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NUMERICAL SOLUTION OF BIOHEAT TRANSFER MODEL

USING GENERALIZED WAVELET COLLOCATION METHOD

MOHD IRFAN (1) AND FIRDOUS A. SHAH (2)

Abstract. In this article, we develop a a generalized wavelet collocation method

based on a Haar wavelet to facilitate the solution of modified Pennes bio-heat trans-

fer model during thermal therapy. The process of heat transfer in living biological

tissue is studied under various coordinate systems. Contrary to the existing opera-

tional matrix methods based on orthogonal functions, we construct the Haar wavelet

operational matrices of integration without using the block pulse functions. The

temperature distribution inside a living biological tissue has been investigated for

different estimations of thermal conductivity, antenna power constant, and surface

temperature. The numerical results obtained shows that the desired temperature

occur faster in spherical symmetric coordinate as compared to axisymmetric coor-

dinate where as temperature in axisymmetric coordinate occur faster in comparison

to cartesian coordinate. The performance and accuracy of the proposed technique is

elucidates by a comparison of the numerical outcomes with homotopy perturbation

method and the exact solution of the model.

1. Introduction

Thermal therapy is a mostly used technique for the treatment of cancer, in which

cancer cells are exposed to a significant amount of heat by some external heat source

for instance electromagnetic radiation, ultrasound, radio-frequency, microwaves, and

infrared radiation. In recent investigations, it has been indicated that cancer cells are

relatively more sensitive to heat than normal cells and bringing about their breakdown
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at raised temperatures. Based on the level of temperature rise and time to apply

them, thermal therapy is arranged into cryoablation (θ ≤ −50◦C) for time t >

10min, hyperthermia (40◦C ≤ θ ≤ 41◦C) for time 6− 72 h, moderate hyperthermia

(41◦C ≤ θ ≤ 46◦C) for time 15 − 60min and thermal ablation (θ ≥ 50◦C) for time

4 − 6min [14]. Heat transfer in living tissues is a complicated process because of

their nonhomogeneous internal structure which includes heat conduction in tissues

and veins, convection among blood and tissue, perfusion through capillary tubes

inside the tissues, metabolic heat generation, and evaporation, and so forth. To

demonstrate this intricate process a few bio-heat transfer models have been proposed

for an exact prediction and control of temperature [29, 18, 4, 30, 22]. However,

because of straightforwardness and clear nature, the Pennes bio-heat transfer model

has gained a decent status. Mathematically, the Pennes bio-heat transfer model is

depicted by a second order partial differential equation [24]

ρc
∂θ

∂ζ
= Kζ

∂2θ

∂η2
+ ωbcb(θb − θ) +Qm +Qη,(1.1)

where ρ, c,Kζ , ωb, cb, θb, and θ represents the density, specific heat, thermal conduc-

tivity, blood perfusion rate, specific heat of the blood, arterial temperature, and

temperature of the tissue, respectively. To understand the process of heat transfer in

living biological tissues, the analytical and numerical study of the Pennes model (1.1)

has received great attention from many researchers. Some of the methods invoked in

the recent literature for solving the Pennes bio-heat transfer model include the finite

difference-decomposition method [10], homotopy perturbation method [11], Monte

Carlo method [7], Bessel’s method [32], boundary element method [5], variational

iteration method [12], Laplace transform method [1] and finite difference method

[33].

Wavelet-based numerical algorithms have gained a significant place in numerical anal-

ysis fundamentally because of their simple technique, easy calculation, and fast con-

vergence. During the most recent decade, the operational matrices of integration

for the Legendre wavelets, Chebyshev wavelets, Haar wavelets, Bernoulli wavelets,

CAS wavelets, and the ultraspherical wavelets are constantly being utilized for the

solution of various physical and biological problems [15, 16, 25, 26, 2], however, the
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Haar wavelets have received unprecedented attention mainly due to their promising

features including compact support, real-valued, symmetry and orthogonality [6, 19].

