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MODELING, ANALYSIS AND OPTIMAL CONTROL TO
CO-DYNAMICS OF HIV/AIDS-TB DISEASES IN HOMOGENEOUS

POPULATION

TANVEER AHMED(1), RAM SINGH(2) AND KHALIL AHMAD(3)

Abstract. In this paper, an optimal control mathematical model of HIV/AIDS

and TB co-infection with vaccination and relapse is developed and analysed by

dividing the total human population under consideration into five compartments,

namely, susceptible (S), TB-infected (T ), HIV-infected (H), vaccinated (V ) and

AIDS-infected (A). We analysed the steady states behaviour of the dynamical

system representing the co-infection transmission dynamics of HIV/AIDS and TB

epidemic. The mathematical model possesses four equilibrium points such as disease

free, HIV/AIDS infection free, TB infection free and vaccination free. The stability

of aforesaid cases is also investigated. A threshold parameter reproduction number

R0 is computed and ifR0 < 1 the disease dies out and it becomes endemic ifR0 > 1.

It is also found that the co-infection period also influences the transmission patterns

of diseases. Some important theorems and results are proved. Optimal control

solutions are provided to predict the efficacy of vaccination and control strategies.

The sensitivity analysis has also been facilitated to carry out the effects of certain

key parameters on the diseases co-dynamics. It is found that administration of

appropriate vaccine at proper time could be more effective in controlling the co-

infection. The relapse factor is also considered in the model where the vaccination

fails.

1. Introduction

Tuberculosis is caused by mycobacterium infectious disease that remains a problem

of worldwide. TB is such a type of disease which increases due to the environmental
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factors, e.g. open drainage of sewage in residential areas, open water storage tanks,

discharge of household wastes in residential area, etc. Transmission of tuberculosis is

occurred by air borne infectious droplets [7, 26]. Once infected with Mycobacterium

TB, a person stays infected for many years, probably for the life time. It typically

effects the lungs and other sensitive parts of human being. In 1993 the WHO declared

Tuberculosis as a global emergency [3, 39, 40]. TB is curable and preventable. A

model for tuberculosis has been an essential tool in controlling as well as assessing

the spread of vital disease [30, 8].

Recently, the human immune deficiency virus (HIV) infection, which can lead to ac-

quired immunodeficiency syndrome (AIDS), has become a life threatening diseases

in both the developed and developing nations [5, 15, 33, 24]. It is a severe disease

which breaks down the body’s immune system and leaves the victim more vulnerable

to infections and neurological disorder. If any person is infected with human immune

deficiency virus, he or she will find the hurdle to fight with infectious diseases. The

HIV destroys white blood cells known as CD4 cells. It causes mortality of millions

of people and expenditure of enormous amount of money in health care and disease

control. T-helper cells are called as CD4 cells [6, 37, 40]. Yet there is no vaccine for

AIDS [9, 36]. However, antiretroviral (ART) treatment improves health, pro-longs

life and substantially reduces the risk of HIV transmission. In both high income and

low income countries, the life expectancy of patients infected with HIV who have

access to ART is now measured in decades, and might approach that of uninfected

populations in patients who receive a high HIV treatment [36]. The AIDS epidemic is

now spreading rapidly in Asia, where new infection is increasing faster than anywhere

else in the world. Globally, India has the highest estimated number of HIV infected

people in any single country, next only to South Africa. India in epidemic is marked

by heterogeneity. It is not a single epidemic but make of distinct epidemics of within

the same state and continuous to be driven strongly by heterosexual transmission.

Mathematical models have been used extensively in research into the epidemiology

of HIV/AIDS, to help improve over understanding of major contributing factors in a

given epidemic.
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From the initial model, distinct rectification has been added into modelling frame-

works, and specific issues have been addressed by researchers [31, 22, 38, 40]. In

particular, developed a model for spread of HIV in a heterosexual population taking

into account the group contact tracing and carried out equilibrium analysis. The im-

pact of condom use amongst a homogeneously mixing male homosexual population

on the sexual transmission of HIV/ AIDS [38, 2] proposed a nonlinear model for an

epidemic with contact tracing and applied it to the Cuban HIV/AIDS epidemic to

obtain the size of HIV epidemic. In [2, 20, 34, 13] the authors presented a theoretical

frame work for transmission of HIV/AIDS epidemic in India. In [10, 40] the authors

presented a homogeneous mixing population model for HIV transmission with incor-

porates an anti HIV preventive vaccine. In [10, 21, 38] the authors proposed a simple

deterministic model to study the transmission of HIV/AIDS in a population with

variable size structure. Developing a mathematical model for the individual that has

the structure of two classes of sexually active male customers and commercial sex

workers.

Co-infection of TB and HIV is when someone has both infectious diseases. TB in-

creases the rate at which HIV infection develops into AIDS and HIV disease setup

the activation of TB [17, 23]. It is noted that HIV infectious disease and infection

with TB bacteria are two distinct infections as shown in [27]. Therefore, it is essen-

tial to study the transmission of HIV-TB in the population. Some studies have been

made by taking into the account HIV-TB [19, 38] has proposed within host models

for the dynamics between HIV and activated CD4T cells specific to other pathogens.

In [18] a model is developed which reflects the transmission of the effect that the HIV

epidemic may have on TB. They found the effect that the HIV epidemic may have

on TB. They found the effect that HIV will have on the general population to be

dependent on the contact structure between the general population and the HIV risk

groups, as well as a possible shift in the dynamics associated with TB transmission.

Co-treatment with HIV-related tuberculosis improves survival, especially in patients

with CD4 less than fifty ell/mm3 [17]. Thirty-four million people living with HIV, the

TB is contaminated globally by one-third of the [38, 37]. About 450,000 people were

estimated with both HIV and TB died, in addition to the 1.1 million deaths from TB
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and 800 000 deaths from HIV alone in the year 2014. Thus, more people died of TB

in 2014 than from HIV-related infections [40]. It has built a sex-structured model in

his work to capture the impact of complacency on the dynamics of HIV/AIDS, but

did not include how the mix would be affected by TB [35]. But, a lot of work has been

done in the mathematical modeling of co-infection of different viruses [28, 41, 29, 4].

A mathematical model has been developed for co-infection of TB-HIV [27, 17, 13, 26].

Their study did not provide treatment with anti-HIV medication. The model of co-

infection with TB-HIV/AIDS and effective control treatment was developed [17].

