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ALGORITHMS AND IDENTITIES FOR BÉZIER CURVES VIA

POST-QUANTUM BLOSSOM

ALAA M. OBAD (1), KHALID KHAN (2), D.K. LOBIYAL (3) AND ASIF KHAN (4)

Abstract. In this paper, a new analogue of blossom based on post-quantum cal-

culus is introduced. The post-quantum blossom has been adapted for developing

identities and algorithms for Bernstein basis and Bézier curves. By applying the

post-quantum blossom, various new identities and formulae expressing the mono-

mials in terms of the post-quantum Bernstein basis and a post-quantum variant

of Marsden’s identity are investigated. For each post-quantum Bézier curves of

degree m, a collection of m! new, affine invariant, recursive evaluation algorithms

are derived.

1. Introduction

Approximation theory basically deals with approximation of functions by simpler

functions or more easily calculated functions. Broadly it is divided into theoretical

and constructive approximation [5, 15].

Mursaleen et al applied post-quantum calculus in constructive approximation theory

and introduced the first post-quantum analogue of Bernstein operators [19] based on

post-quantum integers.

The post-quantum Bernstein operators introduced by them are generalization of well

known classical Bernstein [5] operators and Phillips quantum Bernstein operators
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(polynomials) [21]. For recent literatures related to constructive approximation the-

ory, quantum calculus and post-quantum calculus, one can see [1, 2, 4, 16, 17, 18, 22,

26, 24].

Similarly (Computer Aided Geometric Design (CAGD)) is a discipline which deals

with computational aspects of geometric objects. If emphasizes on the mathematical

development such that it becomes compatible with computers. It has several applica-

tions in Approximation theory and Numerical analysis. Basis of Bernstein operators

has been used to draw curves and surfaces. Bézier curves were independently devel-

oped by P. de-Casteljau at Citroen [6] and by P. Bézier at Renault [9]. For details

on Bézier curves and surfaces’ approximation, one can refer [3, 7, 10, 11, 23].

Khan and Lobiyal [12] recently constructed post-quantum analogue of Lupaş quantum

Bernstein operators (rational) and investigated various properties of Lupaş post-

quantum Bézier curves and surfaces. For some applications of the extra parameter

‘p’ of post-quantum analogue in terms of flexibility to design geometric shapes and

for flexibility in approximation, one can refer [12, 20].

In CAGD, blossoming method deals with representation of curves into simpler form

like representing a polynomial of degreem into monomial inm variables each of degree

one. Blossoming method is used to reduce computational complexity for construction

of Bézier curves and surfaces. This provides a powerful tool for deriving identities

and developing change of basis algorithms for basis and Bézier curves. In [25], some

algorithms and identities for quantum Bernstein basis and quantum Bézier curves

using the method of quantum Blossoming are constructed.

Motivated by above mentioned work, the idea of post-quantum calculus and its im-

portance, in next sections, we investigate and derive several results via post-quantum

analogue of blossoming. The post-quantum blossom will be used for developing iden-

tities and algorithms for Bernstein bases and Bézier curves. By applying the post-

quantum blossom, various new identities and formulae expressing the monomials in

terms of the post-quantum Bernstein basis functions and a post quantun variant of

Marsden’s identity are investigated. For each post-quantum Bézier curves of degree

m, a collection ofm! new, affine invariant, recursive evaluation algorithms are derived.
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Let us recall certain notations and definitions from post-quantum calculus. The post-

quantum number is defined by, for any number m

[m]p,q = pm−1 + pm−2q + pm−3q2 + · · ·+ pqm−2 + qm−1 =











pm−qm

p−q
, when p 6= q

m pm−1,when p = q.

The formula for post-quantum binomial expansion is as follows:

(au+ bv)mp,q =
m
∑

r=0

p
(m−r)(m−r−1)

2 q
r(r−1)

2







m

r







p,q

am−rbrum−rvr,

(u+ v)mp,q = (u+ v)(pu+ qv)(p2u+ q2v) · · · (pm−1u+ qm−1v),

(1− v)mp,q = (1− v)(p− qv)(p2 − q2v) · · · (pm−1 − qm−1v),

where post-quantum binomial coefficients are defined by






m

r







p,q

=
[m]p,q!