Other distinguishing features of these wavelets include their ability to detect the sin-

gular points, a straightforward inclusion of the diverse types of boundary conditions

and the possibility to integrate them at arbitrary times [8, 9]. The wavelet techniques

have also proved to be successful in managing the numerical solutions of fractional

order models. For a detailed survey of the utilization of wavelets techniques in solving

fractional order models, we allude to the articles [27, 28].

Keeping in view the pleasant qualities of the Haar wavelets over the other wavelet

families, we are profoundly inspired to comprehend the modified bio-heat transfer

model by defining a Haar wavelet collocation technique without utilizing the block

pulse functions, which is quite unique from the commonly used wavelet-based col-

location methods [3, 17]. The proposed technique has the following advantages in

contrast to the existing methods available in the open literature:

• The operational matrices of integration are constructed without using the

block pulse functions.

• Unlike the conventional methods, our method does not require to calculate

the inverse of the Haar matrix.

• The CPU time is significantly curtailed as the major blocks of Haar wavelet

operational matrices are calculated once and, are used in the subsequent com-

putations repeatedly.

• Simple and direct relevance with no need for other moderate method is re-

quired.

The rest of the paper is sorted out as follows. In Section 2, we introduced the forma-

tion of the modified bio-heat transfer model. Section 3 is devoted to the construction

of an operational matrix of integration without using the block pulse functions. The

solution of the model is illustrated in Section 4. In Section 5, we discuss the achieved

numerical results. At last, a conclusion is depicted in Section 6.
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2. Mathematical formulation of the model

In this Section, we formulate the modified bioheat transfer model by utilizing the

classical Fourier’s law of heat conduction in conjunction with the well known energy

balance equation. To study the temperature distribution in a living biological tissue,

we consider three types of 1D coordinate systems i.e cartesian, axisymmetric, and

spherical symmetric coordinate. The classical Fourier law of heat conduction is given

by [21]

q(η, ζ) = −Kζ

∂θ

∂η
,(2.1)

where η is space variable, ζ is time variable, and θ is temperature of the tissue. It is

notable, that the 1D transient energy balance condition is given by

ρc
∂θ

∂ζ
= −∂q

∂η
− Γ

η
q +Qb +Qm +Qη,(2.2)

where the parameter Γ in (2.2) represents the number which allocates the coordinates

i.e., Γ = 0, 1, 2 specify the cartesian, axisymmetric and spherical symmetric coordi-

nates, respectively (as shown in Fig. 1)[23]. By wiping out q from (2.1) and (2.2),

we acquire the following form of modified Pennes bio-heat transfer model

ρc
∂θ

∂ζ
= Kζ

(

∂2θ

∂η2
+

Γ

η

∂θ

∂η

)

+Qb +Qm +Qη,(2.3)

with initial and boundary conditions as

θ(η, 0) = θ0, θ(L1, t) = θw, θ(L2, t) = θs.(2.4)

The terms Qm and Qb involved in Eqn. (2.3) represents the temperature-dependent

heat by metabolic process and heat source because of blood circulation, respectively,

and can also be expressed as

Qm = Qm1 [1 + 0.1(θ − θ0)] , and Qb = ωbcb
(

θb − θ
)

.(2.5)

Moreover, by electromagnetic radiation the heat generated per unit volume of tissue

Qη is given by

Qη = ρSPea(η−ηp),(2.6)

where a and S are the antenna constants, P is the transmitted power which can be

changed as per the prerequisite, η = (L−η) is the distance of the tissue from the skin
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Figure 1. Model of bio-heat transfer analysis at distinct coordinates

surface, and ηp is the radius of the probe. After substituting the terms Qη, Qm, and

Qb in Eq. (2.3), we obtained the following modified Pennes bio-heat transfer model

∂θ

∂ζ
= B

(

∂2θ

∂η2
+

Γ

η

∂θ

∂η

)

