3.3, exchanging
∫

and
∑

which is possible thanks to the dominated convergence theorem, and applying to

the change of variables y = x−β/λ, we obtain

E(Xr) =

∫ +∞

0

xrfSIPL(x; )dx

=
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1
∫ +∞

0

αβ

λ
xr−β−1

(

1 +
x−β

λ

)

−(2k+1)α−1

dx

= αλ−r/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1
∫ +∞

0

y−r/β(1 + y)−(2k+1)α−1dy

= αλ−r/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B

(

1−
r

β
, (2k + 1)α+

r

β

)

.

The desired result is obtained. �

A computational remark is that, for K large enough, a precise approximation of

E(Xr) is obtained as

E(Xr) ≈ αλ−r/β

K
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B

(

1−
r

β
, (2k + 1)α+

r

β

)

.

Also, the beta term can be expressed in terms of standard gamma function values as

B

(

1−
r

β
, (2k + 1)α+

r

β

)

=
Γ (1− r/β) Γ ((2k + 1)α + r/β)

Γ ((2k + 1)α+ 1)
.

Diverse moment measures of X can be defined from Proposition 3.4. Here, we restrict

our attention on the variance basically defined by V ar = E
[

(X −E(X))2
]

, as well

as the skewness and kurtosis defined by

Skewness =
1

V ar3/2
E
[

(X − E(X))3
]

, Kurtosis =
1

V ar2
E
[

(X − E(X))4
]

.

Note that all the involved central moments can be expressed according to the first

four ordinary moments through the standard binomial technique, that is, for any

positive integer n,

E [(X −E(X))n] =

n
∑

ℓ=0

(

n

ℓ

)

E(Xℓ)(−1)n−ℓ[E(X)]n−ℓ.

Table 1 shows the above measures of X for various parameter values, assuming β > 4.
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Table 1. Moments of the SIPL distribution with different parameter values

Parameters α E(X) E(X2) E(X3) E(X4) V ar Skewness Kurtosis

β = 4.2 λ = 0.5

2 1.314708 1.858226 2.837872 4.731892 0.1297692 1.316197 6.917435

4 1.61063 2.749419 5.01265 9.881754 0.1552885 1.889989 8.012451

8 1.934942 3.943671 8.537791 19.889383 0.1996687 2.266506 8.700323

12 2.143961 4.832425 11.549526 29.654824 0.2358558 2.405777 8.952307

16 2.302855 5.570055 14.273422 39.262763 0.2669121 2.477989 9.08263

β = 5.2 λ = 0.5

2 1.240433 1.612441 2.200899 3.166785 0.07376731 0.7864958 5.528673

4 1.463213 2.222023 3.514406 5.81867 0.08103127 1.2687394 6.371227

8 1.697764 2.979161 5.424428 10.304183 0.09675889 1.591295 6.911904

12 1.844702 3.512681 6.932349 14.2575 0.10975597 1.7112853 7.111688

16 1.954507 3.940874 8.230482 17.903679 0.12077627 1.7736011 7.215334

β = 5.5 λ = 2.5

1.5 0.8492963 0.7572007 0.7088004 0.6980446 0.03589658 0.4855285 4.898175

2.5 0.963462 0.9642966 1.0048163 1.0939367 0.03603753 0.8511548 5.571002

4.5 1.0952929 1.2389178 1.4515416 1.7688539 0.03925119 1.2175016 6.186335

6.5 1.1804516 1.4361366 1.8064142 2.3593089 0.04267061 1.3876633 6.466088

8.5 1.2446644 1.5949947 2.1112016 2.8991188 0.04580525 1.4844368 6.624545

β = 4.5 λ = 1.2

3 1.188641 1.491579 1.986627 2.83304 0.07871263 1.445774 6.994705

7 1.473811 2.273421 3.694251 6.385049 0.10130228 1.952929 7.900895

11 1.64118 2.813117 5.069738 9.700662 0.11964513 2.115202 8.18612

14 1.736128 3.145606 5.988022 12.094625 0.1314673 2.178702 8.297451

18 1.839797 3.530313 7.113159 15.198752 0.14545817 2.231502 8.389938

Table 1 shows that the values of the considered measures vary from small to big. For

symmetrical cases, the skewness is almost equal to 0, whereas for right-skewed cases,

it is positive. The kurtosis also displays a wide variety of values. As a consequence,

on these moment measures, we say that the SIPL distribution is a versatile model in

general.

