.

SOME PROPERTIES OF BALANCING NUMBERS

JEBREL M. HABEB

ABSTRACT. In this paper we discuss some aspects and properties of Balancing Numbers and some other related numbers. We prove, among other things, that a balancing number cannot be a power of a prime integer. We give some identities concerning these numbers and its related numbers. We use linear algebra techniques to write a balancing number and its related numbers in the Binet form.

1. Introduction

In ([1]), Behera and Panda gave the definition of a balancing number as follows:

Definition 1.1. A natural number n is a balancing number if there is a natural number r such that the ordered pair (n; r) is a solution for the Diophantine equation

$$(1.1) 1 + 2 + \dots + (n-1) = (n+1) + (n+2) + \dots + (n+r)$$

The natural number r is called the balancer for the balancing number n. Let

(1.2)
$$T_n = 1 + 2 + \dots + (n-1) + n = \frac{n(n+1)}{2}$$

be the *n*-th triangular number and let $S_n = n^2$ be the *n*-th square number. Notice that

$$T_{n-1} + T_n = n^2 = S_n$$

Received: April 21, 2021 Accepted: Aug. 17, 2021.

 $^{2020\} Mathematics\ Subject\ Classification.\ 11A05;\ 11B37;\ 11B39;\ 11B83.$

Key words and phrases. Balancing numbers, balancers, balancing matrices, Binet form, Diophantine equation, Lucas-balancing numbers, Pell's equation.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

By adding $1 + 2 + \cdots + (n-1) + n$ to both sides of (1.1) we have

$$(1.3) S_n = n^2 = T_n + T_{n-1} = T_{n+r}$$

So (1.1) can be rephrased as to find two natural numbers n and r such that the sum of two consecutive triangular numbers is a triangular number which is at the same time a square number. So we can say that the positive integer n is a balancing number with balancer r if and only if the (n+r)-th triangular number is the n-th square number. For example $T_6+T_5=T_8$ (here n=6, r=2) and $T_{35}+T_{34}=T_{49}$ (here n=35, r=14).

Now equation (1.1) is indeed of the form $T_{n-1} = nr + T_r$. So it can be written as a quadratic equation (in r):

$$(1.4) r^2 + (2n+1)r + (n-n^2) = 0$$

Solving this equation for r we have

(1.5)
$$r = \frac{(-2n-1) + \sqrt{8n^2 + 1}}{2}$$

Clearly the numerator is an even integer, and hence in order that n becomes a balancing number and r a balancer for n, r must be a root of equation (1.4) and $8n^2 + 1$ is an odd perfect square.

On the other hand equation (1.1) can also be regarded as a quadratic equation (in n)

$$(1.6) n^2 - (2r+1)n - (r^2+r) = 0$$

Hence

(1.7)
$$n = \frac{(2r+1) + \sqrt{8r^2 + 8r + 1}}{2}$$

In this case we can say that in order n to be a balancing number with balancer r, n must be a root of equation (1.6) and $8r^2 + 8r + 1$ must be an odd perfect square. Let us denote the n-th balancing number by B_n and its corresponding n-th balancer by r_n . Therefore Equations ((1.5) and (1.7)) above become

(1.8)
$$r_n = \frac{(-2B_n - 1) + \sqrt{8B_n^2 + 1}}{2}$$

and

(1.9)
$$B_n = \frac{(2r_n + 1) + \sqrt{8r_n^2 + 8r_n + 1}}{2}$$

respectively.

2. Some Further Results on Balancing Numbers

There is a clear relation between the n-th balancing number B_n and its n-th balancer r_n as we can see in the following theorem.

Theorem 2.1.
$$\lim_{n\to\infty} \frac{r_n}{B_n} = \sqrt{2} - 1$$

Proof. Using formulae ((1.8) and (1.9)) we have

$$\lim_{n \to \infty} \frac{r_n}{B_n} = \lim_{n \to \infty} \frac{\frac{(-2B_n - 1) + \sqrt{8B_n^2 + 1}}{2}}{B_n}$$

$$= \lim_{n \to \infty} -1 - \frac{1}{2B_n} + \frac{\sqrt{8 + \frac{1}{B_n^2}}}{2}$$

$$= -1 + \frac{\sqrt{8}}{2} \text{ (since } \lim_{n \to \infty} \frac{1}{B_n} = 0\text{)}$$

$$= \sqrt{2} - 1 \approx 0.4142.$$

Clearly $\lim_{n\to\infty} \frac{B_n}{r_n} = \sqrt{2} + 1$.