+Rθ(η, ζ) + Z(η),(2.7)
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where

B =
Kζ

ρc
, R =

0.1 [Qm1 − 10ωbcb]

ρc
,(2.8)

and

Z(η) =
1

ρc

[

Qm1 − 0.1Qm1θ0 + ωbcbθb + ρSPea(η−ηp)
]

.(2.9)

3. Haar Wavelets and Operational Matrix of Integration

In 1910, Alfred Haar introduced an orthonormal system for L2[0, 1] by the combined

actions of dyadic dilations and integer translation from a single function, called the

Haar wavelet. It is the simplest and oldest orthonormal wavelet with compact sup-

port. The fundamental form of the Haar wavelet is the Haar scaling function that

presents in the form of a square wave over the interval η ∈ [0, 1] as

w0(η) =







1, η ∈ [0, 1]

0, elsewhere.
(3.1)

The above equation represents the zeroth level of wavelet with no translation and

dilation of unit size and is known as father wavelet. Corresponding to the father

wavelet (3.1), the associated mother wavelet is defined as

w1(η) =



















1, 0 ≤ η < 1/2

−1, 1/2 ≤ η < 1

0, elsewhere.

(3.2)

The equation (3.2) can also be written in the linear combination of the Haar scaling

function as

w1(η) = w(2η)− w(2η − 1).(3.3)

Correspondingly, by translating and dilating the mother wavelet w1(η), we can obtain

the other levels of wavelets. For the construction of the Haar wavelets family, the

general formula is defined as

wi(η) =



















1, η ∈ [α, β)

−1, η ∈ [β, γ)

0, elsewhere,

(3.4)
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where α =
k

2j
, β =

k + 0.5

2j
, γ =

k + 1

2j
, the level of wavelet j = 0, 1 . . . J , and

translation parameter k = 0, 1, . . . , 2j − 1. The parameter J is the maximal level of

resolution. The index i shows up in (3.4) is obtained via the formula i = 2j + k + 1.

The maximal value of i is achieved by N = 2j+1. For additional information about

the Haar wavelets and their applications, we allude to the monographs [19, 13].

Now we formulate the operational matrix of integration by the Haar wavelets

(3.4) for which we follow a similar technique as utilized in [20] and the integral of

(3.4) gives us

Pi,1(η) =

∫ η

0

wi(η) dη,

Pi,n+1(η) =

∫ η

0

Pi,n(η) dη,

Ci,n(η) =

∫ 1

0

Pi,n(η) dη, n = 1, 2, . . .



























.(3.5)

The integrals in (3.5) can be assessed systematically by the Haar wavelets (3.4) as

Pi,n(η) =



































0 for η ∈ [0, α)
1

n!
(η − α)n for η ∈ [α, β)

1

n!

[

(η − α)n − 2(η − β)n
]

for η ∈ [β, γ)

1

n!

[

(η − α)n − 2(η − β)n + (η − γ)n
]

, for η ∈ [γ, 1),

(3.6)

where i = 2, 3, . . . and n = 1, 2, . . . . Note that

P1,n(η) =
ηn

n!
, C1,n(η) =

1

(n + 1)!
, n = 1, 2, . . . .

Now by Haar basis functions, any square-integrable function f(η) characterized on

[0, 1] can be communicated as

f(η) = a0w0(η) + a1w1(η) + · · · =
∞
∑

i=0

ai wi(η), η ∈ [0, 1](3.7)

where ai, i = 0, 1, 2, . . . are the Haar coefficients and are obtained as

ai = 〈f, wi〉 = 2j
∫ 1

0

f(η)wi(η) dη.(3.8)

Even though the equation (3.7) is an infinite series, we can sensibly approximate f(η)

by utilizing finite terms, if f(η) is approximated as a piecewise constant function over
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each sub-span; i.e

f(η) ⋍ fN(η) =

N−1
∑

i=0

ai wi(η).(3.9)

The similar matrix form of the equation (3.9) is as follows

F
T = A

T
N WN ,(3.10)

where F is the discrete form of the continuous function f(η), AT
N = [a0, a1, . . . , aN−1]

represents the N -dimensional Haar coefficient row vector, and WN indicate the Haar

wavelet matrix of order N = 2j+1 is given as

WN =

















w0

w1

...

wN−1

















=

















w0,0 w0,1 . . . w0,N−1

w1,0 w1,1 . . . w1,N−1

...
...