Motivated and inspired by the work done by the people in this direction in this pa-

per we introduced a novel vaccination class in which we have taken two parameters

namely relapse rate and vaccination rate. The relapse rate in transmitting from the

HIV class and reception in vaccination class. Further, the vaccination rate is trans-

mitting from TB and reception also in vaccination class. Moreover, in the vaccination

class the natural death rate is going out as usual like in other classes. The paper is

arranged as follows: In Section 2, mathematical model formulation is given. Some

basic properties of the proposed model are discussed in section 3. In section 4, anal-

ysis is done. In section 5, the optimal control analysis with multiple time-dependent

controls is performed. The Numerical simulation is provided in section 6. Finally,

conclusion is drawn in section 7.

2. Mathematical Model Description

In this model, we consider the population of size N(t) with a constant recruit-

ment rate of Q0. The whole population is divided into five subclasses: susceptible

S(t), T (t) infected with tuberculosis, HIV infected with H(t), V (t) vaccination and

AIDS infected with A(t). The susceptible population become tuberculosis infected

at a rate β1 before media alert, which becomes tuberculosis infected. The expression

β(t) =

(
β1 − β ′

1

T

m+ T

)
demonstrates the less quantity of the transmission dynam-

ics of tuberculosis infection after media alarm. This tests the spread of TB infection

from the infected person to the susceptible person. If m is equal to zero, transmis-

sion rate is constant. Therefore, the rate of transmission is not only related to the

spreading potential of the disease, there are closely related to the disease awareness
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of every susceptible host population. The media alert for TB infected population at

the rate m exhibits the effect on communication transmission of media coverage. The

reduced value of the transmission dynamic rate of HIV infection after media alert is

taken as β(H) =

(
β2 − β ′

2

H

n+H

)
. The parameter rate n reflects the impact of

media coverage to the contact transmission of HIV infection and relapsed at a rate

θ. At a constant rate β3, the population in TB class is infected by HIV infection.

Therefore Tuberculosis is curable disease, as such some people of Tuberculosis class

are recovered at rate λ, vaccinated at a rate φ and enter into the susceptible class. In

the vaccination class V (t) we enter the vaccination, relapse and as usual the natural

death rate is going out. With the infection rate δ, the HIV infection are converted

in full blown AIDS and it is assumed that no anti-HIV drugs is available within

population and hence some member of HIV class are bounded to develop full blown

AIDS. Absolutely, once AIDS is developed in the population, no media awareness

can help him to be controlled. Finally, the population dies at constant rate d. Let

α be the disease-induced death rate (see Figure 1). The following system of non-

Figure 1. Transition diagram of the model
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Table 1. Possible feasible ranges of malaria model (2.1)

State variables Description

S Susceptible host population

T TB-Infected host population

H HIV-Infected host population

V Vaccinated host population

A AIDS-Infected host population

Table 2. Parametric values of the HIV/AIDS-TB co-infection model (2.1)

Parameter source Description Parametric values Sources

Q0 Recruitment rate constant (150− 200)month−1 Estimated

for host population

β1 TB infected rate (0.1− 0.15) Estimated

β ′

1 Chance of infection (0.02− 0.09) Estimated

in the TB population

β2 Rate of infection for HIV (0.5− 0.8) Estimated

β ′

2 Chance of infection (0.002− 0.4) Estimated

in the TB population

m Media alert rate in TB class (5− 30) [21]

n Media alert rate in HIV class (4-10) [15]

β3 The population in TB class (0.5− 1.2) Estimated

in infected by HIV infection

λ Recovered TB populations 0.5 [21]

δ HIV infected people are bound (0.001− 0.5) [22]

to develop full blow AIDS

α Disease induced death rate (0.5− 2) [18]

d Host natural death rate (0.01− 0.05) Estimeted

φ Vaccination rate for hosts 0.5 Estimated

θ Relapse rate for hosts 0.08 Estimated
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linear differential equations which govern the dynamical system.

dS

dt
=Q0 −

(
β1 − β ′

1

T

m+ T

)
ST

N
−

(
β2 − β ′

2

H

n+H

)
SH

N
− dS + λT

dT

dt
=

(
β1 − β ′

1

T

m+ T

)
ST

N
− β3

TH

N
− (λ+ d)T − φT

dH

dt
=

(
β2 − β ′

2

H

n+H

)
SH

N
+ β3

TH

N
− (δ + d)H − θH(2.1)

dV

dt
=φT + θH − dV

dA

dt
=δH − (α + d)A

Initial conditions, S(0) = S0 > 0, T (0) = T0 ≥ 0, H(0) = H0 ≥ 0, V (0) = V0 ≥ 0 and

A(0) = A0 ≥ 0. Since, N(t) = S(t) + T (t) +H(t) + V (t) +A(t), the model (2.1) can

be modified as:

dN

dt
=Q0 − dN − αA

dT

dt
=

(
β1 − β ′

1

T

m+ T

)
(N − T −H − V −A)T

N
− β3TH − (λ+ d)T − φT

dH

dt
=

(
β2 − β ′

2

H

n +H

)
(N − T −H − V − A)H

N
+ β3TH − (δ + d)H − θH(2.2)

dV

dt
=φT + θH − dV

dA

dt
=δH − (α+ d)A

3. Basic Mathematical Properties of the Model

In this section, we discuss some important basic properties of model which are esti-

mated in finding the existence and uniqueness of a solution.

Uniqueness of Solution

Theorem 3.1. Suppose D denotes the domain, and

|t− t0| ≤ a, ‖x− x0‖ ≤ b,(3.1)

where x = (x1, x2, x3, ..., xn), x0 = (x10, x20, x30, ..., xn0).

Also, suppose that g(t, x) satisfies the Lipchitz condition:

‖f(t, x1)− f(t, x2)‖ ≤ k‖x1 − x2‖.(3.2)
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Then, whenever the points (t, x1) and (t, x2) belong to the domain D, where k is used

to represent a positive constant, there exists a constant δ > 0 such that there exists

a unique (exactly one) continuous vector solution x(t) of model (2.1) in the interval

|t − t0| ≤ δ. It is important to note that condition (3.1) is satisfied by requirement

that

{
∂fi

∂xj

: i, j = 1, 2, 3, ..., n

}
is continuous and bounded in the domain D.

Lemma 3.1. If g(t, x) has continuous partial derivatives
∂fi

∂xj

on a bounded closed

convex domain R (i.e, convex set of numbers), where R is used to denote real number,

then it satisfies Lipchitz conditions in R.

Our interest is in the domain 1 ≤ ǫ ≤ R. So, we look for a bounded solution

0 < R < ∞. We now prove the following existence theorem.