3.4. Inverse moments. The subsequent result is the same as Proposition 3.4, but

with the inverse moments.

Proposition 3.5. Let s ≥ 1 be an integer and X be a random variable with the SIPL

distribution. Then, for s < αβ, the s-th inverse moment of X exists. In the case
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s < αβ, it can be expanded as

E(X−s) = αλs/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B

(

1 +
s

β
, (2k + 1)α−

s

β

)

.

Proof. We proceed as for the proof of Proposition 3.4. When x is in the neighborhood

of 0, we have x−sfSIPL(x; ) ∼ (π/2)(βα/λ)x−s+αβ−1, which is integrable over an

interval of the form (0, c) with c > 0 if and only if −s + αβ − 1 > −1, which is

valid if and only if s < αβ. For the case x → +∞, we have x−sfSIPL(x; ) ∼

[(π2/4)βα2/λ2]x−s−2β−1, which is integrable over an interval of the form (c,+∞) with

c > 0 if and only if −s− 2β − 1 < −1, which is always fulfilled. Under the condition

s < αβ, by substituting r by −s in the developments of the proof of Proposition 3.4

concerning E(Xr), the stated result comes directly. �

As a direct application, the first inverse moment of X , also called harmonic mean, is

obtained as

E(X−1) = αλ1/β

+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B

(

1 +
1

β
, (2k + 1)α−

1

β

)

.

This sum expression can be the basis for more on its numerical evaluation. As with the

ordinary moments, we can define the corresponding variance, skewness and kurtosis,

etc.

3.5. Incomplete moments and income curves. The following result discusses

the incomplete moments of the SIPL distribution, with a proposition of analytical

expansion.

Proposition 3.6. Let r ≥ 1 be an integer and X be a random variable with the SIPL

distribution. Then, the r-th incomplete moment of X at t ≥ 0 always exists and can

be expanded as

E(XrI(X ≤ t)) = αλ−r/β

+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B∗

1/(1+λtβ )

(

1−
r

β
, (2k + 1)α +

r

β

)

,

where B∗

x(a, b) refers to the ‘upper incomplete’ beta function given as B∗

x(a, b) =
∫ 1

x
ta−1(1− t)b−1dt for a, b > 0.

Proof. The justification of the existence of E(XrI(X ≤ t)) is immediate: For all the

values of the parameters, we have 0 < E(XrI(X ≤ t)) ≤ tr < +∞. The expansion
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of E(XrI(X ≤ t)) can be proved in a similar way to the one of E(Xr). Indeed, by

using Proposition 3.3, exchanging
∫

and
∑

which is possible thanks to the dominated

convergence theorem, and applying to the change of variables y = x−β/λ followed by

the change of variables z = y/(1 + y), we get

E(XrI(X ≤ t)) =

∫ t

0

xrfSIPL(x; )dx

=
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1
∫ t

0

αβ

λ
xr−β−1

(

1 +
x−β

λ

)

−(2k+1)α−1

dx

= αλ−r/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1
∫ +∞

t−β/λ

y−r/β(1 + y)−(2k+1)α−1dy

= αλ−r/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1
∫ 1

1/(1+λtβ )

z−r/β(1− z)(2k+1)α+r/β−1dz

= αλ−r/β
+∞
∑

k=0

(−1)k

(2k)!

(π

2

)2k+1

B∗

1/(1+λtβ )

(

1−
r

β
, (2k + 1)α +

r

β

)

.