...
...

wN−1,0 wN−1,1 . . . wN−1,N−1

















, (3.11)

Any arbitrary function f(η, ζ) ∈ L2([0, 1]× [0, 1]), can be expressed into Haar wavelet

series as

f(η, ζ) =
N−1
∑

i=0

N−1
∑

j=0

aijwi(η)wj(ζ),(3.12)

where

aij = 〈wi(η), 〈f(η, ζ), wj(ζ)〉〉 ,

〈wi(η), wj(η)〉 =
∫ 1

0

wi(η)wj(η) dη.(3.13)

We can also write the equation (3.12) as

f(η, ζ) = W T
N (η)AWN(ζ),(3.14)

Following collocation points are defined for achieving the Haar wavelet approxima-

tions:

ηi =
i− 0.5

N
, i = 1, 2, . . . , N.(3.15)
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If we choose j = 2 ⇒ N = 8, then the corresponding Haar matrix W and the

operational matrix P can be expressed as

W8 =

























1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1

























,P8 =
1

64

























32 −16 −8 −8 −4 −4 −4 −4

16 0 −8 8 −4 −4 4 4

4 4 0 0 −4 4 0 0

4 4 0 0 −4 4 0 0

1 4 2 0 0 0 0 0

1 1 −2 0 0 0 0 0

1 −1 0 2 0 0 0 0

1 −1 0 −2 0 0 0 0

























.

The Haar approximation fN (η) for a function f(η) is given by

fN(η) =
N−1
∑

i=0

ai wi(η), N = 2j+1, j = 0, 1, 2, . . . , J(3.16)

and also the corresponding N -th level error is given by

∥

∥f − fN
∥

∥

2
=

∥

∥

∥

∥

∥

f(η)−
N−1
∑

i=0

ai wi(η)

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

∞
∑

i=2j+1

ai wi(η)

∥

∥

∥

∥

∥

2

.(3.17)

We obtain the upper bound of the error for a solution of model (2.7) if we have an

exact solution of the model (2.7) at hand. Besides the convergence of the proposed

technique might be examined on similar lines as discuss in Yi and Huang [31].

Theorem 3.1. ([31]) Suppose f(η) satisfies the Lipschitz condition on [0, 1] with

Lipschitz constant K and fN (η) is the Haar approximation of f(η), then we have

∥

∥f − fN
∥

∥

2
≤ K√

3N2
(3.18)

4. Method of Solution

This Section is committed for solving the modified bio-heat transfer model (2.7) by

employing the Haar wavelet operational matrices technique formulated in Section 3.

To encourage the solution of the problem (2.7), we review the non-dimensional model

(2.7)

∂θ

∂ζ
= B

(

∂2θ

∂η2
+

Γ

η

∂θ

∂η

)

+Rθ(η, ζ) + Z(η),(4.1)

with initial and boundary conditions

θ(η, 0) = u(η), θ(0, ζ) = v1(ζ), θ(L, ζ) = v2(ζ),(4.2)
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where B,R and Z(η) have usual meaning as given in Eqns (2.8) and (2.9).