Existence of Solution

Theorem 3.2. Let D denote the domain defined in equation (3.1) such that (3.2)

hold. Then, there exists a solution of model system of equations which is bounded

in the domain D.

Proof. Let

f1 =Q0 − dN − αA,

f2 =

(
β1 − β ′

1

T

m+ T

)
(N − T −H − V −A)T

N
− β3TH − (λ+ d)T − φT,

f3 =

(
β2 − β ′

2

H

n+H

)
(N − T −H − V − A)H

N
+ β3TH − (δ + d)H − θH,

f4 =φT + θH − dV,

f5 =δH − (α+ d)A.

We show that

{
∂fi

∂xj

: i, j = 1, 2, 3, 4, 5

}
are contnuious and bounded. We explored

the following partial derivatives for all the model equations.
∣∣∣∣
∂f1

∂N

∣∣∣∣ = | − d| < ∞,

∣∣∣∣
∂f1

∂T

∣∣∣∣ =
∣∣∣∣
∂f1

∂H

∣∣∣∣ =
∣∣∣∣
∂f1

∂V

∣∣∣∣ = |0| < ∞,

∣∣∣∣
∂f1

∂A

∣∣∣∣ = | − α| < ∞,

∣∣∣∣
∂f2

∂N

∣∣∣∣ =
∣∣∣∣
T

N2

[
β1(N − S)− β ′

1

(N − S)T

(m+ T )

]∣∣∣∣ < ∞,

∣∣∣∣
∂f2

∂T

∣∣∣∣ =
∣∣∣∣
[
β1 − ξ1 − β3H − β1

(T +N − S)

N
− β ′

1

(4A+ 2S − T )T

N(m+ T )
− β ′

1

(2N − S)T 2

N(m+ T )2

]∣∣∣∣ < ∞,
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∣∣∣∣
∂f2

∂H

∣∣∣∣ =
∣∣∣∣−

T

N

[
β1 + β3N −

β ′

1T

m+ T

]∣∣∣∣ < ∞,

∣∣∣∣
∂f2

∂V

∣∣∣∣ =
∣∣∣∣

β ′

1T
2

N(m+ T )
−

β1T

N

∣∣∣∣ < ∞,

∣∣∣∣
∂f2

∂A

∣∣∣∣ =
∣∣∣∣

β ′

1T
2

N(m+ T )
−

β1T

N

∣∣∣∣ < ∞,

∣∣∣∣
∂f3

∂N

∣∣∣∣ =
∣∣∣∣
[
β2(T +H + A)HT 2

N
+

β ′

2(T +H + A)TH2

N2(n+H)

]∣∣∣∣ < ∞,

∣∣∣∣
∂f3

∂T

∣∣∣∣ =
∣∣∣∣
H

N

[
β3N − β2 − ξ1 − β ′

2

H

(n +H)

]∣∣∣∣ < ∞,

∣∣∣∣
∂f3

∂H

∣∣∣∣ =
∣∣∣∣
[
β2 − ξ2 − β3T − β2

(H +N − S)

N
− β ′

2

(4T + 2S)H

N(n+H)
− β ′

2

(2N − S)H2

N(n +H)2

]
T

∣∣∣∣ < ∞,

∣∣∣∣
∂f3

∂V

∣∣∣∣ =
∣∣∣∣
H

N

[
β ′

2

H

(n+H)
− β ′

2

]∣∣∣∣ < ∞,

∣∣∣∣
∂f3

∂A

∣∣∣∣ =
∣∣∣∣
H

N

[
β ′

2

H

(n+H)
− β ′

2

]∣∣∣∣ < ∞,

∣∣∣∣
∂f4

∂T

∣∣∣∣ = |φ| < ∞,

∣∣∣∣
∂f4

∂H

∣∣∣∣ = |θ| < ∞,

∣∣∣∣
∂f4

∂V

∣∣∣∣ = | − d| < ∞,

∣∣∣∣
∂f4

∂N

∣∣∣∣ =
∣∣∣∣
∂f4

∂A

∣∣∣∣ =
∣∣∣∣
∂f5

∂N

∣∣∣∣ =
∣∣∣∣
∂f5

∂T

∣∣∣∣ =
∣∣∣∣
∂f5

∂V

∣∣∣∣ = |0| < ∞,

∣∣∣∣
∂f5

∂H

∣∣∣∣ = |δ| < ∞,

∣∣∣∣
∂f5

∂A

∣∣∣∣ = | − (α + d)| < ∞.

�

3.1. Invariant and Attractive Region. The dynamical transmission of the model

(2.1) will be analyzed in the following biologically feasible region Ω ⊂ R
5
+ where

Ω =

{
(S, T,H, V, A) ∈ R

5
+ : S > 0, T ≥ 0, H ≥ 0, V ≥ 0, A ≥ 0 : S+T+H+V +A ≤

Q0

d

}
.

Theorem 3.3. The feasible region Ω ⊂ R
5
+ is positively invariant for the model (2.1)

with respect to initial conditions in R
5
+.

Proof. Since, N = S + T +H + V + A, we have

dN

dt
≤Q0 − dN − αA.(3.3)

The solution of the equation (3.3) is

N(t) =
Q0

d
+

(
N(0)−

Q0

d

)
e−d(t)

Now, taking the limit, we get

lim
t→∞

N(t) ≤
Q0

d
.
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Therefore, for positive value of t, N(t) converges to infinity. So, the solution of the

model (2.1) with initial conditions remains in Ω. Thus, the feasible region Ω is

positively invariant and attracts all solutions in R
5
+. �

3.2. Positivity and Boundedness.

Theorem 3.4. The solution of the model (2.1) is positively bounded for all (S(0), T (0),

H(0), V (0), A(0)) ∈ R
5
+, and also defined for the positive value of time t.

Proof. In order to explore the positive solution, it is required to verify that on every

hyperplane bounding the positive orthant, the vector field point R5
+. From the model

(2.1) we have
dS

dt
(at S = 0) =Q0 + λT ≥ 0

dT

dt
(at T = 0) =0 ≥ 0

dH

dt
(at H = 0) =0 ≥ 0

dV

dt
(at V = 0) =φT + θH ≥ 0

dA

dt
(at A = 0) =δH ≥ 0.

