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UNIQUENESS OF ENTIRE FUNCTIONS CONCERNING

PRODUCT OF DIFFERENCE POLYNOMIALS

HARINA P. WAGHAMORE (1), HUSNA VALLIJAN (2) AND CHAO MENG (3)

Abstract. In this paper, using the concept of weakly weighted sharing and relaxed

weighted sharing we investigate the uniqueness of product of difference polynomials

that share a small function. The results of the paper improve and extend the recent

results due to Chao Meng [9].

1. Introduction and Definitions

A meromorphic function f means meromorphic in the complex plane. If no poles

occur, then f is called an entire function. The fundamental results and the standard

basics of the Nevanlinna value distribution theory of entire functions are used (see

[4],[11],[14]). For a meromorphic function f, S(r, f) denotes any quantity satisfying

S(r, f) = o(T (r, f)) for all r outside a possible exceptional set of the finite logarithmic

measure.

Let a be a finite complex number, and l be a positive integer. We denote by Nl)(r,
1

f−a
)

the counting function for the zeros of f(z)−a with multiplicity ≤ l, and by N l)(r,
1

f−a
)

the corresponding one for which multiplicity is not counted.

Let N(l(r,
1

f−a
) be the counting function for the zeros of f(z) − a with multiplicity

≥ l and N (l(r,
1

f−a
) be the corresponding one for which multiplicity is not counted.

Moreover, we set Nl(r,
1

f−a
) = N(r, 1

f−a
) +N (2(r,

1
f−a

) + ...+N (l(r,
1

f−a
). In the same
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way, we can define Nl(r, f).

Recently, A.Banerjee and S. Mukherjee [1] introduced another sharing notion which

is also a scaling between IM and CM but weaker than weakly weighted sharing.

Definition 1.[1] Let a ∈ C ∪ {∞}. We denote by NE(r, a; f, g)(NE(r, a; f, g)) the

counting function(reduced counting function) of all common zeros of f − a and

g − a with same multiplicities and by N0(r, a; f, g)(N0(r, a; f, g)) the counting func-

tion(reduced counting function) of all common zeros of f − a and g − a ignoring

multiplicities. If

N

(

r,
1

f − a

)

+N

(

r,
1

g − a

)

− 2NE(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share the value a “CM”. If

N

(

r,
1

f − a

)

+N

(

r,
1

g − a

)

− 2N 0(r, a; f, g) = S(r, f) + S(r, g),

then we say that f and g share the value a “IM”.

Definition 2.[7] Let f and g share the value a “IM” and k be a positive integer or

infinity. Then N
E

k)(r, a; f, g) denotes the reduced counting function of those a-points

of f whose multiplicities are equal to the corresponding a-points of g, and both of

their multiplicities are not greater than k. N
0

(k(r, a; f, g) denotes the reduced counting

function of those a-points of f which are a-points of g and both of their multiplicities

are not less than k.

Definition 3.[7] For a ∈ C ∪ {∞}, if k is a positive integer or ∞ and

Nk)

(

r,
1

f − a

)

−N
E

k)(r, a; f, g) = S(r, f),

Nk)

(

r,
1

g − a

)

−N
E

k)(r, a; f, g) = S(r, g),

N (k+1

(

r,
1

f − a

)

−N
0

(k+1(r, a; f, g) = S(r, f),

N (k+1

(

r,
1

g − a

)

−N
0

(k+1(r, a; f, g) = S(r, g),
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or if k = 0 and

N

(

r,
1

f − a

)

−N 0(r, a; f, g) = S(r, f),

N

(

r,
1

g − a

)

−N 0(r, a; f, g) = S(r, g),

then we say f and g weakly share a with weight k. Here we write f, g share “(a, k)”

to mean that f, g weakly share a with weight k.

Definition 4.[1] We denote by N(r, a; f |= p; g |= q) the reduced counting function

of common a-points of f and g with multiplicities p and q, respectively.

Definition 5.[1] Let f, g share a “IM.” Also let k be a positive integer or ∞ and

a ∈ C ∪ {∞}. If
∑

p,q≤k N(r, a; f |= p; g |= q) = S(r), then we say f and g share a

with weight k in a relaxed manner. Here we write f and g share (a, k)∗ to mean that

f and g share a with weight k in a relaxed manner.