The desired result is proved. �

The possible applications of the incomplete moments of the SIPL distribution are

many, including the definition of various survival functions, actuarial measures, and

income curves. See, for instance, [9] and [3]. In particular, the first incomplete

moment allows us to define the Bonferroni and Lorenz curves, expressed as

B(p) =
1

pE(X)
E(XI(X ≤ q)) L(p) =

1

E(X)
E(XI(X ≤ q)), p ∈ (0, 1),

respectively, where q = QSIPL(p; ) as given in (2.1). They can be expanded and

approximated through the use of Proposition 3.6 with r = 1. These curves are

essential probabilistic objects to visualize income inequality. A variety of their plots

are seen in Figure 3 to study their variations.
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Figure 3. Bonferroni and Lorenz curves of the SIPL distribution at different pa-

rameter values

From Figure 3, the curves are found to have diverse convex properties; the Bonferroni

curves have tilde shapes and J shapes, while the Lorenz curves have J shapes. This

diversity of shapes reflects the adaptability of the SIPL distribution as applied in the

context of income inequalities.

4. Maximum likelihood estimation

For data fitting purposes, the maximum likelihood approach can be adapted to the

SIPL model. First, we consider n values x1, x2, . . . , xn supposed to be the observations

of n independent random variables with the SIPL distribution. Then, the associated

likelihood function is

L() =
n
∏

i=1

fSIPL(xi; ) =

=
(π

2

)n
(

αβ

λ

)n

e
−(β+1)

n∑

i=1

log xi

e
−(α+1)

n∑

i=1

log(1+x−β
i /λ)

n
∏

i=1

cos

[

π

2

(

1 +
x−β
i

λ

)

−α]

.



SIPL DISTRIBUTION AND APPLICATIONS 731

We can derive the log-likelihood function as

logL() = n log
(π

2

)

+ n log

(

αβ

λ

)

− (β + 1)
n
∑

i=1

log xi − (α + 1)
n
∑

i=1

log

(

1 +
x−β
i

λ

)

+

n
∑

i=1

log

{

cos

[

π

2

(

1 +
x−β
i

λ

)

−α]}

.

Then, following the maximum likelihood technique, an accurate estimate of the pa-

rameter vector  is obtained as

̂ = argmax logL()

Thus, by denoting ̂ = (α̂, β̂, λ̂), the estimates α̂, β̂ and λ̂ are called the maximum

likelihood estimates (MLEs) of α, β and λ, respectively. Theoretically, these estimates

are the solutions of ∇ logL() |=̂= 0, where ∇ denotes the gradient operator with

respect to . The components of ∇ logL() can be expanded as

∂

∂α
logL() =

n

α
−

n
∑

i=1

log

(

1 +
x−β
i

λ

)

−
n
∑

i=1

π

2

(

1 +
x−β
i

λ

)

−α

log

(

1 +
x−β
i

λ

)

tan

[

π

2

(

1 +
x−β
i

λ

)

−α]

∂

∂β
logL() =

n

β
−

n
∑

i=1

log xi − (α + 1)

n
∑

i=1

x−β
i

λ+ x−β
i

log xi

+
π

2

α

λ

n
∑

i=1

x−β
i log xi

(

1 +
x−β
i

λ

)

−α−1

tan

[

π

2

(

1 +
x−β
i

λ

)

−α]

and

∂

∂λ
logL() = −

n

λ
+

(α + 1)

λ

n
∑

i=1

x−β
i

λ+ x−β
i

+
π

2

α

λ2

n
∑

i=1

x−β
i

(

1 +
x−β
i

λ

)

−α−1

tan

[

π

2

(

1 +
x−β
i

λ

)

−α]

.

The expressions of α̂, β̂ and λ̂ are elusive, but numerical evaluations are all that is

needed in practice. Basic methods in statistical software, such as the R software (see

[21]), can be used to conveniently derive these numerical values. Furthermore, MLE

theory guarantees that the random version of ̂ is asymptotically distributed as a
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three-dimensional normal distribution, with mean vector  and variance-covariance

matrix Ξ = {−∇2
 logL() |=̂}

−1.

The standard error (SE) of α̂ is obtained by taking the square root of the first

diagonal variable of Ξ, and the SEs of the two other parameters can be obtained in a

similar way. Also, various statistical measures and confidence intervals are based on

the asymptotic normal distribution. One can mention that, by applying the plug-in

approach, fSIPL(x; ̂) is also a functional estimate of the unknown pdf fSIPL(x; ). As

described in the next section, this approximate pdf plays a critical role in fitting the

normalized histogram of the data. Naturally, the plug-in technique can be applied to

estimate other functions of interest.