[r]p,q! [m− r]p,q!
.

Details on (p, q)-calculus can be found in [12, 19].

Three main contributions of this paper are:

Blossoming: The post-quantum blossom, a new variant of the blossom is introduced

which will prove new identities for post-quantum Bernstein bases and generate new

approach for post-quantum Bézier curves.

Identities: Using post-quantum blossom, new identities are derived for the post-

quantum Bernstein bases, and a post-quantum variant of Marsden’s identity and

monomials get represented using an explicit formula in terms of the post-quantum

Bernstein basis functions.

Recursive Evaluation Algorithms: Using post-quantum blossom technique, for

a given post-quantum Bézier curve of degree m, m! new affine invariant, recursive

evaluation algorithms has been constructed.

This paper has been arranged in the following way: In Section 2 and 3, we introduce

the basic definitions, fundamental formulas, and explicit notation for post-quantum

Bernstein bases and post-quantum Bézier curves. In Section 4, we define the post-

quantum blossom and establish the existence and the uniqueness of this blossom. In

Section 5, we invoke post-quantum blossoming to develop novel evaluation algorithms
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for post-quantum Bézier curves and in Section 6, we use the post-quantum blossom to

derive new identities involving the post-quantum Bernstein basis functions, including

a post-quantum version of Marsdens identity as well as formulas for representing

monomials in terms of the post-quantum Bernstein basis functions.

2. Post-quantum Bernstein basis functions

The post-quantum Bernstein basis function [13, 19] is as follows

Br,m
p,q (t) =

1

p
m(m−1)

2







m

r







p,q

p
r(r−1)

2 tr(1− t)m−r
p,q , t ∈ [0, 1] (2.1)

where

(1− t)m−r
p,q =

m−r−1
∏

s=0

(ps − qst).

Theorem 2.1. [13] Each post-quantum Bernstein function of degree m is a linear

combination of two post-quantum Bernstein functions of degree m+ 1.

Br,m
p,q (t) =

(

pr [m+ 1− r]p,q
[m+ 1]p,q

)

Br,m+1
p,q (t) +

(

1−
pr+1 [m− r]p,q

[m+ 1]p,q

)

Br+1,m+1
p,q (t).

(2.2)

Throughout the paper onwards, we use Bm
r (t; p, q) in place of Br,m

p,q (t).

3. Post-quantum Bernstein Bézier curves

The post-quantum Bézier curves [13] of degree m using the post-quantum analogues

of the Bernstein basis functions are as follows:

P(t) =
m
∑

i=0

Pi B
m
i (t; p, q) (3.1)

where Pi ∈ R3 (i = 0, 1, . . . , m), Pi are control points. Joining up adjacent points

Pi, i = 0, 1, 2, . . . , m to obtain a polygon which is called the control polygon of

post-quantum Bézier curves.
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3.1. de Casteljau algorithm. Let P̃0

i
(t) = P̂0

i
(t) = Pi , i = 0, 1, . . . , m. Define

P̃k

i
(t) = (pm−k − pi qm−k−i t)P̃k−1

i
(t) + pi qm−k−i t P̃k−1

i+1
(t) (3.2)

and

P̂k

i
(t) = qi(pm−k−i − qm−k−i t)P̂k−1

i
(t) + pm−k t P̂k−1

i+1
(t), (3.3)

for i = 0, 1, . . . , m− k, k = 1, . . . , m. Then point P corresponding to the parameter

t is given by P̃m

0
(t) = P̂m

0
(t) = P(t). Now for illustration purpose, we present Figure

1 and 2 for cubic post-quantum Bézier curves using the above two de Casteljau

algorithms. In both algorithms, the property of affine invariant holds at only for the

final node at the top of diagram. However for p=1, the property of affine invariant

holds at every intermediate nodes in first algorithm, in second algorithm this property

holds only for the final node at the top of diagram.

P. Simeonova et al. [25] gave a new approach to identities and algorithms for quantum

Bernstein basis and quantum Bézier curves using quantum blossom. In this paper

we extend these results for post-quantum Bernstein bases and post-quantum Bézier

curves using post-quantum blossoming.