Next, by the expansion of Haar wavelet, we approximate the highest order derivative
∂3θ

∂η2∂ζ
in the following form

∂3θ

∂η2∂ζ
≈ W T

N (η)AWN(ζ).(4.3)

Now by taking the one time integration of (4.3), w.r.t ζ and twice integration w.r.t

η, we get

∂2θ

∂η2
=

∫ ζ

0

∂3θ

∂η2∂ζ
dζ +

∂2θ

∂η2

∣

∣

∣

ζ=0

≈

∫ ζ

0

[

W T
N (η)AWN(ζ)

]

dζ +
∂2θ

∂η2

∣

∣

∣

ζ=0

= W T
N (η)APi,1WN (ζ) + u

′′

(η)(4.4)

and

∂θ

∂ζ
=

∫ η

0

∫ η

0

∂3θ

∂η2∂ζ
dη + η

∂θ

∂ζ

∣

∣

∣

η=0
+

∂θ

∂ζ

∣

∣

∣

η=0

≈

∫ η

0

∫ η

0

[

W T
N (η)AWN(ζ)

]

dη + η
∂θ

∂ζ

∣

∣

∣

η=0
+

∂θ

∂ζ

∣

∣

∣

η=0

= [Pi,2WN(η)]
T AWN (ζ) + ηv

′

1(ζ) + v
′

1(ζ).(4.5)

Upon integrating (4.4), with respect to η from 0 to η, we get

∂θ

∂η
=

∫ η

0

∂2θ

∂η2
dx+

∂θ

∂η

∣

∣

∣

ζ=0

≈

∫ η

0

[

W T
N (η)APi,1WN (ζ)

]

dη +
∂θ

∂η

∣

∣

∣

ζ=0

= [Pi,1WN(η)]
T APi,1WN(ζ) + u

′

(η)(4.6)

Again integrating (4.5), with respect to ζ from 0 to ζ , we get

θ(η, ζ) =

∫ ζ

0

∂θ

∂ζ
dζ +

∂θ

∂ζ

∣

∣

∣

ζ=0

≈

∫ ζ

0

[

[Pi,2WN (η)]
T AWN(ζ) + ηv

′

1(ζ) + v
′

1(ζ)
]

dζ +
∂θ

∂ζ

∣

∣

∣

ζ=0

= [Pi,2WN(η)]
T APi,1WN(ζ) + ηv1(ζ) + v1(ζ) + u(η).(4.7)
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Substituting the obtained values of
∂2θ

∂η2
,
∂θ

∂ζ
,
∂θ

∂η
, θ(η, ζ), in (4.1), we obtain the alge-

braic equations in the following form

[Pi,2WN(η)]
T AWN (ζ)− BW T

N (η)APi,1WN(ζ)−B
Γ

η
[Pi,1WN(η)]

T APi,1WN(ζ)−

R [Pi,2WN (η)]
T APi,1WN(ζ)

= Z(η) + ηv1(ζ) + v1(ζ) + u(η) +B
Γ

η
u

′

(η) +B + u
′′

(η)− ηv
′

1(ζ)− v
′

1(ζ).(4.8)

Upon solving the above algebraic equation (4.8) with the help of Newton’s method,

we get the values of our unknown Haar coefficient vector A. Then putting the attain

values of vector A in (4.7), we get our approximate solution θ(η, ζ) of modified bio-

heat transfer model (4.1).

4.1. Exact Solution of the model. To check the performance and accuracy of the

present technique an exact solution is required. It is not possible to obtain the exact

solution of the proposed model (2.7), so to achieve this we curtail the model into a

more simple form by setting the model into cartesian coordinate i.e Γ = 0 with initial

and boundary conditions as given in (2.4), and then using the Laplace transforms

technique, the exact solution of the model (2.7) comes out to be [11]

θ(η, ζ) =
1

sinh
(√

d1(L2 − L1)
)

×
[{

θw − U0

d1
− U1

(d1 − a2)

(

1− sinh

√
a(L2 − η)

sinh(
√
d1(L2 − η))

exp
(−(d1 − a2)

d2
ζ
)

)}

× sinh(
√

d1(L2 − η)) +

{

θs −
U0

d1
− U2

(d1 − a2)