We are now checking the accuracy of the MLEs. The qf of the SIPL distribu-
tion is used to produce the values x1, x2, . . . , xn. For each sample size of n =

50, 100, 200, 300, 500, we run 1000 Monte Carlo simulations on the following sets of
parameters: Set I = (0.5, 5, 0.05) and Set II = (0.75, 4, 0.05). The standard mean

MLE (MMLE), bias (Bias), and mean squared error (MSE) are computed in each
case. The findings are presented in Table 2.

Table 2. MMLEs, biases and MSEs based on the simulations with different sample

sizes

n α̂ β̂ λ̂

MMLE Bias MSE MMLE Bias MSE MMLE Bias MSE

Set I

50 0.68660 0.18660 1.47316 5.37859 0.37859 2.74746 0.17659 0.12659 0.65856

100 0.53467 0.03467 0.04598 5.30920 0.30920 1.61558 0.07670 0.02670 0.00976

200 0.51542 0.01542 0.01729 5.14680 0.14680 0.78557 0.06203 0.01203 0.00252

300 0.50919 0.00919 0.01127 5.10602 0.10602 0.52277 0.05803 0.00803 0.00154

400 0.50989 0.00989 0.00888 5.07917 0.07917 0.42576 0.05668 0.00668 0.00112

500 0.50679 0.00679 0.00664 5.05466 0.05466 0.30456 0.05546 0.00546 0.00084

Set II

50 1.27265 0.52265 10.90739 4.22104 0.22104 1.31187 0.25624 0.20624 1.81118

100 0.83992 0.08992 0.16163 4.14842 0.14842 0.75146 0.08481 0.03481 0.01423

200 0.78879 0.03879 0.05678 4.08506 0.08506 0.36497 0.06477 0.01477 0.00374

300 0.78139 0.03139 0.03158 4.04532 0.04531 0.23523 0.06038 0.01038 0.00172

400 0.76553 0.01553 0.02039 4.04353 0.04353 0.17338 0.05607 0.00607 0.00101

500 0.76993 0.01993 0.01684 4.01312 0.01312 0.14068 0.05679 0.00679 0.00084

From Table 2, we see that, as the sample sizes increase, the biases and MSEs decrease,

and the resulting mean estimates of the parameters become closer to the true value.
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This demonstrates that the SIPL model parameters are well estimated by the MLEs

and motivates their use for data fitting purposes.

5. The SIPL modeling strategy

The basic notations, goodness-of-fit checks, and model adequacy metrics based on the

SIPL model are discussed in this portion. Let x1, . . . , xn be n values that we order in

an ascending manner to obtain the ordered values denoted by x(1), . . . , x(n). We work

with the goodness-of-fit measures such as Cramér-von Mises, Anderson-Darling and

Kolmogorov-Smirnov (K-S) statistics. In the setting of the SIPL distribution, they

can be listed as

W* =
1

12n
+

n
∑

i=1

(

FSIPL(x(i); ̂)−
2i− 1

n

)2

,

A* = −n−
n
∑

i=1

2i− 1

n

[

log(FSIPL(x(i); ̂)) + log(1− FSIPL(x(i); ̂))
]

and

Dn = max
i=1,...,n

(

i

n
− FSIPL(x(i); ̂), FSIPL(x(i); ̂)−

i− 1

n

)

,

respectively. The p-Value of the K-S test is also taken into account. For given data,

these adequacy metrics are commonly used to determine which model/distribution

has the best fit. The model with the lowest W* or A* value and the highest p-Value

is chosen as the best. For a more in-depth look at the W* and A* statistics, see [8].