In 1997, Yang and Hua [12], studied the unicity of differential monomials and ob-

tained the following theorem.

Theorem 1.1.[12] Let f(z) and g(z) be two non-constant entire functions, n ≥ 6 a

positive integer. If fnf ′ and gng′ share 1 CM, then either f(z) = c1e
cz, g(z) = c2e

−cz,

where c1, c2, c are three constants satisfying (c1c2)
n+1c2 = −1 or f(z) ≡ tg(z) for a

constant t such that tn+1 = 1.

In 2001, Fang and Hong studied the unicity of differential polynomials of the form

fn(f − 1)f ′ and proved the following uniqueness theorem.

Theorem 1.2.[3] Let f(z) and g(z) be two transcendental entire functions, n ≥ 11

an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share the value 1 CM, then f ≡ g.
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In 2004, Lin and Yi extended the above theorem as to the fixed point. They proved

the following result.

Theorem 1.3.[6] Let f(z) and g(z) be two transcendental entire functions, n ≥ 7

an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share z CM, then f ≡ g.

Theorem 1.4.[15] Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small functio n with respect to both f(z) and g(z). Suppose that

c is a nonzero complex constant and n ≥ 7 is an integer. If fn(z)(f(z) − 1)f(z + c)

and gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f(z) ≡ g(z).

In 2014, Chao Meng [9] proved the following results.

Theorem 1.5.[9] Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small function with respect to both f(z) and g(z). Suppose that

c is a non-zero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)− 1)f(z + c)

and gn(z)(g(z)− 1)g(z + c) share “(α(z), 2)”, then f(z) ≡ g(z).

Theorem 1.6.[9] Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small function with respect to both f(z) and g(z). Suppose that

c is non-zero complex constant and n ≥ 10 is an integer. If fn(z)(f(z) − 1)f(z + c)

and gn(z)(g(z)− 1)g(z + c) share (α(z), 2)∗ then f(z) ≡ g(z).

Theorem 1.7.[9] Let f(z) and g(z) be two transcendental entire functions of finite

order, and α(z) be a small function with respect to both f(z) and g(z). Suppose that

c is a non-zero complex constant and n ≥ 16 is an integer. If E2)(α(z), f
n(z)(f(z)−

1)f(z + c)) = E2)(α(z), g
n(z)(g(z)− 1)g(z + c)) then f(z) ≡ g(z).

Question 1. What can be said about the relationship between two entire func-

tions f and g if we consider the difference polynomials of the form fn(z)(f(z) −
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1)m
∏d

j=1 f(z + cj)
sj where n(≥ 1), m(≥ 1) and d ≥ 1 are integers?

In this paper, our main aim is to find the possible answer to above question. We

assume, cj ∈ C \ {0}(j = 1, 2, ..., d) are distinct constants, n,m, sj(j = 1, 2, ..., d) are

positive integers and σ =
∑d

j=1 sj = s1 + s2 + ... + sd.

We prove the following results which improve and extend Theorem 1.5 - 1.7. The

following theorems are the main results of the paper.

2. Main Results

Theorem 2.1. Let f(z) and g(z) be two transcendental entire functions of fi-

nite order and α(z) be a small function with respect to both f(z) and g(z). Let

cj(j = 1, 2, ..., d) be complex constants and sj(j = 1, 2, ..., d) be non-negative integers.

Suppose n(≥ 1) and m(≥ 1) are integers satisfying n ≥ σ +m + 5. If fn(z)(f(z) −

1)m
∏d

j=1 f(z + cj)
sj and gn(z)(g(z) − 1)m

∏d

j=1 g(z + cj)
sj share “(α(z), 2)”, then

f(z) ≡ g(z).

