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SOME PROPERTIES OF BALANCING NUMBERS

JEBREL M. HABEB

Abstract. In this paper we discuss some aspects and properties of Balancing

Numbers and some other related numbers. We prove, among other things, that a

balancing number cannot be a power of a prime integer. We give some identities

concerning these numbers and its related numbers. We use linear algebra techniques

to write a balancing number and its related numbers in the Binet form.

1. Introduction

In ([1]), Behera and Panda gave the definition of a balancing number as follows:

Definition 1.1. A natural number n is a balancing number if there is a natural

number r such that the ordered pair (n; r) is a solution for the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n + r)(1.1)

The natural number r is called the balancer for the balancing number n. Let

Tn = 1 + 2 + · · ·+ (n− 1) + n =
n(n+ 1)

2
(1.2)

be the n-th triangular number and let Sn = n2 be the n-th square number. Notice

that

Tn−1 + Tn = n2 = Sn
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By adding 1 + 2 + · · ·+ (n− 1) + n to both sides of (1.1) we have

Sn = n2 = Tn + Tn−1 = Tn+r(1.3)

So (1.1) can be rephrased as to find two natural numbers n and r such that the sum of

two consecutive triangular numbers is a triangular number which is at the same time

a square number. So we can say that the positive integer n is a balancing number with

balancer r if and only if the (n+ r)-th triangular number is the n-th square number.

For example T6+T5 = T8 (here n = 6, r = 2) and T35+T34 = T49 (here n = 35, r = 14).

Now equation (1.1) is indeed of the form Tn−1 = nr + Tr. So it can be written as a

quadratic equation (in r):

r2 + (2n+ 1)r + (n− n2) = 0(1.4)

Solving this equation for r we have

r =
(−2n− 1) +

√
8n2 + 1

2
(1.5)

Clearly the numerator is an even integer, and hence in order that n becomes a bal-

ancing number and r a balancer for n, r must be a root of equation (1.4) and 8n2+1

is an odd perfect square.

On the other hand equation (1.1) can also be regarded as a quadratic equation (in n)

n2 − (2r + 1)n− (r2 + r) = 0(1.6)

Hence

n =
(2r + 1) +

√
8r2 + 8r + 1

2
(1.7)

In this case we can say that in order n to be a balancing number with balancer r, n

must be a root of equation (1.6) and 8r2 + 8r + 1 must be an odd perfect square.

Let us denote the n-th balancing number by Bn and its corresponding n-th balancer

by rn. Therefore Equations ((1.5) and (1.7)) above become

rn =
(−2Bn − 1) +

√

8B2
n + 1

2
(1.8)
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and

Bn =
(2rn + 1) +

√

8r2n + 8rn + 1

2
(1.9)

respectively.

2. Some Further Results on Balancing Numbers

There is a clear relation between the n-th balancing number Bn and its n-th balancer

rn as we can see in the following theorem.

Theorem 2.1. limn→∞
rn
Bn

=
√
2− 1

Proof. Using formulae ((1.8) and (1.9)) we have

lim
n→∞

rn
Bn

= lim
n→∞

(−2Bn−1)+
√

8B2
n+1

2

Bn

= lim
n→∞

−1 − 1

2Bn

+

√

8 + 1
B2

n

2

= −1 +

√
8

2
(since lim

n→∞

1

Bn

= 0)

=
√
2− 1 ≈ 0.4142.

Clearly limn→∞
Bn

rn
=

√
2 + 1.

Table 1 below gives the first eight balancing numbers Bn’s with their corresponding

balancers rn’s and the ratios (upto the first four decimals) rn
Bn

. We see from Table 1

that we achieved the approximate ratio of the n-th balancer by the n-th balancing

number (
√
2− 1) immediately at the seventh place.

Behera and Panda in ([1]) showed that the balancing numbers satisfy the second

order linear recurrence relation by the identity

Bn+1 = 6Bn − Bn−1 for n ∈ N(2.1)

Identity (2.1) shows that Bn and Bn+1 have the same parity i.e., both are even or

both are odd.



776 JEBREL M. HABEB

Table 1.

nth Bn rn
rn
Bn

1 1 0 0

2 6 2 0.3333

3 35 14 0.4000

4 204 84 0.4117

5 1189 492 0.4138

6 6930 2870 0.4141

7 40391 16730 0.4142

8 235416 97512 0.4142

Now if Bn is the n-th balancing number, then, as we mentioned above, 8B2
n +1 is an

odd perfect square, say m2, for some odd integer m. So we have

8B2
n + 1 = m2.(2.2)

Let us change notation for a while and write this equation as 8x2 + 1 = y2, where

x, y are integers. This is in fact a Pell’s equation (See [12] Page 553) of the form

y2 − 8x2 = 1.(2.3)