Table 1 below gives the first eight balancing numbers B_n 's with their corresponding balancers r_n 's and the ratios (upto the first four decimals) $\frac{r_n}{B_n}$. We see from Table 1 that we achieved the approximate ratio of the n-th balancer by the n-th balancing number $(\sqrt{2}-1)$ immediately at the seventh place.

Behera and Panda in ([1]) showed that the balancing numbers satisfy the second order linear recurrence relation by the identity

$$(2.1) B_{n+1} = 6B_n - B_{n-1} for n \in \mathbb{N}$$

Identity (2.1) shows that B_n and B_{n+1} have the same parity i.e., both are even or both are odd.

Table 1.

nth	B_n	r_n	$\frac{r_n}{B_n}$
1	1	0	0
2	6	2	0.3333
3	35	14	0.4000
4	204	84	0.4117
5	1189	492	0.4138
6	6930	2870	0.4141
7	40391	16730	0.4142
8	235416	97512	0.4142

Now if B_n is the *n*-th balancing number, then, as we mentioned above, $8B_n^2 + 1$ is an odd perfect square, say m^2 , for some odd integer m. So we have

$$(2.2) 8B_n^2 + 1 = m^2.$$

Let us change notation for a while and write this equation as $8x^2 + 1 = y^2$, where x, y are integers. This is in fact a Pell's equation (See [12] Page 553) of the form

$$(2.3) y^2 - 8x^2 = 1.$$

Clearly the ordered pair $(1,3) = (x_1, y_1)$ is a fundamental solution of (2.3). The *n*-th solution (x_n, y_n) of (2.3) can be found by the following equations (See [12] Theorem 13.12):

(2.4)
$$y_n + x_n \sqrt{8} = (3 + \sqrt{8})^n$$
 and $y_n - x_n \sqrt{8} = (3 - \sqrt{8})^n$

In fact x_n is the *n*-th balancing number B_n . Let us denote $3 + \sqrt{8}$ by γ and $3 - \sqrt{8}$ by δ . Then $\gamma + \delta = 6$, $\gamma \delta = 1$. Let us denote y_n by C_n . Clearly from the two equations in (2.4), we have

$$(2.5) B_n = \frac{\gamma^n - \delta^n}{2\sqrt{8}}$$

and

$$(2.6) C_n = \frac{\gamma^n + \delta^n}{2}$$

 C_n is called the n-th Lucas-balancing number (See [7]). Formulae ((2.5) and (2.6)) are the Binet form of B_n and C_n respectively (See [2]).

Now

$$(2.7) \qquad \sqrt{8B_n^2 + 1} = \sqrt{8(\frac{\gamma^n - \delta^n}{4\sqrt{2}})^2 + 1} = \sqrt{(\frac{\gamma^n + \delta^n}{2})^2} = \frac{\gamma^n + \delta^n}{2}.$$

This shows that $C_n = \sqrt{8B_n^2 + 1}$.

Theorem 2.2. For each integer $n \geq 1$, we have

(1)
$$C_{n+1} = 6C_n - C_{n-1}$$
. (See [13] proved for $n \ge 2$)

(2)
$$C_{n+1} = 3C_n + 8B_n$$
.