Figure 1. ‘The first de-Casteljau evaluation algorithm for a cubic post-

quantum Bézier curve on the interval [0, 1].’
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Figure 2. ‘The second de-Casteljau evaluation algorithm for a cubic post-

quantum Bézier curve on the interval [0, 1].’

4. Post-quantum blossoming

Blossoming has given new approach for deriving identities and developing change

of basis algorithms for standard Bernstein bases and Bézier curves [25]. In this

section, post-quantum blossoming as an extension of standard quantum blossoming

is achieved.

The post-quantum blossom or post-quantum polar form of a polynomial S(t) of degree

m is the unique symmetric multiaffine function s(u1, . . . , um; p, q) that reduces to

S(t) along the post-quantum diagonal. That is, s(u1, . . . , um; p, q) is the unique

multivariate polynomial satisfying the following three axioms:

Post-quantum Blossoming axioms

1. Symmetry: s(u1, . . . , um; p, q) =s(uσ(1), . . . , uσ(m); p, q) for every permutation σ

of the set {1, 2, . . . , m}.

2. Multiaffine: s(u1, ..., (1− α)uk + αvk, ..., um; p, q) =

(1− α) s(u1, ..., uk, ..., um; p, q) + α s(u1, ..., vk, ..., um; p, q), for ever α ∈ R

3. Post-quantum Diagonal: s(pm−1t, pm−2tq, . . . , tqm−1; p, q) = S(t).

The multiaffine property is equivalent to the fact that each variable u1, . . . , um ap-

pears to at most the first power that is, s(u1, . . . , um; p, q) is a polynomial of degree

at most one in each variable. The interest in post-quantum blossoming is due to the
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following important properties, which will be used in section 5 to relate post quantum

blossom of a polynomial to its post quantum Bézier control points.

Dual functional property

Let S(t) be a post-quantum Bézier curve of degree m over the interval [0, 1] with

control points P0, . . . ,Pm and let s(u1, . . . , um; p, q) be the post-quantum blossom

of S(t). Then

Pk = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . , m.

(4.1)

This Dual functional property gets proved in Theorem 5.2.

Now we establish those functions existence and uniqueness which satisfy post-quantum

blossoming axioms, subject to restrictions on p, q for all polynomials of degreem. But

before proceeding to it let’s get feel of post-quantum blossom by computing the post-

quantum blossom for some simple cases.

Post-quantum Blossom of cubic polynomials

Let us consider a cubic polynomial represented by the monomial 1, t, t2, and t3. Now

these monomials can be easily post-quantum blossomed for any p 6= 0, and q 6= 0,

since in each case the associated function s(u1, u2, u3; p, q) given below can be easily

verified as it is symmetric, multiaffine, and reduces to the required monomial along

the post-quantum diagonal:

S(t) = 1⇒ s(u1, u2, u3; p, q) = 1,

S(t) = t⇒ s(u1, u2, u3; p, q) =
u1 + u2 + u3

(p2 + pq + q2)
,

S(t) = t2 ⇒ s(u1, u2, u3; p, q) =
u1u2 + u2u3 + u3u1

pq(p2 + pq + q2)
,

S(t) = t3 ⇒ s(u1, u2, u3; p, q) =
u1u2u3

p3q3
.

In the right hand side of the above equation, it can be seen that functions in numerator

are combinations of three variables which are written in symmetrical fashion while

in case of denominator function is evaluated in symmetrical order at p2, pq and q2.
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Using these results, any cubic polynomial S(t) = a3t
3+a2t

2+a1t+a0 for p 6= 0, q 6= 0

can be post-quantum blossom by setting

s(u1, u2, u3; p, q) = a3
u1u2u3

p3q3
+ a2

u1u2 + u2u3 + u3u1

pq(p2 + pq + q2)
+ a1

u1 + u2 + u3

(p2 + pq + q2)
+ a0.

Note: For p = q = 1, above blossoming reduces into classical blossoming of cubic

polynomials.

Similarly, we can apply post-quantum blossom techniques for polynomials of degree

m by first post-quantum blossoming the monomials tk , for k = 0, . . . , m, and then

applying linearity. Indeed, let

φm,k(u1, u2, . . . , um) =
∑

1≤i1<i2<...<ik≤m

ui1 · · ·uik

where the sum runs over all subsets {i1, . . . , ik} of {1, . . . , m}, denote the k-th ele-

mentary symmetric function in the variables u1, . . . , um. Then we get the result as

follows.