×
(

1− sinh(
√
a(L2 − η))

sinh(
√
d1(L2 − η))

exp
(−(d1 − a2)

d2
ζ
)

)}

sinh
(

√

d1(L2 − η)
)

]

− U0

d2
exp

(

−d1
d2

ζ

)

− ρcθ0
Kζd2

exp

(

−d1
d2

ζ

)

+
ρSP exp (a(0.04− η))

Kζ (d1 − a2)

×
{

1 + exp

(

−(d1 − a2)

d2
ζ

)}

− ρcθ0
Kζd1

exp

(

−d1
d2

ζ

)

+
1

Kζd1
(Qm1

−Qm1

10
θ
′

0 + ωbcbθb

)

×
{

1− exp

(

−d1
d2

ζ

)}

+
∞
∑

n=1

[

2(−1)n

(n2π2 + d1(L2 − L1)2)

×
{(

nπθw +
1

nπ
+

nπ

(n2π2 + a2(L2 − L1)2)
− ρcθ0 (n

2π2 + d1(L2 − L1)
2)

nπKζd2

)
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×
(

sin

(

nπ(L2 − η)

(L2 − L1)

)

+

(

nπθs +
1

nπ
+

nπ

(n2π2 + a2(L2 − L1)2)

−ρcθ0 (n
2π2 + d1(L2 − L1)

2)

nπKζd2

))

sin

(

nπ(η − L1)

(L2 − L1

)}

× exp

{

− ζ

d2

(

d1 +
n2π2

(L2 − L1)2

)}]

,where(4.9)

d1 =
1

Kζ

(ωbcb − 0.1Qm1) , d2 =
ρc

Kζ

, U0 =
1

Kζ

(

Qm1 − 0.1Qm1θ
′

0 + ωbcbθb

)

,

U1 =
ρSP

Kζ

e(a(0.04−L1)), U2 =
ρSP

Kζ

e(a(0.04−L2)).

5. Discussion of the numerical results

In this section, we introduce and talk about the numerical results of the proposed

technique for solving the modified bio-heat transfer model (2.7). The values of the

parameters for thermophysical properties of living biological tissue and blood utilized

in this paper are listed in Table 1, whereas source parameters are listed in Table

2. To test the performance and accuracy of the present technique, we present a

tabulated and graphical comparison of our acquired numerical results with those of

the results attained by the Homotopy perturbation method [11] and exact solution

for the Cartesian coordinate system as depicted in Table 3 and Figure 2. It is quite

evident from Table 3 and Figure 2, that our numerical solution behaves much better

and is sensibly nearer to the solution obtained by HPM and exact solution (4.9).

Moreover, in Table 3 we also present the effect of metabolic heat generation Qm on

the temperature distribution of living biological tissues.

Table 1. Parameters for thermophysical properties of tissue and blood

utilized in this paper.

Parameters Values Units Refs.

c 4.18 × 103 Jkg−1K−1 [10]

ρ 1× 103 kgm−1 [10]

Kζ 0.5 Wm−1 [10]

ωb 8 kgm−3s−1 [10]

cb 3.344 × 103 Jkg−1K−1 [10]

P 20 W [11]
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Parameters Values Units Refs.

Qm1 1.091 × 103 Wm−3 [10]

θs 20 ◦C [11]

θw 37 ◦C [11]

θa 37 ◦C [11]

θ0 37 ◦C [11]

L1 1× 10−3 m [11]

L2 5× 10−2 m [11]

L 0.05 m [11]

Table 2. The parameters of constant source term utilized in this paper..

Parameters Values Units Refs.

a -127 m−1 [11]

S 12.5 kg−1 [11]

ηp 0.01 m [11]
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Figure 2. Comparison between Proposed method and Exact Solution
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Figure 3. (a) Plot of θ(η, ζ) vs. η at different time ζ for Γ = 0. (b)

Plot of θ(η, ζ) vs. η at different time ζ for Γ = 1. (c) Plot of θ(η, ζ) vs.