(3)
$$2C_n^2 - C_{2n} = 1$$
.

$$(4) \ \frac{1}{8} (C_{n-1}C_{n+1} - C_n^2) = 1.$$

Proof. (1) Since B_n is a balancing number, clearly $C_n = \sqrt{8B_n^2 + 1}$ is an integer.

$$6C_{n} - C_{n-1} = 6\left(\frac{\gamma^{n} + \delta^{n}}{2}\right) - \left(\frac{\gamma^{n-1} + \delta^{n-1}}{2}\right)$$

$$= \frac{6\gamma^{n} + 6\delta^{n} - \gamma^{n-1} - \delta^{n-1}}{2}$$

$$= \frac{\gamma^{n-1}(6\gamma - 1) + \delta^{n-1}(6\delta - 1)}{2}$$

$$= \frac{\gamma^{n-1}(17 + 6\sqrt{8}) + \delta^{n-1}(17 - 6\sqrt{8})}{2}$$

$$= \frac{\gamma^{n-1}(\gamma^{2}) + \delta^{n-1}(\delta^{2})}{2}$$

$$= \frac{\gamma^{n+1} + \delta^{n+1}}{2} = C_{n+1}.$$

For (2), consider C_{n+1} .

$$C_{n+1} = \frac{\gamma^{n+1} + \delta^{n+1}}{2} = \frac{\gamma \gamma^n + \delta \delta^n}{2}$$

$$= \frac{(3 + \sqrt{8})\gamma^n + (3 - \sqrt{8})\delta^n}{2}$$

$$= \frac{3(\gamma^n + \delta^n)}{2} + \frac{\sqrt{8}(\gamma^n - \delta^n)}{2}$$

$$= \frac{3(\gamma^n + \delta^n)}{2} + \frac{8(\gamma^n - \delta^n)}{4\sqrt{2}}$$

$$= 3C_n + 8B_n.$$

For (3), we have

$$2C_n^2 - C_{2n} = 2(\frac{\gamma^n + \delta^n}{2})^2 - \frac{\gamma^{2n} + \delta^{2n}}{2}$$
$$= \frac{\gamma^{2n} + \delta^{2n} + 2\gamma^n \delta^n - \gamma^{2n} - \delta^{2n}}{2}$$
$$= \gamma^n \delta^n = 1 \text{ (since } \gamma \delta = 1).$$

For (4), we have

$$C_{n-1}C_{n+1} - C_n^2 = \frac{(\gamma^{n-1} + \delta^{n-1})(\gamma^{n+1} + \delta^{n+1})}{4} - \frac{(\gamma^n + \delta^n)^2}{4}$$
$$= \frac{\gamma^{2n} + \gamma^{n-1}\delta^{n-1}\delta^2 + \delta^{n-1}\gamma^{n-1}\gamma^2 + \delta^{2n}}{4}$$
$$= \frac{\delta^2 + \gamma^2 - 2}{4} = 8.$$

Theorem 2.3. For each integer $n \geq 1$, we have

(1)
$$\gamma^n = C_n + \sqrt{8}B_n$$
 and

$$(2) \delta^n = C_n - \sqrt{8}B_n.$$

Proof. Straightforward from the definition of B_n and C_n .

Let $\Gamma_n = \gamma^n$ and $\Delta_n = \delta^n$. Then Γ_n and Δ_n can be regarded as elements in the quadratic number ring $\mathbb{Z}[\sqrt{2}]$. Although these two elements are not integers, they do satisfy Identity (2.1) as the following theorem shows.

Theorem 2.4. For each integer $n \geq 0$, we have

(1)
$$\Gamma_{n+2} = 6\Gamma_{n+1} - \Gamma_n$$
.

$$(2) \Delta_{n+2} = 6\Delta_{n+1} - \Delta_n.$$

Proof. Direct calculations by mathematical induction on n.

Theorem 2.5. For each integer $n \geq 1$, we have

(1)
$$\Gamma_n = \gamma B_n - B_{n-1}$$
.

$$(2) \ \Delta_n = \delta B_n - B_{n-1}.$$

Proof. By mathematical induction on n.

For
$$n = 1$$
, it is clear that $\gamma = 3 + \sqrt{8} = 1.(3 + \sqrt{8}) - 0 = \gamma B_1 - B_0$, since $B_1 = 1$ and

 $B_0 = 0$. Similar calculations show that for n = 2, we have $\gamma^2 = \gamma B_2 - B_1 = 6\gamma - 1$. Now suppose that the statement is true for n = k. Then $\Gamma_k = \gamma B_k - B_{k-1}$. For n = k + 1 we have

$$\Gamma_{k+1} = \gamma \Gamma_k = \gamma (\gamma B_k - B_{k-1}) = \gamma^2 B_k - \gamma B_{k-1}$$

$$= (6\gamma - 1)B_k - \gamma B_{k-1} \text{ (since } \gamma^2 = 6\gamma - 1)$$

$$= 6\gamma B_k - B_k - \gamma B_{k-1} = \gamma (6B_k - B_{k-1}) - B_k$$

$$= \gamma B_{k+1} - B_k \text{ by Identity (2.1)}.$$

Hence we have (1). Similarly we can prove (2).