Proposition 4.1. The post-quantum blossom of the monomial Mm
k (t) = tk (consid-

ered as a polynomial of degree m) is given by

Rm
k (u1, . . . , um; p, q) =

φm,k(u1, u2, . . . , um)

φm,k(pm−1, pm−2q, . . . , qm−1)
, (4.2)

provided that φm,k(p
m−1, pm−2q, . . . , qm−1) 6= 0.

Proof. The three blossoming axioms need to be verified now. One can see that the

function Rm
k (u1, . . . , um; p, q) is symmetric, due to presence of elementary symmetric

function divided by a constant in the expression on the right hand side of 4.2. Also,

since each variable appears to at most the first power, hence the function on the right

hand side of 4.2 is multiaffine. Finally observe that since φm,k(u1, u2, . . . , um) is a

homogeneous polynomial of total degree k in the variables u1, . . . , um,

φm,k(tu1, . . . , tum) = tkφm,k(u1, . . . , um).

Therefore along the post-quantum diagonal

Rm
k (p

m−1t, pm−2qt, . . . , qm−1t; p, q) =
φm,k(p

m−1t, pm−2qt, . . . , qm−1t)

φm,k(pm−1, pm−2q, . . . , qm−1)
= tk.



POST-QUANTUM BLOSSOM 185

We can use Proposition 4.1 to establish the existence of the post-quantum blossom

for arbitrary polynomials of degree m. But before we proceed, we need to determine

explicit conditions for which

φm,k(p
m−1, pm−2q, . . . , qm−1) 6= 0, k = 0, 1, . . . , m

Lemma 4.1.

φm,k(p
m−1, pm−2q, . . . , qm−1) = (pq)

k(k−1)
2







m

k







p,q

k = 0, 1, . . . , m.

(4.3)

Proof. Using induction on m, we get the required result.

Corollary 4.1. φm,k(p
m−1, pm−2q, . . . , qm−1) = 0 if and only if one of the following

three conditions is satisfied:

1. p = 0 and m > 1, k > 1, (p = 0 and 2 ≤ k ≤ m)

2. q = 0 and m > 1, k > 1, (q = 0 and 2 ≤ k ≤ m)

3. p = −q and m is even, k is odd.

Proof. It can be observed that the only real root of a post-quantum binomial coeffi-

cient can be p = −q because [m]p,q =
pm−qm

p−q
when p 6= q. Condition 1 and 2 follows

from 4.3 while Condition 3 follows from the observation that p = −q is a zero of the

binomial coefficient







m

k







p,q

of multiplicity

⌊

m

2

⌋

−

⌊

k

2

⌋

−

⌊

m− k

2

⌋

=











1, if m is even and k is odd

0, otherwise.

Now the existence and uniqueness of the post-quantum blossom will be established

for all polynomials of degree m and for all real values of p, q that satisfy:

(1) q 6= 0 and p 6= 0 for all m > 1 (4.4)

and

(2) q 6= −p for all even m > 1. (4.5)

Conditions 4.4 and 4.5 are now the standard restrictions on the value of p, q.
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From now on, whenever there is a talk of (p, q)-blossom or (p, q)-Bernstein basis func-

tions or (p, q)-Bézier curves, the standard restrictions stated above will be applicable

for the value of p, q until it is explicitly mentioned otherwise.

Theorem 4.1. (Existence and Uniqueness of the post-quantum Blossom).

Corresponding to every polynomial S(t) of at most degree m, there exists a unique

symmetric multiaffine function s(u1, . . . , um; p, q) that reduces to S(t) along the post-

quantum diagonal. That is, there exists a unique post-quantum blossom s(u1, . . . , um; p, q)

for every polynomial S(t) provided that p, q satisfies the standard restrictions given

by 4.4 and 4.5.