Clearly the ordered pair (1, 3) = (x1, y1) is a fundamental solution of (2.3). The n-th

solution (xn, yn) of (2.3) can be found by the following equations (See [12] Theorem

13.12):

yn + xn

√
8 = (3 +

√
8)n and yn − xn

√
8 = (3−

√
8)n(2.4)

In fact xn is the n-th balancing number Bn. Let us denote 3+
√
8 by γ and 3−

√
8 by

δ. Then γ + δ = 6, γδ = 1. Let us denote yn by Cn. Clearly from the two equations

in (2.4), we have

Bn =
γn − δn

2
√
8

(2.5)

and

Cn =
γn + δn

2
(2.6)
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Cn is called the n−th Lucas-balancing number (See [7]). Formulae ((2.5) and (2.6))

are the Binet form of Bn and Cn respectively (See [2]).

Now

√

8B2
n + 1 =

√

8(
γn − δn

4
√
2

)2 + 1 =

√

(
γn + δn

2
)2 =

γn + δn

2
.(2.7)

This shows that Cn =
√

8B2
n + 1.

Theorem 2.2. For each integer n ≥ 1, we have

(1) Cn+1 = 6Cn − Cn−1. (See [13] proved for n ≥ 2)

(2) Cn+1 = 3Cn + 8Bn.

(3) 2C2
n − C2n = 1.

(4) 1
8
(Cn−1Cn+1 − C2

n) = 1.

Proof. (1) Since Bn is a balancing number, clearly Cn =
√

8B2
n + 1 is an integer.

6Cn − Cn−1 = 6(
γn + δn

2
)− (

γn−1 + δn−1

2
)

=
6γn + 6δn − γn−1 − δn−1

2

=
γn−1(6γ − 1) + δn−1(6δ − 1)

2

=
γn−1(17 + 6

√
8) + δn−1(17− 6

√
8)

2

=
γn−1(γ2) + δn−1(δ2)

2

=
γn+1 + δn+1

2
= Cn+1.

For (2), consider Cn+1.

Cn+1 =
γn+1 + δn+1

2
=

γγn + δδn

2

=
(3 +

√
8)γn + (3−

√
8)δn

2

=
3(γn + δn)

2
+

√
8(γn − δn)

2

=
3(γn + δn)

2
+

8(γn − δn)

4
√
2

= 3Cn + 8Bn.
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For (3), we have

2C2
n − C2n = 2(

γn + δn

2
)2 − γ2n + δ2n

2

=
γ2n + δ2n + 2γnδn − γ2n − δ2n

2

= γnδn = 1 (since γδ = 1).

For (4), we have

Cn−1Cn+1 − C2
n =

(γn−1 + δn−1)(γn+1 + δn+1)

4
− (γn + δn)2

4

=
γ2n + γn−1δn−1δ2 + δn−1γn−1γ2 + δ2n

4

=
δ2 + γ2 − 2

4
= 8.

Theorem 2.3. For each integer n ≥ 1, we have

(1) γn = Cn +
√
8Bn and

(2) δn = Cn −
√
8Bn.

Proof. Straightforward from the definition of Bn and Cn.

Let Γn = γn and ∆n = δn. Then Γn and ∆n can be regarded as elements in the

quadratic number ring Z[
√
2]. Although these two elements are not integers, they do

satisfy Identity (2.1) as the following theorem shows.

Theorem 2.4. For each integer n ≥ 0, we have

(1) Γn+2 = 6Γn+1 − Γn.

(2) ∆n+2 = 6∆n+1 −∆n.

Proof. Direct calculations by mathematical induction on n.

Theorem 2.5. For each integer n ≥ 1, we have

(1) Γn = γBn − Bn−1.

(2) ∆n = δBn − Bn−1.

Proof. By mathematical induction on n.

For n = 1, it is clear that γ = 3+
√
8 = 1.(3+

√
8)−0 = γB1−B0, since B1 = 1 and
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B0 = 0. Similar calculations show that for n = 2, we have γ2 = γB2 − B1 = 6γ − 1.

Now suppose that the statement is true for n = k. Then Γk = γBk − Bk−1. For

n = k + 1 we have

Γk+1 = γΓk = γ(γBk − Bk−1) = γ2Bk − γBk−1

= (6γ − 1)Bk − γBk−1 (since γ2 = 6γ − 1)

= 6γBk − Bk − γBk−1 = γ(6Bk − Bk−1)−Bk

= γBk+1 −Bk by Identity (2.1).

Hence we have (1). Similarly we can prove (2).

Theorem 2.6. For each integer n ≥ 1, we have

(1) 2BnCn = B2n

(2) C2n = 1 + 16B2
n

Proof. Using the Binet (Formulae (2.5) and (2.6)) forms of Bn and Cn it is easy to

establish (1) and (2).