Theorem 2.6. For each integer $n \geq 1$, we have

$$(1) \ 2B_n C_n = B_{2n}$$

(2)
$$C_{2n} = 1 + 16B_n^2$$

Proof. Using the Binet (Formulae (2.5) and (2.6)) forms of B_n and C_n it is easy to establish (1) and (2).

Now using the Binomial Theorem we can prove the following theorem

Theorem 2.7. For each integer $n \geq 1$, we have

(1)
$$B_n = \sum_{k=0}^{\left[\frac{n-1}{2}\right]} {n \choose 2k+1} 3^{n-2k-1} 2^{3k}$$
, and
(2) $C_n = \sum_{k=0}^{\left[\frac{n}{2}\right]} {n \choose 2k} 3^{n-2k} 2^{3k}$

where [x] denotes the greatest integer function.

Proof. (1) By the Binet (Formula (2.5)) form we have $B_n = \frac{\gamma^n - \delta^n}{2\sqrt{8}} = \frac{(3+\sqrt{8})^n - (3-\sqrt{8})^n}{2\sqrt{8}}$. Now by the Binomial Theorem we have

$$(3+\sqrt{8})^n = \sum_{k=0}^n \binom{n}{k} 3^{n-k} 2^{3k/2}$$

and

$$(3 - \sqrt{8})^n = \sum_{k=0}^n \binom{n}{k} 3^{n-k} (-1)^k 2^{3k/2}$$

Now if k=2l an even integer then the k-th coefficient of $(3+\sqrt{8})^n-(3-\sqrt{8})^n$ equals zero. But if k=2l+1 an odd integer, then the k-th coefficient of $(3+\sqrt{8})^n-(3-\sqrt{8})^n$

equals $2\sqrt{8}\binom{n}{2l+1}3^{n-2l-1}2^{3k}$. This implies that $B_n = \sum_{k=0}^{\left[\frac{n-1}{2}\right]}\binom{n}{2k+1}3^{n-2k-1}2^{3k}$. (2) Similar to (1).

Theorem 2.8. A balancing number cannot be a power of a prime integer.

Proof. Suppose that p is a prime integer and p^n is a balancing number for some positive integer n. Then, by equation (1.5), $8(p^n)^2 + 1$ must be an odd perfect square, say m^2 with m = 2k + 1 is an odd integer for some positive integer k. So we have $8p^{2n} + 1 = m^2$, and hence $8p^{2n} = m^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k$. Canceling 4 from both sides we get

$$(2.8) 2p^{2n} = k(k+1)$$

Clearly k, k + 1 are relatively prime. We consider two cases:

Case (1) The prime integer p=2. In this case (2.8) becomes $2^{2n+1}=k(k+1)$. This implies, being k, k+1 are relatively prime, that either $k=2p^{2n+1}$ or $k+1=2p^{2n+1}$. If $k=2p^{2n+1}$, then k+1=1, which is a contradiction since k is a positive integer. If $k+1=2p^{2n+1}$, then k=1 and hence we have $2^{2n+1}=2$ which means n=0, another contradiction since n is assumed to be a positive integer.

Case (2) The prime integer p is odd. Equation (2.8) implies that 2|k(k+1). Since k, k+1 are relatively prime integers, we have 2|k or 2|k+1. If 2|k, then $k=2^ab$ for some positive integers a and b. But this implies $2p^{2n}=2^ab(2^ab+1)$. Cancelling 2 from both sides, we get $p^{2n}=2^{a-1}b(2^ab+1)$. Since the left hand side is not divisible by 2, a must equal to 1, and the equation becomes $p^{2n}=b(2b+1)$. Again, since b, b+1 are relatively prime, we have either $b=p^{2n}$ or $2b+1=p^{2n}$. If $b=p^{2n}$, then 2b+1=1 and hence b=0, a contradiction. If $2b+1=p^{2n}$, then b=1 and $p^{2n}=3$. But this implies p=3 and 2n=1, another contradiction since n is an integer. So the only balancing number that is a power of a prime integer is $B_1=1=p^0$.