Proof. By Proposition 4.1 and Corollary 4.1 when p, q satisfies the constraints

given by 4.4 and 4.5, then post-quantum blossom exists for the monomials tk, k =

0, 1, . . . , m. Since any polynomial can be written as linear combination of monomials

and post-quantum blossom of the sum is actually the sum of the post-quantum blos-

soms, so for every given polynomial S(t), post-quantum blossom for it always exists

while p, q satisfies the restrictions given by 4.4 and 4.5. For verifying the uniqueness

of the post-quantum blossom, suppose that a polynomial S(t) of degree m has two

post-quantum blossoms s(u1, . . . , um; p, q) and r(u1, . . . , um; p, q). Since every sym-

metric multiaffine polynomial of degree m has a unique representation in terms of

the (m+ 1) symmetric polynomials of degree m, there are constants a0, . . . , am and

b0, . . . , bm such that

s(u1, . . . , um; p, q) =
m
∑

k=0

ak Rm
k (u1, . . . , um; p, q)

and

r(u1, . . . , um; p, q) =
m
∑

k=0

bk Rm
k (u1, u2, . . . , um; p, q).

Evaluating on the post-quantum diagonal (ui = pm−itqi−1, i = 1, 2, . . . , m) yields

S(t) =
m
∑

k=0

ak tk

=
m
∑

k=0

bk tk.
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Thus ak = bk, k = 0, 1, . . . , m, so s(u1, . . . , um; p, q) = r(u1, . . . , um; p, q). Hence the

post-quantum blossom of S(t) is unique.

From Proposition 4.1, Lemma 4.1, Theorem 4.1, and the linearity of the post-quantum

blossom we deduce the following result.

Corollary 4.2. The post-quantum blossom of the polynomial S(t) =
m
∑

k=0
ak tk is

s(u1, . . . , um; p, q) =
m
∑

k=0

ak
φm,k(u1, u2, . . . , um)

(pq)
k(k−1)

2







m

k







p,q

. (4.6)

In this section, study has been done on the post-quantum blossom of a polynomial

using the monomial representation. In the next section, investigation will be carried

out that how post-quantum blossom of polynomial is related to the post-quantum

Bernstein representation.

5. Post-quantum blossoming and Post-quantum de Casteljau

algorithms

In the diagrams below, we use the multiplicative notation u1 · · ·um to represent the

post-quantum blossom value s(u1, . . . , um; p, q). Though an abuse of notation, this

multiplicative notation is highly suggestive. For example, multiplication is commu-

tative and the post-quantum blossom is symmetric

u1 · · ·um = uσ(1) · · ·uσ(m) ←→ s(u1, . . . , um; p, q) = s(uσ(1), . . . , uσ(m); p, q).

Moreover, multiplication distributes through addition and the post-quantum blossom

is multiaffine. Thus

u =
b− u

b− a
a+

u− a

b− a
b

implies both

u1 · · ·umu =
b− u

b− a
u1 · · ·uma+

u− a

b− a
u1 · · ·umb

and

s(u1, . . . , um, u; p, q) =
b− u

b− a
s(u1, . . . , um, a; p, q) +

u− a

b− a
s(u1, . . . , um, b; p, q).
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Figure 3. ‘Computing s(pm−1t, pm−2tq, . . . , tqm−1; p, q) = S(t)

recursively from the initial post-quantum blossom values

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . ,m.’

The diagram represents the symmetry and multiaffinity character while at same time

also make the case for multiplication and post-quantum blossoming both. Therefore

this multiplicative representation for the post-quantum blossom seems to be natural.

Due to similarity between multiplication and post-quantum blossoming, identities

corresponding to multiplication expect to give an analogous identities for the post-

quantum blossom.

Using this multiplicative notation, Figure 3 shows (for m = 3) how to compute an

arbitrary value of s(pm−1t, pm−2qt, . . . , qm−1t; p, q) = S(t) recursively from the initial

post-quantum blossom values

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), with exactly m− k blossom values set to

0 for k = 0, 1, . . . , m, by applying the multiaffine and symmetry properties at each

node.

Now compare the post-quantum blossoming algorithm in Figure 3 to the de-Casteljau

algorithm in Figure 1 for post-quantum Bézier curves. For arbitrary m, Figures 1

and 3 are similar, and Figure 3 is this de Casteljau algorithm for

s(pm−1t, pm−2qt, . . . , qm−1t; p, q) = S(t) with control points

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . , m. In next three theorems,

certain observations having some important consequences for arbitrary values of the
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degree m has been done. standard restrictions given by 4.4 and 4.5 on the value of

p, q will be applicable until mentioned otherwise.