Theorem 2.2. Let f(z) and g(z) be two transcendental entire functions of fi-

nite order and α(z) be a small function with respect to both f(z) and g(z). Let

cj(j = 1, 2, ..., d) be complex constants and sj(j = 1, 2, ..., d) be non-negative in-

tegers. Suppose n(≥ 1) and m(≥ 1) are integers satisfying n ≥ 2σ + 2m + 6. If

fn(z)(f(z)−1)m
∏d

j=1 f(z+cj)
sj and gn(z)(g(z)−1)m

∏d

j=1 g(z+cj)
sj share (α(z), 2)∗,

then f(z) ≡ g(z).

Theorem 2.3. Let f(z) and g(z) be two transcendental entire functions of fi-

nite order and α(z) be a small function with respect to both f(z) and g(z). Let

cj(j = 1, 2, ..., d) be complex constants and sj(j = 1, 2, ..., d) be non-negative in-

tegers. Suppose n(≥ 1) and m(≥ 1) are integers satisfying n ≥ 4σ + 4m + 8. If

E2)(α(z), f
n(f(z)−1)m

∏d

j=1 f(z+ cj)
sj) = E2)(α(z), g

n(g(z)−1)m
∏d

j=1 g(z+ cj)
sj ),

then f(z) ≡ g(z).
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Remark 2.1. Since Theorems 1.5 - 1.7 can be obtained from Theorems 2.1 - 2.3

respectively by putting m = 1 and σ = 1, Theorems 2.1 - 2.3 improve and extend

Theorems 1.5 - 1.7 respectively.

3. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We denote

by H the function as follows.

H =

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G− 1

)

Lemma 3.1.[1] Let H be defined as above. If F and G share “(1, 2)” and H 6≡ 0,

then

T (r, F ) ≤ N2(r,
1

F
)+N2(r,

1

G
)+N2(r, F )+N2(r, G)−

∞
∑

p=3

N (p(r,
G

G′
)+S(r, F )+S(r, G),

and the same inequality holds for T (r, G).

Lemma 3.2.[1] Let H be defined as above. If F and G share (1, 2)∗ and H 6≡ 0, then

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) +N2(r, F ) +N2(r, G) +N(r,

1

F
) +N(r, F )−m(r,

1

G− 1
)

+ S(r, F ) + S(r, G),

and the same inequality holds for T (r, G).

Lemma 3.3.[14] Let H be defined as above. If H ≡ 0 and

lim sup
r→∞

N(r, 1
F
) +N(r, F ) +N(r, 1

G
) +N(r, G)

T (r)
< 1, r ∈ I

where T (r) = max{T (r, F ), T (r, G)} and I is a set with infinite linear measure, then

F ≡ G or FG ≡ 1.

Lemma 3.4.[8] Let F and G be two non-constant entire functions, and p ≥ 2 an

integer. If Ep)(1, F ) = Ep)(1, G) and H 6≡ 0, then

T (r, F ) ≤ N2(r,
1

F
) +N2(r,

1

G
) + 2N(r,

1

F
) +N(r,

1

G
) + S(r, F ) + S(r, G).
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Lemma 3.5.[2] Let f(z) be a meromorphic function in the complex plane of finite

order ρ(f), and let η be a fixed non-zero complex number. Then for each ǫ > 0 one

has

T (r, f(z + η)) = T (r, f(z)) +O(rρ(f)−1+ǫ) +O(logr).

Lemma 3.6.[10] Let f(z) be a entire function of finite order ρ(f), c a fixed non-

zero complex number, and P (z) = anf
n(z) + an−1f

n−1(z) + ... + a1f(z) + a0 where

aj(j = 0, 1, ..., n) are constants. If F (z) = P (z)f(z + c), then T (r, F ) = (n +

1)T (r, f) +O(rρ(f)−1+ǫ) +O(logr).

Lemma 3.7. Let f be meromorphic function of finite order and c be a non-zero

complex constant. Then,

m

(

r,
f(z + c)

f(z)

)

+m

(

r,
f(z)

f(z + c)

)

= O{rρ(f)−1+ε}.

Lemma 3.8. Let f be an entire function of order ρ(f) and F (z) = fn(z)(f(z) −

1)m
d
∏

j=1

f(z + cj)
sj where n (≥ 1) and m (≥ 1) are integers. Then,

T (r, F ) = (n+m+ σ)T (r, f) +O{rρ(f)−1+ε}+ S(r, f),

for all r outside of a set of finite linear measure where σ = s1 + s2 + ...+ sd =
d
∑

j=1

sj .