Lemma 2.1. $\lim_{n\to\infty} \frac{B_{n+1}}{B_n} = \gamma$.

Proof. Let $\lim_{n\to\infty} \frac{B_{n+1}}{B_n} = \mu$. Then

$$\mu = \lim_{n \to \infty} \frac{B_{n+1}}{B_n} = \lim_{n \to \infty} \frac{6B_n - B_{n-1}}{B_n}, \text{ (by (2.1))}$$

$$= 6 - \lim_{n \to \infty} \frac{B_{n-1}}{B_n}$$

$$= 6 - \frac{1}{\mu}.$$

This implies $\mu^2 - 6\mu + 1 = 0$. Hence $\mu = \gamma$.

Lemma 2.2. $\sum_{n=1}^{\infty} \frac{1}{B_n}$ is a convergent series.

Proof. Since the series $\sum_{n=1}^{\infty} \frac{1}{B_n}$ is a series of positive terms of real numbers, we apply the ratio test for convergence. Consider

$$\lim_{n \to \infty} \frac{1/B_{n+1}}{1/B_n} = \lim_{n \to \infty} \frac{B_n}{B_{n+1}} = \frac{1}{\gamma} \text{ (by (2.1))}.$$

But $\frac{1}{\gamma} = 3 - \sqrt{8} < 1$, hence the series converges.

Theorem 2.9. $\sum_{n=1}^{\infty} \frac{B_n}{6^n} = 6$.

Proof. Let $S = \sum_{n=1}^{\infty} \frac{B_n}{6^n}$. Then

$$S = \sum_{n=1}^{\infty} \frac{B_n}{6^n} = \frac{1}{6} + \sum_{n=2}^{\infty} \frac{B_n}{6^n}$$

$$= \frac{1}{6} + \sum_{n=1}^{\infty} \frac{B_{n+1}}{6^{n+1}}$$

$$= \frac{1}{6} + \sum_{n=1}^{\infty} \frac{6B_n - B_{n-1}}{6^{n+1}} \text{ (by (2.1))}$$

$$= \frac{1}{6} + \sum_{n=1}^{\infty} \frac{B_n}{6^n} - \sum_{n=1}^{\infty} \frac{B_{n-1}}{6^{n+1}}$$

$$= \frac{1}{6} + S - \frac{1}{36} \sum_{n=1}^{\infty} \frac{B_n}{6^n}$$

$$= \frac{1}{6} + S - \frac{1}{36} (0 + \sum_{n=1}^{\infty} \frac{B_n}{6^n})$$

$$= \frac{1}{6} + S - \frac{1}{36} (0 + S).$$

Hence $\frac{S}{36} = \frac{1}{6}$. Therefore S = 6.

Lemma 2.3. Let n be positive integer. If 8n + 1 is a perfect square, then n is a triangular number.

Proof. Suppose $8n + 1 = m^2$, a perfect square integer. Then clearly m is an odd integer. Now since m is odd, we have

$$n = \frac{m^2 - 1}{8} = \frac{(m-1)(m+1)}{8} = \frac{\left(\frac{m-1}{2}\right)\left(\frac{m+1}{2}\right)}{2} = \frac{\left(\frac{m-1}{2}\right)\left(\frac{m-1}{2} + 1\right)}{2} = T_{\frac{m-1}{2}}.$$

Hence n is a triangular number.

Remark 1. (1) As a quick application of this lemma and since $C_n = \sqrt{8B_n^2 + 1}$ and since $8B_n^2 + 1$ is a perfect square, we have $B_n^2 = T_{\frac{C_{n-1}}{2}}$ a triangle integer.

(2) In ([6]), Luo proved that the only triangular numbers whose squares are also triangular numbers are 1 and 6. Hence by the above lemma the only balancing numbers which are also triangular numbers are 1 and 6.