Therefore, the above target set has been achieved and hence the solution will stay in

R
5
+. Thus Ω = (S(0), T (0), H(0), V (0), A(0)) ∈ R

5
+ : S(0), T (0), H(0), V (0), A(0) ≥ 0

is bounded in feasible region. Hence, all terms of the sum are positive and thus the

solution of the model (2.1) is bounded. �

4. The Analysis

The model’s analysis was achieved by measuring the points of equilibrium.

4.1. Equilibrium Analysis. The five possible points of equilibrium are obtained as

follows:

(i) DFE point E0(N, 0, 0, 0, 0) exists for all parameter values as

N =
Q0

d
, T = 0, H = 0, V = 0, A = 0.

(ii) IFE point on HIV/AIDS E1(N
∗, T ∗, 0, V ∗, A∗) is given by

N∗ =
Q0

d
, A1T

∗2 +B1T
∗ + C1 = 0, H∗ = 0, V ∗ =

φT ∗

d
, A∗
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where A1 = −(β1 − β ′

1)N
∗, B1 = −N∗mβ1 + (β1 − β ′

1)− ξ1, C1 = m(β1 − ξ1) in which

ξ1 = (λ + d + φ). Further, since C1 > 0, if (β1 − ξ1) > 0, the model has a unique

HIV/AIDS free equilibrium point.

(iii) IFE point on TB E2(N̂ , 0, Ĥ, V̂ , Â) is

N̂ =
1

d

(
Q0 −

αδĤ

α + d

)
, T̂ = 0, A2Ĥ

2 +B2Ĥ + C2 = 0, V̂ =
θĤ

d
, Â =

δĤ

α + d

where

A2 =− (β2 − β ′

2)

(
δ

α+ d

(
α + d

d
+ 1−

αδξ2

d(α+ d)

))
,

B2 =−
nδβ2

(α+ d)

(
α + d

d

)
− nβ2 + (β2 − β ′

2)N̂ −
nαδξ2

d(α+ d)
− ξ2N̂,

C2 =nN̂(β2 − ξ2)

in which ξ2 = (δ + d + θ). Clearly, C2 > 0, if β2 > ξ2, then the model has single TB

infection free equilibrium point.

(iv) The vaccination free equilibrium point E3(Ń , T́ , H́, 0, Á) is given by

Ń =
1

d

(
Q0 −

αδH́

α + d

)
, V ′ = 0, Á =

δH́

α + d
,

T́ =

Q0

d

[
η1 − ξ1

]
−

[
η1

{
µ

α + d

}
+ β3 + αδ

{
η1 − ξ2

d(α+ d)

}]
H́

η1
,

H́ =

Q0

d

[{
η2 − (β2 − ξ2)

}
+

(
β3 − η2

η1

){
η1 − (β2 − ξ2)

}]

[
β3µ

α + d
+ β3

(
β3 − η2

η1

)
+

αδ

d(α+ d)

[
η1 − ξ1 +

{
η2 − (β2 − ξ2)

}]]

where, µ = α + d+ λ, η1 = (β1 − β ′

1PT ) and η2 = (β2 − β ′

2PH).

(v) The endemic co-infection equilibrium point E4(Ñ , T̃ , H̃, Ṽ , Ã) is given by

Ñ =
1

d

(
Q0 −

αδH̃

α + d

)
, Ṽ =

φT̃

d
+

θH̃

d
, Ã =

δH̃

α + d
,

T̃ =

Q0

d

[
η1 − ξ1

]
−

[
η1

{
µ

α + d

}
+ β3 + αδ

{
η1 − ξ2

d(α+ d)

}]
H̃

η1
,
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H̃ =

Q0

d

[{
η2 − (β2 − ξ2)

}
+

(
β3 − η2

η1

){
η1 − (β2 − ξ2)

}]

[
β3µ

α + d
+ β3

(
β3 − η2

η1

)
+

αδ

d(α + d)

[
η1 − ξ1 +

{
η2 − (β2 − ξ2)

}]] .

4.2. Linear Stability Analysis. We linearize model (2.2) by replacing the equi-

librium points with a minor disturbance by replacing N(t) = N + n(t), T (t) =

T + τ(t), H(t) = H +h(t), V (t) = V + v(t), A(t) = A+a(t) where n(t), τ(t), h(t), v(t)

and a(t), are the small disruption that is induced by points of equilibrium.

4.2.1. Stability of Diseases Free Equilibrium Point E0. The model (2.2) for Jacobian

matrix about equilibrium point E0 is given by

J

(
Q0

d
, 0, 0, 0, 0

)
=




−d 0 0 0 −α

0
Q0

d

[
β1 − ξ1

]
0 0 0

0 0
Q0

d

[
β2 − ξ2

]
0 0

0 ϕ θ −d 0

0 0 δ 0 −(α + d)




The characterstic equation of J is |J − λ′I| = 0, i.e.

(d+ λ′)2(−(α + d+ λ′))

[
Q0

d
(β1 − ξ1)− λ′

][
Q0

d
(β2 − ξ2)− λ′

]
=0(4.1)

Now,

(i)λ′ = −d =⇒ λ′ < 0,

(ii) λ′ = −d =⇒ λ′ < 0,

(iii) λ′ =
Q0

d
(β1 − ξ1) =⇒ λ′ < 0 if β1 < ξ1 =⇒

β1

ξ1
< 1. Here

β1

ξ1
= RT is

reproduction number for the Tuberculosis epidemic,

(iv) λ′ =
Q0

d
(β2 − ξ2) =⇒ λ′ < 0 if β2 < ξ2 =⇒

β2

ξ2
< 1. Again here

β2

ξ2
= RH is

reproduction number for the HIV infection,

(v) λ′ = −(α + d) =⇒ λ′ < 0.

It is observed that the DFE is locally asymptotically stable if RT ,RH is less than

one, the disease will die out and become no longer epidemic; and it becomes unstable

if RT ,RH is greater than one in such case the disease becomes epidemic.
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4.2.2. Stability Analysis of HIV/AIDS Free point E1(N
∗, T ∗, 0, V ∗, A∗). The model

(2.2) for Jacobian matrix about equilibrium point E1 is given by

J(N∗, T ∗, 0, V ∗, A∗) =




−d 0 0 0 −α

D1 F1 G1 H1 I1

0 0 K1 0 0

0 φ θ −d 0

0 0 δ 0 −(α + d)




where

D1 =
d2

Q2
0

[
β1(T

∗ + V ∗)− Tβ ′

1

(T ∗ + V ∗)

(m+ T ∗)

]
T ∗,

F1 =

[
Q0

d

{
β1 − ξ1 −

2β ′

1T
∗

(m+ T ∗)
+

β ′

1T
∗2

(m+ T ∗)2

}
+

{
β ′

1T
∗u

(m+ T ∗)2
+

β ′

1v

(m+ T ∗)
− 2β1

}
T ∗

−β1V
∗

]
,

G1 =−

[
β1 − β ′

1

T ∗

m+ T ∗
− β3

Q0

d

]
T ∗,

H1 =
Q0

d

[
− β1 − β ′

1

T ∗

m+ T ∗

]
T ∗,

I1 =−
d

Q0

[
− β1 − β ′

1

T ∗

m+ T ∗

]
T ∗,

K1 =

[
Q0

d
(β3 − ξ2)−

(
β2 +

Q0

d
β3

)
T ∗ − β3V

∗

]
,

in which u = V ∗ − T ∗ and v = 3T ∗ − 2V ∗.