Proof. Since f is an entire function of finite order, from Lemma 3.7 and standard

Valiron-Mohon’ko theorem we have

(n+m+ σ)T (r, f(z)) = T (r, fn+σ(z)(f(z)− 1)m) + S(r, f)

= m
(

r, fn+σ(z)(f(z)− 1)m
)

+ S(r, f)

≤ m

(

r,
fn+σ(z)(f(z)− 1)m

F (z)

)

+m(r, F (z)) + S(r, f)

≤ m











r,
fσ(z)

d
∏

j=1

f(z + cj)sj











+m(r, F (z)) + S(r, f)

≤ T (r, F (z)) +O{rρ(f)−1+ε}+ S(r, f).(3.1)
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On the other hand, from Lemma 3.5, we have

T (r, F (z)) ≤ m(r, fn(z)) +m(r, (f(z)− 1)m) +m

(

r, fσ(z) ·
d
∏

j=1

f(z + cj)
sj

f(z)sj

)

+ S(r, f)

≤ (n+m)m(r, f(z)) + σm(r, f(z)) +

d
∑

j=1

sj ·m

(

r,
f(z + cj)

f(z)

)

+ S(r, f)

≤ (n+m+ σ)m(r, f(z)) +O{rρ(f)−1+ε}+ S(r, f)

≤ (n+m+ σ) T (r, f(z)) +O{rρ(f)−1+ε}+ S(r, f).(3.2)

From 3.1 and 3.2, we can prove this lemma easily.

4. Proof of the Theorems

Proof of Theorem 2.1.

Let F (z) =
[f(z)n(f(z)−1)m

∏d
j=1

f(z+cj)
sj ]

α(z)
, G(z) =

[g(z)n(g(z)−1)m
∏d

j=1
g(z+cj)

sj ]

α(z)
.

Then F (z) and G(z) share “(1, 2)” except the zeros or poles of α(z). By Lemma 3.6,

we have

(4.1) T (r, F (z)) = T (r, f(z)n(f(z)− 1)m
d
∏

j=1

f(z + cj)
sj) + S(r, f)

(4.2) T (r, G(z)) = T (r, g(z)n(g(z)− 1)m
d
∏

j=1

g(z + cj)
sj ) + S(r, g)

Also, we have

N2(r,
1

F
) = N2(r,

1

fn(f − 1)m
∏d

j=1 f(z + cj)sj
) + S(r, f)

= N2(r,
1

fn
) +N(r,

1

(f − 1)m
) +N(r,

1
∏d

j=1 f(z + cj)sj
) + S(r, f)

≤ (2 +m+ σ)T (r, f) + S(r, f)

(4.3)

and

(4.4) N2(r,
1

G
) ≤ (2 +m+ σ)T (r, g) + S(r, g)
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Suppose H 6≡ 0, then by Lemmas 3.1, 3.5 and Lemma 3.8, we have

T (r, F ) + T (r, G) ≤ 2N2(r,
1

F
) + 2N2(r,

1

G
) + S(r, f) + S(r, g)

≤ 4N(r,
1

f
) + 2N(r,

1

(f − 1)m
) + 2N(r,

1
∏d

j=1 f(z + cj)sj
)

+ 4N(r,
1

g
) + 2N(r,

1

(g − 1)m
) + 2N(r,

1
∏d

j=1 g(z + cj)sj
)

+ S(r, f) + S(r, g)

(n+m+ σ)[T (r, f) + T (r, g)] ≤(4 + 2m+ 2σ)[T (r, f) + T (r, g)] +O(rρ(f)−1+ǫ)

+O(rρ(g)−1+ǫ) + S(r, f) + S(r, g)

(n− σ −m− 4)[T (r, f) + T (r, g)] ≤ O(rρ(f)−1+ǫ) +O(rρ(g)−1+ǫ) + S(r, f) + S(r, g)

(4.5)

which contradicts with n ≥ σ +m+ 5. Thus we have H ≡ 0. Note that

N(r, 1
F
)+N(r, 1

G
) ≤ (1+m+σ)T (r, f)+(1+m+σ)T (r, g)+S(r, f)+S(r, g) ≤ T (r).

where T (r) = max{T (r, F ), T (r, G)}. By Lemma 3.3, we deduce that either F ≡ G

or FG ≡ 1. Next we will consider the following two cases, respectively.