Theorem 2.10. For each integer $n \ge 1$, we have

- (1) $(B_{n+1}-2B_n)^2-1$ is a triangular number.
- (2) $(B_{n+1} 4B_n)^2 1$ is a triangular number.

Proof. (1) Let
$$A = (B_{n+1} - 2B_n)^2 - 1$$
. Then

$$A = (3B_n + \sqrt{8B_n^2 + 1} - 2B_n)^2 - 1 \text{ (by ([7])}$$
$$= (B_n + \sqrt{8B_n^2 + 1})^2 - 1$$
$$= 9B_n^2 + 2B_n\sqrt{8B_n^2 + 1}.$$

Now

$$8A + 1 = 72B_n^2 + 16B_n\sqrt{8B_n^2 + 1} + 1$$

$$= 64B_n^2 + 16B_n\sqrt{8B_n^2 + 1} + 8B_n^2 + 1$$

$$= (8B_n + \sqrt{8B_n^2 + 1})^2 \text{ is a perfect square.}$$

Therefore, by Lemma (2.3), $A = (B_{n+1} - 2B_n)^2 - 1$ is a triangular number. By similar arguments we can prove (2).

3. Binet Form of the Balancing Numbers by Linear Algebra

Consider the matrix

$$A = \left[\begin{array}{cc} 0 & 1 \\ -1 & 6 \end{array} \right].$$

Then clearly det(A) = 1, and its inverse is

$$A^{-1} = \left[\begin{array}{cc} 6 & -1 \\ 1 & 0 \end{array} \right]$$

As P. K. Ray ([10] and [11]) observed, Formula (2.1) can be written in matrix form as

$$\begin{bmatrix} B_n \\ B_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 6 \end{bmatrix} \begin{bmatrix} B_{n-1} \\ B_n \end{bmatrix}$$

and for each positive integer n, the matrix A^n , (See [10]), equals

$$A^n = \begin{bmatrix} -B_{n-1} & B_n \\ -B_n & B_{n+1} \end{bmatrix}$$

which can be proved by induction on the natural number n and using Identity (2.1). For instance since $det(A^n) = (det(A)^n = 1)$, we have the Cassini formula (See [13]) $B_n^2 - B_{n-1}B_{n+1} = 1$ for each positive integer n.

Now let us consider the eigenvalues and eigenvectors of the matrix A. The characteristic equation of A is $det(\lambda I - A) = \lambda^2 - 6\lambda + 1 = 0$. This equation has two real roots, $\lambda = 3 + \sqrt{8}$ and $\lambda = 3 - \sqrt{8}$. Let us write the two roots as $\gamma = 3 + \sqrt{8}$ and $\delta = 3 - \sqrt{8}$ and observe that $\gamma \delta = 1$. The eigenvectors corresponding to γ can be found by solving the matrix equation

$$\left[\begin{array}{cc} \gamma & -1 \\ 1 & -\delta \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right]$$

which implies $\gamma x - y = 0$ and hence $y = \gamma x$. Now a basis for the eigenspace corresponding to the eigenvalue γ is

$$\left\{ \left[\begin{array}{c} 1\\ \gamma \end{array}\right] \right\}$$

Similarly a basis for the eigenspace corresponding the eigenvalue δ is

$$\left\{ \left[\begin{array}{c} 1\\\delta \end{array}\right] \right\}$$

Now since the matrix A has two distinct eigenvalues, it is diagonalizable, and A is similar to the diagonal matrix

$$D = \left[\begin{array}{cc} \gamma & 0 \\ 0 & \delta \end{array} \right]$$

The matrix P that diagonalizes the matrix A is

$$P = \left[\begin{array}{cc} 1 & 1 \\ \gamma & \delta \end{array} \right]$$

Clearly $P^{-1}AP = D$ and of course $A = PDP^{-1}$ and clearly for each positive integer n we have $A^n = PD^nP^{-1}$. This last equation gives us another way to find a closed form for the value of the balancing number B_n which is called the Binet formula for B_n (See for example [9]).