Now using the Binomial Theorem we can prove the following theorem

Theorem 2.7. For each integer n ≥ 1, we have

(1) Bn =
∑[n−1

2
]

k=0

(

n
2k+1

)

3n−2k−123k, and

(2) Cn =
∑[n

2
]

k=0

(

n
2k

)

3n−2k23k

where [x] denotes the greatest integer function.

Proof. (1) By the Binet (Formula (2.5)) form we have Bn = γn−δn

2
√
8

= (3+
√
8)n−(3−

√
8)n

2
√
8

.

Now by the Binomial Theorem we have

(3 +
√
8)n =

n
∑

k=0

(

n

k

)

3n−k23k/2

and

(3−
√
8)n =

n
∑

k=0

(

n

k

)

3n−k(−1)k23k/2

Now if k = 2l an even integer then the k−th coefficient of (3+
√
8)n−(3−

√
8)n equals

zero. But if k = 2l+1 an odd integer, then the k−th coefficient of (3+
√
8)n−(3−

√
8)n



780 JEBREL M. HABEB

equals 2
√
8
(

n
2l+1

)

3n−2l−123k. This implies that Bn =
∑[n−1

2
]

k=0

(

n
2k+1

)

3n−2k−123k.

(2) Similar to (1).

Theorem 2.8. A balancing number cannot be a power of a prime integer.

Proof. Suppose that p is a prime integer and pn is a balancing number for some

positive integer n. Then, by equation (1.5), 8(pn)2 + 1 must be an odd perfect

square, say m2 with m = 2k + 1 is an odd integer for some positive integer k. So we

have 8p2n + 1 = m2, and hence 8p2n = m2 − 1 = (2k+1)2 − 1 = 4k2 + 4k. Canceling

4 from both sides we get

2p2n = k(k + 1)(2.8)

Clearly k, k + 1 are relatively prime. We consider two cases:

Case (1) The prime integer p = 2. In this case (2.8) becomes 22n+1 = k(k + 1). This

implies, being k, k + 1 are relatively prime, that either k = 2p2n+1 or k + 1 = 2p2n+1.

If k = 2p2n+1, then k+1 = 1, which is a contradiction since k is a positive integer. If

k+1 = 2p2n+1, then k = 1 and hence we have 22n+1 = 2 which means n = 0, another

contradiction since n is assumed to be a positive integer.

Case (2) The prime integer p is odd. Equation (2.8) implies that 2|k(k + 1). Since

k, k + 1 are relatively prime integers, we have 2|k or 2|k + 1. If 2|k, then k = 2ab for

some positive integers a and b. But this implies 2p2n = 2ab(2ab + 1). Cancelling 2

from both sides, we get p2n = 2a−1b(2ab+ 1). Since the left hand side is not divisible

by 2, a must equal to 1, and the equation becomes p2n = b(2b + 1). Again, since

b, b + 1 are relatively prime, we have either b = p2n or 2b + 1 = p2n. If b = p2n, then

2b+ 1 = 1 and hence b = 0, a contradiction. If 2b+ 1 = p2n, then b = 1 and p2n = 3.

But this implies p = 3 and 2n = 1, another contradiction since n is an integer.

So the only balancing number that is a power of a prime integer is B1 = 1 = p0.

Lemma 2.1. limn→∞
Bn+1

Bn
= γ.
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Proof. Let limn→∞
Bn+1

Bn
= µ. Then

µ = lim
n→∞

Bn+1

Bn
= lim

n→∞

6Bn −Bn−1

Bn
, (by (2.1))

= 6− lim
n→∞

Bn−1

Bn

= 6− 1

µ
.

This implies µ2 − 6µ+ 1 = 0. Hence µ = γ.

Lemma 2.2.
∑∞

n=1
1
Bn

is a convergent series.

Proof. Since the series
∑∞

n=1
1
Bn

is a series of positive terms of real numbers, we apply

the ratio test for convergence. Consider

lim
n→∞

1/Bn+1

1/Bn
= lim

n→∞

Bn

Bn+1
=

1

γ
(by (2.1)).

But 1
γ
= 3−

√
8 < 1, hence the series converges.

Theorem 2.9.
∑∞

n=1
Bn

6n
= 6.

Proof. Let S =
∑∞

n=1
Bn

6n
. Then

S =
∞
∑

n=1

Bn

6n
=

1

6
+

∞
∑

n=2

Bn

6n

=
1

6
+

∞
∑

n=1

Bn+1

6n+1

=
1

6
+

∞
∑

n=1

6Bn −Bn−1

6n+1
(by (2.1))

=
1

6
+

∞
∑

n=1

Bn

6n
−

∞
∑

n=1

Bn−1

6n+1

=
1

6
+ S − 1

36

∞
∑

n=1

Bn−1

6n−1

=
1

6
+ S − 1

36

∞
∑

n=0

Bn

6n

=
1

6
+ S − 1

36
(0 +

∞
∑

n=1

Bn

6n
)

=
1

6
+ S − 1

36
(0 + S).
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Hence S
36

= 1
6
. Therefore S = 6.