Theorem 5.1. Any polynomial represents post-quantum Bézier Curve. In other

words, let S(t) be a polynomial of degree m with post-quantum blossom s(u1, . . . , um; p, q).

Then using de Casteljau algorithm 3.2, S(t) can be generated by control points Pk =

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . , m.

Proof. Let S(t) be a polynomial of degre m and let s(u1, . . . , um; p, q) be the post-

quantum blossom of S(t). Set Pi = P̃0

i
:= s(0, . . . , 0, pm−1, pm−2q, . . . , pm−iqi−1; p, q),

k = 0, 1, . . . , m, and apply the post-quantum de Casteljau algorithm 3.2. The post-

quantum Bézier curve is given by

P̃m

0
=

m
∑

i=0

Pi B
m
i (t; p, q). (5.1)

On the other hand applying induction on k and using multiaffine property of the

post-quantum blossom, it can be shown that points P̃k

i
(t) generated by the post-

quantum de Casteljau algorithm 3.2 satisfy

P̃k

i
(t) = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−iqi−1, tpk−1qm−k, . . . , tqm−1; p, q),

i = 0, 1, . . . , m− k, k = 0, 1, . . . , m.

In particular,

P̃m

0
(t) = s(pm−1t, pm−2qt, . . . , qm−1t; p, q) = S(t). (5.2)

The theorem now follows from 5.1 and 5.2.

Corollary 5.1. On interval [0, 1], m degree post-quantum Bernstein basis functions

form the basis for m degree polynomial, except when (p = 0) and (q = −p for even m).

Proof. Result can be drawn directly from Theorem 5.1 when p and q satisfies the

standard restrictions given by 4.4 and 4.5. Further, when q = 0 6= p this result can

be obtained explicitly by using formula for basis in 2.1, since

Bm
i (t; p, 0) = ti − ti+1, i = 0, 1, . . . , m− 1

Bm
m(t; p, 0) = tm.
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Corollary 5.2. On interval [0, 1], post-quantum Bézier curve’s control points are

unique.

Theorem 5.2. (Dual Functional Property of the post-quantum Blossom).

Let S(t) be a post-quantum Bézier curve of degree m and let s(u1, . . . , um; p, q) be the

post-quantum blossom of S(t). Then the post-quantum Bézier control points of S(t)

are given by

Pk = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . , m.

(5.3)

Proof. By Theorem 5.1

S(t) =
m
∑

k=0

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q)Bm
k (t; p, q). (5.4)

Now 5.3 follows from 5.4 and the uniqueness of the post-quantum Bézier control

points.

Figure 4 illustrates a recursive evaluation algorithm for computing an arbitrary post-

quantum blossom value s(u1, . . . , um; p, q) from the post-quantum blossom values

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q), k = 0, 1, . . . , m by blossoming the de

Casteljau evaluation algorithm i.e. by substituting uk for tpk−1qm−k on the k-th level

of the de Casteljau evaluation algorithm in Figure 3.

From Figure 4, it can also be observed that for post-quantum Bézier curves the

recursive evaluation algorithm is not unique, as p2t, ptq, tq2 can be substituted in

any order for the values of parameters u1, u2, u3. These observations are summarized

in the next two theorems.

Theorem 5.3. Let S(t) =
m
∑

i=0
Pi Bm

i (t; p, q) be a post-quantum Bézier curve of

degree m with post-quantum Blossom s(u1, . . . , um; p, q). Define recursively a set of

multiaffine functions by setting Q0
i = Pi, i = 0, ..., m and

Qk+1
i (u1, . . . , uk+1) = (1− uk+1 pi q−i)Qk

i (u1, . . . , uk) + uk+1 pi q−iQk
i+1(u1, . . . , uk)

(5.5)

i = 0, 1, . . . , m− k − 1 and k = 0, 1, . . . , m− 1. Then

Qk
i (u1, . . . , uk) = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−iqi−1, u1, . . . , uk; p, q)
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i = 0, 1, . . . , m− k and k = 0, 1, . . . , m.