In addition, the Akaike information criterion (AIC), correct Akaike information cri-

terion (CAIC), Bayesian information criterion (BIC) and Hannan-Quinn informa-

tion criterion (HQIC) are considered. In the setting of the SIPL distribution, they

are defined as AIC = −2 logL(̂) + 2k, BIC = −2 logL(̂) + k log(n), CAIC =

−2 logL(̂) + 2kn/(n− k − 1) and HQIC = −2 logL(̂) + 2k log[log(n)], with k = 3,

being the number of parameters of the SIPL model. Of course, these expressions can

be adapted to any distribution effortlessly. According to prevailing knowledge, the

model with the lowest AIC, CAIC, BIC, or HQIC value is chosen as the best fit for

the data. In the rest of the study, we want to see how the SIPL model compares to

the Lomax-based models listed in Table 3.
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Table 3. Competitive models of the SIPL model

Model Label Cdf Reference

Inverse power Lomax IPL

(

1 +
x−β

λ

)

−α

[11]

Topp-Leone Lomax TLGL
(

1− (1 + αx)−2β
)λ

[20]

Power Lomax PL 1−
(

1 + λxβ
)

−α
[22]

Exponentiated Lomax EL

(

1−

(

β

x+ β

)α)λ

[13]

Lomax Lomax 1−

(

β

x+ β

)α

[15]

The applicability of the SIPL model for two real data sets is now discussed.

Data set 1: First, we consider the data reported in [16] which represent the failure

components of aircraft windshields times. The data are: 0.040, 1.866, 2.385, 3.443,

0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943,

1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010,

2.688, 3.924, 1.281, 2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902,

4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278,

1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619,

2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324,

3.376, 4.663. A description of these data is provided in Table 4.

Table 4. Descriptive statistics of data set 1

Mean Median Variance Skewness Kurtosis Minimum Maximum

2.55745 2.3545 1.25177 0.09949 -0.65232 0.04 4.663

We clearly notice from Table 4 that the data are symmetrical, presenting a platykurtic

nature and low dispersion. The negative value of the kurtosis is known to produce

lighter tails in a distribution. Table 5 lists the MLEs, as well as the SEs in parentheses,

of the SIPL model parameters as well as those of other competitors.
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Table 5. MLEs with SEs for data set 1

Model α β λ

SIPL
0.55626094

(0.071863295)

3.83518484

(0.269670478)

0.00465587

(0.001851412)

IPL
0.387587025

(0.055471506)

5.065255714

(0.387916376)

0.002823232

(0.001354061)

PL
2.510918

(1.0039915)

2.501948

(0.2813778)

24.858636

(8.8454850)

EL
24.107930

(13.9109419)

30.212370

(18.6585652)

3.661293

(0.6506768)

TLGL
3.721336

(0.7759183)

9.745047

(5.5473841)

24.585348

(16.2933590)

Lomax -
8.650051

(3.207235)

21.150309

(8.180986)

The W*, A*, Dn, K-S p-Value, AIC, CAIC, BIC, and HQIC of the SIPL model, as

well as those of the competitors, are mentioned in Table 6.

Table 6. Statistical metrics of the considered models applied to data set 1

Model W* A* Dn p-Value AIC CAIC BIC HQIC

SIPL 0.0584 0.5987 0.0727 0.7662 267.8582 268.1582 275.1507 270.7897

IPL 0.0607 0.6259 0.0912 0.4876 270.3969 270.6969 277.6894 273.3284

PL 0.1031 0.9686 0.1061 0.3016 275.1259 275.4259 282.4184 278.0574

EL 0.2393 1.8777 0.1236 0.1536 288.6155 288.9155 295.9079 291.547

TLGL 0.2465 1.9232 0.1204 0.1751 289.4639 289.7639 296.7563 292.3954

Lomax 0.1933 1.5824 0.3077 2.49×10−7 337.4818 337.6299 342.3434 339.4361

From Table 6, we see that all the metrics are favorable to the SIPL model; it is the

best according to the considered statistical criteria. This result can be confirmed

visually. In this regard, Figure 4 shows the related fitted normalized histogram and

probability-probability (PP) plot.
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Fitting of SIPL and Lomax distributions 
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Figure 4. Fitted pdfs and PP plot for data set 1

From Figure 4, it is worth noting that the SIPL model has lighter tails than those of

the competitors, allowing it to fit the data in a more suitable manner. The red line

of the PP plot is in total adequation with the black line, confirming the fit power of

the SIPL model.