Let FG = 1. Then

[fn(z)(f(z)− 1)m
d
∏

j=1

f(z + cj)
sj ][gn(z)(g(z)− 1)m

d
∏

j=1

g(z + cj)
sj ] = α2

[fn(z)(f(z)−1)(fm−1(z)+fm−2(z)+...+1)
∏d

j=1 f(z+cj)
sj ][gn(z)(g(z)−1)m(gm−1(z)+

gm−2(z) + ...+ 1)
∏d

j=1 g(z + cj)
sj ] = α2.

It can be easily viewed from above that

N(r,
1

f
) = S(r, f) and N(r,

1

f − 1
) = S(r, f)

Thus,

δ(0, f)+δ(1, f)+δ(∞, f) = 3, which is not possible. Therefore we must have F ≡ G.

This completes the proof of Theorem 2.1.
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Proof of Theorem 2.2. Let

F (z) =
[fn(z)(f(z)− 1)m

∏d

j=1 f(z + cj)
sj ]

α(z)
, G(z) =

[gn(z)(g(z)− 1)m
∏d

j=1 g(z + cj)
sj ]

α(z)
.

Then F (z) and G(z) share (1, 2)∗ except the zeros or poles of α(z). Obviously

T (r, F ) + T (r, G) ≤ 2N2(r,
1

F
) + 2N2(r,

1

G
) +N(r,

1

F
) +N(r,

1

G
) + S(r, F ) + S(r, G)

(n+m+ σ)[T (r, f) + T (r, g)] ≤ (5 + 3m+ 3σ){T (r, f) + T (r, g)}+O(rρ(f)−1+ǫ)

+O(rρ(g)−1+ǫ) + S(r, f) + S(r, g).

(n− 2m− 2σ − 5)[T (r, f) + T (r, g)] ≤ O(rρ(f)−1+ǫ) +O(rρ(g)−1+ǫ) + S(r, f) + S(r, g).

(4.6)

According to (4.6) and Lemma 3.2, we can prove Theorem 2.2 in a similar way as in

proof of Theorem 2.1.

Proof of Theorem 2.3. Let

F (z) =
fn(z)(f(z)− 1)m

∏d

j=1 f(z + cj)
sj

α(z)
, G(z) =

gn(z)(g(z)− 1)m
∏d

j=1 g(z + cj)
sj

α(z)
.

Then E2)

(

1, fn(z)(f − 1)m
∏d

j=1 f(z + cj)
sj

)

= E2)

(

1, gn(z)(g − 1)m
∏d

j=1 g(z + cj)
sj

)

except the zeros or poles of α(z).

Obviously

T (r, F ) + T (r, G) ≤2N2(r,
1

F
) + 2N2(r,

1

G
) + 3N(r,

1

F
) + 3N(r,

1

G
)

+ S(r, F ) + S(r, G)

(n+m+ σ)[T (r, f) + T (r, g)] ≤ (7 + 5m+ 5σ)[T (r, f) + T (r, g)] +O(rρ(f)−1+ǫ)

+O(rρ(g)−1+ǫ) + S(r, f) + S(r, g)

(n− 4m− 4σ − 7)[T (r, f) + T (r, g)] ≤ O(rρ(f)−1+ǫ) +O(rρ(g)−1+ǫ)S(r, f) + S(r, g).

(4.7)

Using to (4.7) and Lemma 3.4, we can prove Theorem 2.3 in a similar way as in proof

of Theorem 2.1.
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5. Open Questions

Question 5.1 Can the Theorem 2.1 - 2.3 be extend to meromorphic functions?

Question 5.2 Can the difference polynomials in Theorem 2.1 - 2.3 be replaced by

difference polynomials of the form fn(z)(f(z)− 1)m
∏d

j=1 f(z + cj)
sj
∏k

j=1 f
(i)(z)?
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