In particular,

Qm
0 (u1, . . . , um) = s(u1, . . . , um; p, q)

Figure 4. ‘Recursive evaluation algorithm for the post-quantum blossom

of a cubic post-quantum Bézier curve.’

Proof. By the dual functional property,

Q0
i (u1, . . . , um) = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−kqk−1; p, q) , i = 0, 1, . . . , m.

By applying induction on k, rest of the proof can be easily done. The case m = 3 is

illustrated by Figure 4.

Theorem 5.4. Let S(t) =
m
∑

i=0
Pi B

m
i (t; p, q) be a post-quantum Bézier curve of de-

gree m with post-quantum Blossom s(u1, . . . , um; p, q). There are m! affine invariant,

recursive evaluation algorithms for S(t) defined as follows: Let σ be a permutation of

{1, 2, . . . , m} and let P0

i
(t) = Pi , i = 0, 1, . . . , m. Define

Pk+1

i
(t) = (pσ(k+1)−1 − t pi qσ(k+1)−1−i)Pk

i
(t) + pi qσ(k+1)−1−i t Pk

i+1
(t)

(5.6)

i = 0, 1, . . . , m− k − 1 and k = 0, 1, . . . , m− 1. Then

Pk

i
(t) = s(0, . . . , 0, pm−1, pm−2q, . . . , pm−iqi−1, tpσ(1)−1 qm−σ(1), . . . , tpσ(k)−1 qm−σ(k); p, q)

(5.7)
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i = 0, 1, . . . , m− k and k = 0, 1, . . . , m.

In particular

Pm

0
(t) = s(tpσ(1)−1 qm−σ(1), . . . , tpσ(m)−1 qm−σ(m); p, q) = S(t). (5.8)

Proof: Theorem 5.4 follows from Theorem 5.3 substituting value uk = tpσ(k)−1 qm−σ(k).

6. Identities for Bernstein basis functions based on post-quantum

blossoming

Three identities have been derived for the post-quantum Bernstein basis functions

in this section. Each of these identities can be expressed into standard quantum

Bernstein basis functions after putting p = 1. Standard restrictions on p and q given

by 4.4 and 4.5. Starting from new variant of Marsden’s identity.

Proposition 6.1. ( Marsden’s Identity )

m
∏

i=1

(pi−1x− qi−1t) =
m
∑

j=0

(−1)j p
(m−j)(m−j−1)

2 q
j(j−1)

2 Bm
m−j(x;

1
p
, 1
q
) Bm

j (t; p, q)






m

j







1
p
, 1
q

.

(6.1)

Proof. Let S(t) denote the left hand side of Eq. 6.1. The post-quantum blossom of

S(t) is given by

s(u1, . . . , um; p, q) =
m
∏

n=1

(

p
−(m−1)(m−2)

2 x − p
−m(m−1)

2 un

)

= p
−m(m−1)

2

m
∏

n=1

(

pm−1 x − un

)

.

Thus by the dual functional property 5.2,

m
∏

i=1

(

pi−1x− qi−1t
)

=
m
∑

j=0

s(0, . . . , 0, pm−1, pm−2q, . . . , pm−jqj−1; p, q) Bm
j (t; p, q)

= p
−m(m−1)

2

m
∑

j=0

pm−1x pm−1x · · ·pm−1x (pm−1x− pm−1)

× (pm−1x− pm−2q) · · · (pm−1x− pm−jqj−1) Bm
j (t; p, q)
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= p
m(m−1)

2

m
∑

j=0

xm−j
j−1
∏

n=0

(x− p−nqn) Bm
j (t; p, q)

= p
m(m−1)

2

m
∑

j=0

(−1)j q
j(j−1)

2 xm−j

×
j−1
∏

n=0

( (
1

p
)n − (

1

q
)n x ) Bm

j (t; p, q)

which after factoring out powers of p and q gives the right hand side of 6.1.

Monomials can also be expressed in terms of the post-quantum Bernstein basis func-

tions.