The characterstic equation of J is given as

|J − λ′I| = 0

λ′5 + a1λ
′4 + a2λ

′3 + a3λ
′2 + a4λ

′ + a5 =0(4.2)

where
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a1 =[3d− F1 −K1 + α],

a2 =[d(2d− 2F1 − 3K1) + F1K1 − φH1 + (d− 2F1 −K1)(α + d)],

a3 =[−d(2dF1 + 2φH1 −K1F1 − 2φK1 − dK1)− (dF1 + 2φH1 − 2dK1 +K1F1)

×(α + d)],

a4 =(α + d)(2dK1F1 − d2(F1 +K1) + φH1(K1 − d)) +K1(d
2F1 + αφH1).

Hence, E1 is unstable due to positive values F1 and K1 and this implies that a1 > 0.

This fails the Routh-Hurwit criterion for stability. By this criterion, E1 is locally

asymptotically stable if ai > 0(i = 1, 2, 3, 4, 5), a1a2 − a3 > 0, a21a4 − a23 > 0 and

a1a2a
2
3 − a1a

2
2a4 − a1a3a4 + a1a2a5 − a23 + a2a3a4 − a1a3a5 > 0, otherwise unstable.

4.2.3. Stability Analysis of TB Free Equilibrium point E2. The model (2.2) for Jaco-

bian matrix about equilibrium point E2 is given by

J(N̂, 0, Ĥ, V̂ , Â) =




−d 0 0 0 −α

0 D2 0 0 0

F2 G2 H2 V2 K2

0 φ θ −d 0

0 0 δ 0 −(α + d)




where

D2 =N̂(β1 − ξ1)− β1(V̂ + Â)− (β1 + β3N̂)Ĥ,

F2 =
1

N̂2

[
β2(N̂

2 + V̂ + Â)− β2
Ĥ(Ĥ + V̂ + Â)

(n + Ĥ)

]
Ĥ,

G2 =

[(
N̂β3 − β3 + β ′

2

Ĥ

n+ Ĥ

)]
Ĥ,

H2 =N̂

[(
β ′

2

Ĥ2

(n+ Ĥ)2
+ β ′

2 − 2β ′

2

Ĥ

n+ Ĥ

)
− ξ2

]
−

[
β ′

2

Ĥw

(n + Ĥ)2
+ 3β2Ĥ − β ′

2

x

(n+ Ĥ)

]

×Ĥ − β2(V̂ + Â),

V2 =−
1

N̂

[
β2 + β ′

2

Ĥ

n+ Ĥ

]
Ĥ,

K2 =−
1

N̂

[
β2 + β ′

2

Ĥ

n+ Ĥ

]
Ĥ,
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in which w = Ĥ + V̂ + Â and x = 3Ĥ + 2V̂ + 2Â.

The characterstic equation of J is given as

|J − λ′I| = 0

λ′5 + b1λ
′4 + b2λ

′3 + b3λ
′2 + b4λ

′ + b5 =0(4.3)

where

b1 =
[
(α+ 3d)− (D2 +H2)

]
,

b2 =
[
(d−H2 − V2)(α + d)− (3D2 + 2H2 + V2)d+ (H2 − α)D2 − θV2

]
,

b3 =
[
(dH2 − θV2 − dD2 +D2(H2 + V2)) + (D2H2 − dH2 − θV2 +D2(H2 + V2))d(δD2

×K2 + θD2V2)
]
,

b4 =
[
dD4H2 − 2d2H2 − 2dθV2 − θD2V2

]
(α+ d)− dD2(dH2 + θV2),

b5 =
[
2d(α+ d)D2(dH2 + θV2)

]
.

Hence, E2 will be asymptotically stable if β1 < ξ1, β2 < ξ2 and is unstable due to

two +ve eigenvalues. According to Ruth-Hurwitz’s E2 will be asymptotically stable

if bi(i = 1, 2, 3, 4, 5), b1b2 − b3 > 0, b21b4 − b23 > 0 and b1b2b
2
3 − b1b

2
2b4 − b1b3b4 + b1b2b5 −

b33 + b2b3b4 − b1b3b5 > 0 and unstable otherwise.

4.2.4. Stability Analysis of Vaccine Free Equilibrium point E3(Ń, T́ , H́, 0, Á). The

model (2.2) for Jacobian matrix about equilibrium point E3 is given by

J(Ń, T́ , H́, 0, Á) =




−d 0 0 0 −α

D3 F3 G3 V3 H3

K3 L M V4 N

0 φ θ −d 0

0 0 δ 0 −(α + d)




where

D3 =
1

N ′2

[(
β1

(T́ + H́ + Á)T́

(m+ T́ )
− β ′

1

(T́ + H́ + Á)T́

(m+ T́ )

)]
T́ ,
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F3 =Ń

[
β1 − ξ1 − β3H́ − 2β ′

1

T ′2

(m+ T́ )2

]
−

[
2β1 − 3β ′

1

T́

(m+ T́ )
S + β ′

1

(T́ + H́ + Á)T́

(m+ T́ )2

]

×T́ +

[
β1 + 2β ′

1

T́

m+ T́

]
H́ +

[
β1 + 2β ′

1

T́

m+ T́

]
Á,

G3 =−
1

Ń

[
β1 + β3Ń − β ′

1

T́

m+ T́

]
T́ ,

V3 =−
1

Ń

[
β1 − β ′

1

T́

m+ T́

]
T́ ,

H3 =−
1

Ń

[
β1 − β ′

1

T́

m+ T́

]
T́ ,

K3 =
1

N ′2

[(
β2(T́ + H́ + Á)− H́

β ′

1T́ + β ′

2(H́ + Á)

(n+ H́)2

)]
H́,

L =

[
β3 −

β3

N
− β ′

2

H́

Ń(n + H́)

]
H́,

M =
1

Ń

[
− 2β2H́ − β2Á + H́

(2β ′

1T́ + β ′

2(3H́ + 2Á))

(n+ H́)
−H ′2 (β

′

1T́ + Á+ β ′

2(H́ + Á))

(n+ H́)2

]

+

[
β2ξ2 + β ′

2

2H́

(n+ H́)
+ β ′

2

H ′2

(n+ H́)2

]
,

V4 =
1

Ń

[
β ′

2

H́

(n+ H́)
− β2

]
H́,

N =
1

Ń

[
β ′

2

H́

(n+ H́)
− β2

]
H́.