Theorem 3.1. $B_n = \frac{\gamma^n - \delta^n}{4\sqrt{2}}$

Proof. We have $A^n = PD^nP^{-1}$. Hence

$$A^{n} = \begin{bmatrix} -B_{n-1} & B_{n} \\ -B_{n} & B_{n+1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} \gamma^{n} & 0 \\ 0 & \delta^{n} \end{bmatrix} \begin{bmatrix} \frac{-\delta}{4\sqrt{2}} & \frac{1}{4\sqrt{2}} \\ \frac{\gamma}{4\sqrt{2}} & \frac{-1}{4\sqrt{2}} \end{bmatrix}$$

Therefore

$$A^{n} = \begin{bmatrix} -B_{n-1} & B_{n} \\ -B_{n} & B_{n+1} \end{bmatrix} = \begin{bmatrix} \frac{\delta^{n-1} - \gamma^{n-1}}{4\sqrt{2}} & \frac{\gamma^{n} - \delta^{n}}{4\sqrt{2}} \\ \frac{\delta^{n} - \gamma^{n}}{4\sqrt{2}} & \frac{\delta^{n+1} - \gamma^{n+1}}{4\sqrt{2}} \end{bmatrix}$$

This implies that $B_n = \frac{\gamma^n - \delta^n}{4\sqrt{2}}$.

References

- [1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fib. Quart. 37 (1999), 98–105.
- [2] R. K. Davala, G. K. Panda, On sum and ratio formulas for Lucas-balancing numbers, *Palestine Journal of Mathematics*, **8(2)** (2019), 200–206.
- [3] R. Gautam, Balancing Numbers and Applications, Journal of Advanced College of Engineering and Management, 4 (2018), 137–143.

- [4] O. Karaatli, R. Keskin, On some Diophantine equations related to square triangular and balancing numbers, Journal of Algebra, Number Theory: Advances and Applications, 4(2) (2010), 71–89.
- [5] R. Keskin, O. Karaatli, Some new properties of balancing numbers and square triangular numbers, *Journal of Integer Sequences*, **15** (2012), Article 12.1.4, 1–13.
- [6] M. Luo, On the Diophantine equation $[(x(x-1))/2]^2 = (y(y-1))/2$, Fib. Quart. **34** (1996), 277–279.
- [7] G. K. Panda, Some fascinating properties of balancing numbers, Proceedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Cong. Numer. 194 (2009) 185–89.
- [8] G. K. Panda, Sequence Balancing and Cobalancing Numbers, *Fibonacci Quarterly*, August (2007), 1–9.
- [9] B. Prasad Coding theory on balancing numbers, Int. J. Open Problems Compt. Math. 11(4) (2018), 73–85.
- [10] P. K. Ray, Balancing and Cobalancing Numbers, Doctoral Thesis, National Institute of Technology, Rourkela, 2009.
- [11] P. K. Ray, Certain amtrices associated with balancing and Lucas-balancing numbers, *MATEM-ATIKA*, **28(1)** (2012), 15–22.
- [12] K. H. Rosen, Elementary Number Theory and its Applications, Addison-Wesley Comp., 1993.
- [13] S. Swain, C. Pratihary and P. K. Ray, Balancing and Lucas-balancing numbers and their application to cryptography, *Computer Engineering and Applications*, **5(1)** (2016), 29–36.
- [14] N. Taş, S. Uçar and N. Y. Özgür, Pell coding and Pell decoding methods with some applications, Contributions to Discrete Mathematics 15(1) (2020), 52–66.
- [15] N. Taş, S. Uçar, N. Y. Özgür, and Ö. Kaymak, A new coding/decoding algorithm using Fibonacci numbers, Discrete Mathematics, Algorithms and Applications 10(2) (2018).1850028, 8 pp (2018). (ESCI)
- [16] S. Uçar, N. Taş and N. Y. Özgür, A New application to coding theory via Fibonacci and Lucas numbers, *Mathematical Sciences and Applications E-Notes*, **7(1)** (2019), 62–70.

DEPARTMENT OF MATHEMATICS, YARMOUK UNIVERSITY, IRBID, JORDAN *Email address*: jhabeb@yu.edu.jo