Proposition 6.2. ( Monomial Representation )

ti =
m
∑

k=i

pi(m−k)







k

i







p,q






m

i







p,q

Bm
k (t; p, q), i = 0, 1, . . . , m. (6.2)

Proof. Let the monomial Mm
i (t) = ti (considered as a polynomial of degree m) Now

by using dual functional property 5.2, Eqs. 4.2, 4.3 and the fact that

φm,i(0, . . . , 0, p
m−1, pm−2q, . . . , pm−kqk−1) = φk,i(p

m−1, pm−2q, . . . , pm−kqk−1) for k ≥ i.

as follows:

ti = Mm
i (t)

=
m
∑

k=0

Rm
i (0, . . . , 0, p

m−1, pm−2q, . . . , pm−kqk−1; p, q) Bm
k (t; p, q)

=
m
∑

k=0

φm,i(0, . . . , 0, p
m−1, pm−2q, . . . , pm−kqk−1)

φm,i(pm−1, pm−2q, . . . , qm−1)
Bm

k (t; p, q)

=
m
∑

k=i

φk,i(p
m−1, pm−2q, . . . , pm−kqk−1)

φm,i(pm−1, pm−2q, . . . , qm−1)
Bm

k (t; p, q)
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=
m
∑

k=i

(pm−k)i φk,i(p
k−1, pk−2q, . . . , qk−1)

φm,i(pm−1, pm−2q, . . . , qm−1)
Bm

k (t; p, q)

=
m
∑

k=i

pi(m−k) (pq)
i(i−1)

2







k

i







p,q

(pq)
i(i−1)

2







m

i







p,q

Bm
k (t; p, q)

=
m
∑

k=i

pi(m−k)







k

i







p,q






m

i







p,q

Bm
k (t; p, q).

Reparametrization formula for post-quantum Bernstein basis functions is last identity

of this section which has its use in subdivision algorithms for Bézier curves. Before

proceeding to proof this change of basis formula, first there is a need to know a

lemma.

Lemma 6.1. Let bmi (u1, . . . , um; p, q) denote the (p, q)-blossom of Bm
i (t; p, q), i =

0, 1, . . . , m. Then

bmi (u1, . . . , um−1, 0; p, q) = bm−1
i (u1, . . . , um−1; p, q), i = 0, 1, . . . , m− 1.

Proof. First apply the post-quantum blossom algorithm from Theorem 5.3 to the

polynomials Bm
i (t; p, q) and Bm−1

i (t; p, q). Through dual functional property, the first

m − 1 initial post-quantum blossom values for these two polynomials as defined in

Theorem 5.3 are the same: Q0
j = 0, j = 0, 1, . . . , m−1, j 6= i and Q0

i = 1. Therefore

the functions Qk
j , j = 0, 1, . . . , m−1−k, k = 0, 1, . . . , m−1, generated by Eq. 5.5 of

the recursive evaluation algorithms for the post-quantum blossoms of Bm
i (t; p, q) and

Bm−1
i (t; p, q) coincide. Thus the function Qm−1

0 for Bm
i (t; p, q) is the same as the post-

quantum blossom of Bm−1
i (t; p, q). On the other hand by 5.5, substituting um = 0

in the function Qm
0 for Bm

i (t; p, q), which is precisely the post-quantum blossom of

Bm
i (t; p, q), also gives exactly the function Qm−1

0 for Bm
i (t; p, q).
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Proposition 6.3. (Reparametrization Formula)

Bm
k (rt; p, q) =

m
∑

i=k

Bi
k(r; p, q)B

m
i (t; p, q).

Proof. Let F and G be polynomials of degreem with post-quantum blossoms f and g.

If F (t) = G(rt), then f(u1, . . . , um; p, q) = g(ru1, . . . , rum; p, q). This property holds

because the three post-quantum blossoming axioms for f(u1, . . . , um; p, q) are sat-

isfied by g(ru1, . . . , rum; p, q). Therefore, b
m
k (ru1, . . . , rum; p, q) is the post-quantum

blossom of Bm
k (rt; p, q). Hence by the dual functional property, Lemma 6.1, and the

post-quantum diagonal property

Bm
k (rt; p, q) =

m
∑

i=0

bmk (0, . . . , 0, p
m−1r, pm−2rq, . . . , rpm−iqi−1; p, q) Bm

i (t; p, q)

=
m
∑

i=k

bik(p
m−1r, pm−2rq, . . . , rpm−iqi−1; p, q)Bm

i (t; p, q)

=
m
∑

i=k

Bi
k(r; p, q)B

m
i (t; p, q).
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