Data set 2: For the second data set, we consider the uncensored data of [19], which

consist of 100 observations on breaking stress of carbon fibers (in Gba). The data are:

3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28,

3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81,

4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17,

2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56,

1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38,

1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89,

2.88, 2.82, 2.05, 3.65. A summary of descriptive statistics to data set 2 is reported in

Table 7.

Table 7. Descriptive statistics of data set 2

Mean Median Variance Skewness Kurtosis Minimum Maximum

2.6214 2.7 1.02796 0.36815 0.10494 0.39 5.56
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From Table 7, we observe that the data are approximately symmetric and platykurtic

with a low variance.

The MLEs and SEs of the parameters of the considered models are reported in

Table 8.

Table 8. MLEs with SEs for data set 2

Model α β λ

SIPL
0.603317311

(0.0602495373)

4.677762333

(0.2010761839)

0.002457786

(0.0004566074)

IPL
0.692945377

(0.33184656)

4.768960326

(1.22920175)

0.007351522

(0.01435339)

PL
1.624010

(0.5246620)

3.169221

(0.3380815)

29.455632

(8.5643898)

TLGL
25.408341

(15.707237)

22.975388

(15.610496)

8.504096

(1.789886)

EL
8.964875

(1.934670)

8.283858

(3.997527)

14.222593

(7.879147)

Lomax -
9.946361

(3.517630)

25.833924

(9.683001)

The W*, A*, Dn, K-S p-Value, AIC, CAIC, BIC, and HQIC of the SIPL model, as

well as those of the competitors, are mentioned in Table 9.

Table 9. Statistical metrics of the considered models applied to data set 2

Model W* A* Dn p-Value AIC CAIC BIC HQIC

SIPL 0.0631 0.3575 0.0785 0.5695 288.6301 288.8801 296.4456 291.7932

IPL 0.1626 0.8279 0.0919 0.3667 293.519 293.769 301.3345 296.6821

PL 0.1750 0.8914 0.1257 0.0848 296.914 297.164 304.7295 300.077

EL 0.2549 1.3462 0.1103 0.1751 300.7922 301.0422 308.6077 303.9553

TLGL 0.2706 1.4368 0.1131 0.1552 302.1661 302.4161 309.9816 305.3292

Lomax 0.1676 0.8605 0.3139 5.52e-09 405.116 405.2397 410.3263 407.2247

Clearly, Table 9 shows that the goodness-of-fit test of the SIPL model has the largest

p-value and the related model adequacy values are the smallest. As a result, the data

seem to be best fitted by the SIPL model.

Figure 5 shows the related fitted normalized histogram and PP plot.
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Fitting of SIPL and Lomax distributions 

Carbon Fibers data
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Figure 5. Fitted pdfs and PP plot for data set 2

From Figure 5, it is clear that the SIPL model is superior in fitting than the other

Lomax-based models. In particular, the symmetry of the data is well captured, with

correct adjustment of the tails. The fine adjustment of the lines of the PP plot just

confirms the applicability of the SIPL model in the fitting of these data.

6. Final discussion

The key contribution of this paper is the proposal of a new extension of the inverse

power Lomax distribution, named the sine inverse power Lomax (SIPL) distribution.

It is inspired by a well-known trigonometric class of distributions: the sine formed

class of distributions. The central idea is to use the oscillating properties of the sine

function to improve the modeling capabilities of the inverse power Lomax distribution

while maintaining the same number of parameters and a certain functional simplicity.

Some statistical properties, such as first-order stochastic ordering, quantile function,

diverse moments, and income curves, were developed and discussed. Several graph-

ical works illustrated the usefulness of the SIPL model under consideration. As an

application, we compared the SIPL model to the key existing Lomax-based models

using two realistic data sets. When the data are symmetrical or skewed to the right,

the SIPL model performs better when compared to its competitors. It also has the
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ability to handle moderately left-skewed data. In every case, the results are reason-

ably satisfactory, showing that the SIPL model can be used to evaluate a wide panel

of data sets effectively.
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