Lemma 2.3. Let n be positive integer. If 8n + 1 is a perfect square, then n is a

triangular number.

Proof. Suppose 8n + 1 = m2, a perfect square integer. Then clearly m is an odd

integer. Now since m is odd, we have

n =
m2 − 1

8
=

(m− 1)(m+ 1)

8
=

(m−1
2

)(m+1
2

)

2
=

(m−1
2

)(m−1
2

+ 1)

2
= Tm−1

2

.

Hence n is a triangular number.

Remark 1. (1) As a quick application of this lemma and since Cn =
√

8B2
n + 1 and

since 8B2
n + 1 is a perfect square, we have B2

n = TCn−1

2

a triangle integer.

(2) In ([6]), Luo proved that the only triangular numbers whose squares are also

triangular numbers are 1 and 6. Hence by the above lemma the only balancing

numbers which are also triangular numbers are 1 and 6.

Theorem 2.10. For each integer n ≥ 1, we have

(1) (Bn+1 − 2Bn)
2 − 1 is a triangular number.

(2) (Bn+1 − 4Bn)
2 − 1 is a triangular number.

Proof. (1) Let A = (Bn+1 − 2Bn)
2 − 1. Then

A = (3Bn +
√

8B2
n + 1− 2Bn)

2 − 1 (by ([7])

= (Bn +
√

8B2
n + 1)2 − 1

= 9B2
n + 2Bn

√

8B2
n + 1.

Now

8A+ 1 = 72B2
n + 16Bn

√

8B2
n + 1 + 1

= 64B2
n + 16Bn

√

8B2
n + 1 + 8B2

n + 1

= (8Bn +
√

8B2
n + 1)2 is a perfect square.

Therefore, by Lemma (2.3), A = (Bn+1−2Bn)
2−1 is a triangular number. By similar

arguments we can prove (2).
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3. Binet Form of the Balancing Numbers by Linear Algebra

Consider the matrix

A =





0 1

−1 6



 .

Then clearly det(A) = 1, and its inverse is

A−1 =





6 −1

1 0





As P. K. Ray ([10] and [11]) observed, Formula (2.1) can be written in matrix form

as




Bn

Bn+1



 =





0 1

−1 6









Bn−1

Bn





and for each positive integer n, the matrix An, (See [10]), equals

An =





−Bn−1 Bn

−Bn Bn+1





which can be proved by induction on the natural number n and using Identity (2.1).

For instance since det(An) = (det(A)n = 1, we have the Cassini formula (See [13])

B2
n − Bn−1Bn+1 = 1 for each positive integer n.

Now let us consider the eigenvalues and eigenvectors of the matrix A. The charac-

teristic equation of A is det(λI − A) = λ2 − 6λ + 1 = 0. This equation has two real

roots, λ = 3 +
√
8 and λ = 3 −

√
8. Let us write the two roots as γ = 3 +

√
8 and

δ = 3 −
√
8 and observe that γδ = 1. The eigenvectors corresponding to γ can be

found by solving the matrix equation





γ −1

1 −δ









x

y



 =





0

0





which implies γx − y = 0 and hence y = γx. Now a basis for the eigenspace corre-

sponding to the eigenvalue γ is










1

γ










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Similarly a basis for the eigenspace corresponding the eigenvalue δ is










1

δ











Now since the matrix A has two distinct eigenvalues, it is diagonalizable, and A is

similar to the diagonal matrix

D =





γ 0

0 δ





The matrix P that diagonalizes the matrix A is

P =





1 1

γ δ





Clearly P−1AP = D and of course A = PDP−1 and clearly for each positive integer

n we have An = PDnP−1. This last equation gives us another way to find a closed

form for the value of the balancing number Bn which is called the Binet formula for

Bn (See for example [9]).

Theorem 3.1. Bn = γn−δn

4
√
2

Proof. We have An = PDnP−1. Hence

An =





−Bn−1 Bn

−Bn Bn+1



 =





1 1

γ δ









γn 0

0 δn









−δ
4
√
2

1
4
√
2

γ

4
√
2

−1
4
√
2





Therefore

An =





−Bn−1 Bn

−Bn Bn+1



 =





δn−1−γn−1

4
√
2

γn−δn

4
√
2

δn−γn

4
√
2

δn+1−γn+1

4
√
2





This implies that Bn = γn−δn

4
√
2
.
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[15] N. Taş, S. Uçar, N. Y. Özgür, and Ö. Kaymak, A new coding/decoding algorithm using Fi-

bonacci numbers, Discrete Mathematics, Algorithms and Applications 10(2) (2018).1850028,

8 pp (2018). (ESCI)
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