The characterstic equation of J is given as

|J − λ′I| = 0

λ′5 + c1λ
′4 + c2λ

′3 + c3λ
′2 + c4λ

′ + c5 =0(4.4)

where

c1 =[2d− F3 −M + (α + d)],

c2 =[dF3 −MF3 +G3L+ V3φ+ dM + V4θ − d(F3 +M − d) + (d− F3 −M + d)

×(α + d)− δN ],
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c3 =[δ(hl + αV3 − 2dN) + (−MdF3 − F3V3θ +G3Ld+D3V4φ+ V3Lθ − V3Mφ)

+d(−MF3 + dF3 +G3L+ V3φ+ dM + V4θ) + (−MF3 + dF3 +G3L+ V3φ

+dM + V4θ) + d(F3 +M − d)(α + d) + δNF3],

c4 =[δ(φ(H3V4 −NV3)− d(H3L− αK3 − dN))− d(F3(d−M) +G3L+ φV3 + dM

+θV4)− (α + d)(dG3L+D3V4 + θLV3 − dF3M − θF3V4 − φMV3 − d(φ(F3 + V3)

+M(d − F3)) +G3L− θV4) + dδNF3],

c5 =[d(α + d)(F3dM − F3V4θ −G3V4φ− V3Lθ + V3Mφ) + δφ(dH3V3 − dH3V4 +D3

×V4 − αV3K3) + d(αD3Lδ − αF3K3θ − LδH3d− F3NLδ) + δ(aD3L− αF3K3

−LH3d− dF3H)].

Clearly, ci > 0(i = 1, 2, 3, 4, 5).

When E3 < 0 then β1 < ξ1,M < 0, β2 < ξ2. From Ruth-Hurwitz that the equation

(4.4) has negative real parts iff β1 < ξ1, β2 < ξ2, c1c2 − c3 > 0, c21c2 − c3 > 0 and

c1c2c
2
3 − c1c

2
2c4 − c1c3c4 + c1c2c5 − c33 + c2c3c4 − c1c3c5 > 0. Under these conditions E3

will be asymptotically stable otherwise unstable.

4.2.5. Stability Analysis of Endemic Equilibrium point E4(Ñ , T̃ , H̃, Ṽ , Ã). The model

(2.2) for Jacobian matrix about equilibrium point E4 is given by

J(Ñ, T̃ , H̃, Ṽ , Ã) =




−d 0 0 0 −α

D4 F4 G4 V5 H4

K4 L M V6 N

0 φ θ −d 0

0 0 δ 0 −(α + d)




where

D4 =
1

Ñ2

[
β1(Ñ − S̃)− β ′

1

(Ñ − S̃)T̃

(m+ T̃ )

]
T̃ ,

F4 =Ñ

[
β1 − ξ1 − β3H̃ − β1

(2Ñ − S̃)

Ñ
− β ′

1

(4Ã+ 2S̃ − T̃ )T̃

Ñ(m+ T̃ )
− β ′

1

(2Ñ − S̃)T̃ 2

(m+ T̃ )2

]
,
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G4 =−
1

Ñ

[
β1 + β3Ñ − β ′

1

T̃

m+ T̃

]
T̃ ,

V5 =−
1

Ñ

[
β1 − β ′

1

T̃

m+ T̃

]
T̃ ,

H4 =−
1

Ñ

[
β1 − β ′

1

T̃

m+ T̃

]
T̃ ,

K4 =
1

Ñ2

[(
β2(T̃ + H̃ + Ã)− H̃

β ′

1T̃ + β ′

2(H̃ + Ã)

(n+ H̃)2

)]
H̃,

L =

[
β3 −

β3

Ñ
− β ′

2

H̃

Ñ(n+ H̃)

]
H̃,

M =
1

Ñ

[
− 2β2H̃ − β2Ã+ H̃

(2β ′

1T̃ + β ′

2(3H̃ + 2Ã))

(n+ H̃)
− H̃2 (β

′

1T̃ + Ã+ β ′

2(H̃ + Ã))

(n+ H̃)2

]

+

[
β2ξ2 + β ′

2

2H̃

(n+ H̃)
+ β ′

2

H̃2

(n+ H̃)2

]
,

V6 =
1

Ñ

[
β ′

2

H̃

(n + H̃)
− β2

]
H̃,

N =
1

Ñ

[
β ′

2

H̃

(n + H̃)
− β2

]
H̃.

The characterstic equation of J is given as

|J − λ′I| = 0

λ′5 + d1λ
′4 + d2λ

′3 + d3λ
′2 + d4λ

′ + d5 =0(4.5)

where

d1 =[2d− F3 −M + (α + d)],

d2 =[d2 −MF3 +G3L+ V3φ+ V4θ + (2d− F3 −M + d)(α)− δN ],

d3 =[δ(hl + αV3 − 2dN) + (−MdF3 − F3V3θ +G3Ld +D3V4φ+ V3Lθ − V3Mφ)

+d(−MF3 + dF3 +G3L+ V3φ+ dM + V4θ) + (−MF3 + dF3 +G3L+ V3φ

+dM + V4θ) + d(F3 +M − d)(α + d) + δNF3],
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d4 =[δ(φ(H3V4 −NV3)− d(H3L− αK3 − dN))− d(F3(d−M) +G3L+ φV3

+dM + θV4)− (α + d)(dG3L+D3V4 + θLV3 − dF3M − θF3V4 − φMV3

−d(φ(F3 + V3) +M(d− F3)) +G3L− θV4) + dδNF3],

d5 =[d(α + d)(F3dM − F3V4θ −G3V4φ− V3Lθ + V3Mφ) + δφ(dH3V3 − dH3V4

+D3V4 − αV3K3) + d(αD3Lδ − αF3K3θ − LδH3d− F3NLδ) + δ(aD3L− α

×F3K3 − LH3d− dF3H)].

Clearly, di > 0(i = 1, 2, 3, 4, 5).

When E4 < 0 then β1 < ξ1,M < 0, β2 < ξ2. From Ruth-Hurwitz that the equation

(4.5) has negative real parts iff β1 < ξ1, β2 < ξ2, d1d2 − d3 > 0, d21d2 − d3 > 0 and

d1d2d
2
3− d1d

2
2d4− d1d3d4+ d1d2d5− d33+ d2d3d4− d1d3d5 > 0. Under these conditions

E4 will be asymptotically stable, otherwise unstable.

5. Optimal Control Model

The HIV/AIDS-TB co-infection model (2.2) is modified to include the optimal control

functions as follows:

dN

dt
=Q0 − dN − αA

dT

dt
=

(
β1 − β ′

1

T

m+ T

)
(N − T −H − V − A)T

N
− β3TH − (ξ1 + l1)T + l3V

dH

dt
=

(
β2 − β ′

2

H

n+H

)
(N − T −H − V −A)H

N
+ β3TH − (ξ2 + l2)H(5.1)

dV

dt
=φT + θH − (d+ l3)V

dA

dt
=(δ + l2)H − (α+ d)A− l1T,

where, l1 represents to aware the infected people in TB class, l2 represents to aware

the infected people in HIV class and l3 represents to vaccinated the co-infected people.

Pontryagin’s Maximum Principle is employed to analyze the optimal control model

given by the non-autonomous model (5.1) with the aim of minimizing infectious hosts,

while keeping the corresponding costs of control implementation as low as possible.

Now, with the help of optimal control theory we will take the behaviour of our model

(5.1). Thus, the objective functional for the optimal control model (5.1) is given
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below:

K(li,Ω) =

∫ Tf

0

(
D1N

2 +D2T
2 +D3H

2 +D4V
2 +D5A

2 + w1l
2
1 + w2l

2
2 + w3l

2
3

)
dt,

(5.2)

where Tf is the final time of control implementation, Ω is the set of all compart-

mental variables, D1, D2, D3, D4, D5 are the positive weight constants for the vari-

ables N, T,H, V, A, respectively. The weight constants for the optimal controls are

li, i = 1, 2, 3. The terms w1l
2
1, w2l

2
2 and w3l

2
3 are the cost functions associated with

infected people in TB, HIV and V, respectively. In accordance with the literature on

optimal control problems, a quadratic cost on controls has been used. The interest

is to find a control l∗ = l∗i , i = 1, 2, 3 satisfying from T = 0 to Tf such that

H(li(t)) =min

{
K(li,Ω)

li
∈ F

}
, i = 1, 2, 3,(5.3)

where F is the smooth function for the interval [0, 1]. Following existence results due

to Rischel and Fleming, the optimal control l∗ exist.

5.1. The Control Characterization. The Pontryagin’s maximum principle gives

the necessary conditions for the existence of the optimal control triplet (l∗1, l
∗

2, l
∗

3) of

the optimal control model (5.1). This principle converts the state model (5.1) and

equation (5.2) with equation (5.3) into a problem of minimizing pointwise a M , with

respect to l1(t), l2(t) and l3(t). Therefore, the Lagrangian function M related to

objective function is given by

M(Ω,Di) = D1N
2 +D2T

2 +D3H
2 +D4V

2 +D5A
2 + w1l

2
1 + w2l

2
2 + w3l

2
3

+λ1(Q0 − dN − αA)

+λ2

((
β1 − β ′

1

T

m+ T

)
(N − T −H − V −A)T

N
− β3TH − (ξ1 + l1)T + l3V

)

+λ3

((
β2 − β ′

2

H

n+H

)
(N − T −H − V −A)H

N
+ β3TH − (ξ2 + l2)H

)(5.4)

+λ4

(
φT + θH − (d+ l3)V

)
+ λ5

(
(δ + l2)H − (α + d)A− l1T

)
.

The co-adjoint equation variables λi = (λ1, λ2, λ3, λ4, λ5) for the system is calculated

by taking the partial derivative of M with respect to each state variable N, T,H, V, A.
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The necessary conditions for the existence of these adjoint state variables are provided

in the following theorem.

Theorem 5.1. Let the optimal control be (l∗1, l
∗

2, l
∗

3) that minimizes objective func-

tional (5.2) over F subject to the model (5.1). Then, there exist adjoint variables

λ1, λ2, λ3, λ4 and λ5 satisfying the adjoint model

λ̇1 =
∂M

∂N
= −2D1N + λ1d− (β1λ2T

2 + β2λ3H
2)

1

N2
− (β1λ2T + β2λ3H)

1

N2
− (β1λ2

+β2λ3)
TH

N2
+

N − S

N2

(
λ2β

′

1T
2

m+ T
+

λ2β
′

2H
2

n+H

)
,

λ̇2 =
∂M

∂T
= −2D2T + (λ2 − λ3)β3H − λ2(β1 − ξ1) + (λ2 − λ5)l1 − λ3β3H − λ4φ+ λ2

×
β1

N
[T +N − S] +

λ2β
′

1T

N(m+ T )2
[3mT + 2m(S + T )− 2T 2 + T (S + T )] +

λ3H

N

×

[
β2 −

β ′

2

N(m+H)

]
,

λ̇3 =
∂M

∂H
= −2D3H(λ2 − λ3)β3T − λ3(β2 − ξ2) + (λ3 − λ5)l2 − λ4θ − λ5δ +

λ3β2

N
[H+

N − S] +
λ3β

′

2H

N(n +H)2
[2n(N + T − V H − 2A)− 3nH +HN ] +

λ2T

N

[
β1 −

β ′

1T

(n+ T )

]
,

λ̇4 =
∂M

∂V
= −2D4V (λ2β1T + λ3β2H)

1

N
−

(
λ2β

′

1T
2

m+ T
+

λ3β
′

2H
2

n+H

)
1

N
+ (λ4 − λ2)l3 + λ4d,

λ̇5 =
∂M

∂A
= −2D5A+ (λ1 + λ5)α+ (λ2β1T + λ3β2H)

1

N
−

(
λ2β

′

1T
2

m+ T
+

λ3β
′

2H
2

n+H

)
1

N

+λ4(α + d),

(5.5)

with final-time conditions

λi(Tf) =0, for i = 1, 2, 3, 4, 5(5.6)

subject to

l∗1 =max

(
c1, min

(
d1,

T (λ2 − λ5)l1
2w1

))
,

l∗2 =max

(
c2, min

(
d2,

H(λ3 − λ5)l2
2w2

))
,(5.7)

l∗3 =max

(
c3, min

(
d3,

V (λ4 − λ2)l3
2w3

))
.
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Proof. The adjoint model (5.5) is derived from the Hamiltonian M in (5.4) as follows:

λ̇1 =
∂M

∂N
, λ̇2 =

∂M

∂T
, λ̇3 =

∂M

∂H
, λ̇4 =

∂M

∂V
, λ̇5 =

∂M

∂A
,

with the final-time conditions

λ1(Tf) =λ2(Tf ) = λ3(Tf ) = λ4(Tf ) = λ5(Tf ) = 0.(5.8)

Further, in order to find the optimal control solution to the objective function (5.7),

we set
∂Mi

∂li
= 0, where, i = 1, 2, 3.

Then, optimal solution set is

l∗i =





0 if l̃1 ≤ 0

l∗i if 0 ≤ l̃i ≤ 1

1 if l̃1 ≥ 1

for i = 1, 2, 3 and where

l̃1 =max

(
c1, min

(
d1,

T (λ2 − λ5)l1
2w1

))
,

l̃2 =max

(
c2, min

(
d2,

H(λ3 − λ5)l2
2w2

))
,

l̃3 =max

(
c3, min

(
d3,

V (λ4 − λ2)l3
2w3

))
.

Hence proved. �

6. Numerical Illustrations

In this section, the fourth order Runga-Kutta method is used to solve the system

of ODEs. We provide a numerical simulation for the model. In MATLAB software

the computer program is encoded. We used different default parameters for the

computing purposes. To select the values of the parameters β ′

1 and β ′

2, we realize that

it should be less than β1 and β2. The default parameter values pick for numerical

simulation purpose are shown in Table 2.

Figure 2 shows the variation of TB versus time for λ = 0.1, 0.5. It has been observed

that as we increase the recovery rate of TB population λ, the TB infected population

goes on decreasing. Figure 3 shows the variation of TB versus time for φ = 0.0009, 0.1.
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Figure 2. Variation of TB population with time for different values

of λ = 0.1, 0.5.
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Figure 3. Variation of TB population with time for different values

of φ = 0.0009, 0.1.

It has been observed that as we increase the vaccination rate for host φ, the TB

infected population goes on decreasing. Figure 4 shows the variation of HIV versus

time for n = 100, 150 with time and then reaches its equilibrium position. It has

been observed that as we increase the media rate for HIV infected population n,
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Figure 4. Variation of HIV population with time for different values

of n = 100, 150.
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Figure 5. Variation of HIV population with time for different values

of β3 = 20, 40.

the HIV infected population goes on decreasing. Figure 5 shows the variation of

HIV versus time for β3 = 20, 40. It has been observed that as we increase the HIV

infected rate β3, the HIV infected population goes on decreasing. Figure 6 shows the

variation of AIDS versus time for α = 0.005, 0.009. It has been observed that as we
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Figure 6. Variation of AIDS population with time for different values

of α = 0.005, 0.009.
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Figure 7. Variation of TB population with time for different values

of m = 100, 150.

increase the induced death rate for AIDS infected population α, the AIDS infected

population goes on decreasing. Figure 7 shows the variation of TB versus time for

m = 100, 150. It has been observed that as we increase the media rate for TB infected

population m, the TB infected population goes on decreasing. Figure 8 shows the
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Figure 8. Variation of HIV population with time for different values

of θ = 0.005, 0.1.
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Figure 9. Variation of HIV population with time for different values

of δ = 0.09, 0.0009.

variation of HIV versus time for θ = 0.005, 0.1. It has been observed that as we

increase the relapse rate θ for hosts population, the HIV infected population goes on

decreasing. It is clear that the HIV infected population decreases meaning thereby

that it increases the full-blown AIDS population. Figure 9 shows the variation of
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Figure 10. Variation of Vaccinated population with time for different

values of φ = 10, 0.1.

HIV versus time for different values of δ = 0.09, 0.0009. It has been observed that

as we increase δ (transmission rate from HIV population to full blown AIDS), the

curve of HIV infected population decreases exponentially with time. Finally, Figure

10 demonstrates the variation of vaccinated population (V) versus time for different

values of φ = 10, 0.1. It has been observed that as we increase the vaccination rate φ

for hosts population, the vaccinated population decreases. So, it is clear that as we

administrate the vaccination to the infected people, the positive results are seen.

Overall, it is concluded that if TB infection is treated properly then HIV infection can

be kept under control and the effective media awareness can lower the transmission

dynamics of epidemics, not completely but to a greater extent.

Conclusion

To assess the role of knowledge in the prevention and control of co-infection with

TB & HIV/AIDS, a non-linear compartment model was developed. The stability of

E0, E1, E2, E3 and E4 is presented. The DFE E0 is stable if β1 < ξ1 and β2 < ξ2. The

point E1 is local asymptotically stable if it satisfies the condition given in stability

criteria of E1. The point E2 shows the Tuberculosis free population and is unstable

due to the presence of positive eigen values. The vaccination free point E4 is locally
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asymptotically stable if it satisfies the condition given in stability criteria of E4. The

endemic point E5 is locally asymptotically stable if it satisfies the condition given

in stability criteria of E5. Similarly, the same case will occur in the case of HIV

epidemic. It is observed that if β1, and β2, are equal to zero, there is no change in the

basic reproduction numbers as they are independent of media effects. But it has been

noticed that values of the parameters m,n, β1, and β2, change the equilibrium points,

local stability of HIV/AIDS free point and TB free point holds good when RH ,RT

are greater than unity, otherwise these points become diseases free points. The two

cases for media alert for TB and HIV epidemics are β(T ) =

(
β1 − β ′

1

T

m+ T

)
and

β(H) =

(
β2−β ′

2

H

n +H

)
. This implies that when Tuberculosis begins to spread, the

media works for the awareness immediately and advises the masses to take protective

measures to fight against the disease.

Again when
∂β(H)

∂β ′

2

=
H

n+H
< 0, it is clear that for the bigger values of the

rate β ′

1, the transmission rate is smaller. The investigation done may be helpful to

health organizations, social workers and practitioners in hospital in understanding

the complex nature of dynamics of the fatal diseases namely; HIV/AIDS and TB;

the final outcome may be further used for the prevention and control of these diseases.

The impact of covid-19 on this model which will be studied as the future reference

of this course.
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