η at different time ζ for Γ = 2.
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Figure 4. (a) Plot of θ(η, ζ) vs. η at different Kζ for ζ = 9 min in

Γ = 0. (b) Plot of θ(η, ζ) vs. η at different θs for ζ = 9 min in Γ = 0.

(c) Plot of θ(η, ζ) vs. η at different P for ζ = 9 min in Γ = 0.

Table 3. Comparision of present technique with HPM [11] under the

effects of the metabolic heat generation term (Qm).

Temperature(◦C)(Qm 6= 0) Temperature(◦C)(Qm = 0)

Distance(η) ——————————— ——————————–

HWCM HPM[11] HWCM HPM[11]

0.01 37.00 37.00 37.00 37.00

0.59 37.2682 39.9400 37.9673 39.9380

1.08 38.0695 41.7474 39.3283 41.7448

1.57 39.1437 44.3789 40.5378 44.3763

2.06 41.5292 47.7575 42.9272 47.7550

2.55 45.9773 50.5935 45.0106 50.5909

3.04 48.9125 51.2047 46.9526 51.2022

3.53 48.1442 48.3347 48.2938 48.3355
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Temperature(◦C)(Qm 6= 0) Temperature(◦C)(Qm = 0)

Distance(η) ——————————— ——————————–

HWCM HPM[11] HWCM HPM[11]

4.02 43.6398 41.9886 42.8366 41.9870

4.51 32.7671 34.2236 34.5278 34.2229

5.00 20.00 30.00 20.00 30.00

The temperature distributions in living tissue during thermal therapy for three co-

ordinates system i.e (Γ = 0, 1 & 2) is shown graphically in Figure 3 and we infer

from Figure 3 that desired temperature occur faster in spherical symmetric coordi-

nate as compared to axisymmetric coordinate where as temperature in axisymmetric

coordinate occur faster in comparison to Cartesian coordinate. The thermal con-

ductivity (Kζ), antenna power constant (P ), and the surface temperature (θs) has

significant characteristic features on the modified heat transfer model (2.8). To ex-

amine the impact of thermal conductivity (Kζ), antenna power constant (P ), and

surface temperature (θs) on living biological tissue, the temperature profiles for var-

ious estimations of Kζ, θs and P are shown in Figs 4. It is clear from Figure 4,

that with an increase in the estimations of Kζ and θs, the temperature distribution

increases at the location of the tissue. Moreover, with a decrease in the value of

antenna power constant (P ) from 30◦C to 20◦C, the temperature distribution shows

a small reduction in its behavior at tissue location which is of significant importance

for thermal treatment. Finally, in Figure 5, we present the three-dimensional graphs

of our approximate solution for different levels of resolution J = 2; J = 3; J = 4 and

J = 5. Figure 5, shows that as the level of resolution J increases the numerical solu-

tion appreciably refined and achieve the desired temperature. The numerical results

demonstrate that the underlying technique is an impressive and significant tool for

study the heat transfer process during thermal therapy.
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Figure 5. Three-dimensional plot of numerical solution for different

level of resolution (a) J = 2, (b) J = 3, (c) J = 4 and (d) J = 5.

6. Conclusion

In this article, a collocation method based on Haar wavelets is developed for solving

the modified Pennes bio-heat transfer model during thermal therapy. Unlike the

existing operational matrix methods based on orthogonal functions, we construct

the Haar wavelet operational matrices of integration without using the block pulse

functions. By utilizing the proposed technique, we may conclude that this technique

is more convenient and efficient for obtaining the numerical solutions of said model

(2.7). Moreover, in this study, we also see the effects of thermal conductivity (Kζ),

antenna power constant (P ), and the surface temperature (θs) on the temperature

distribution in living biological tissue. Therefore, the obtained results helps in precise

prediction and control of temperature during thermal therapy. The computational

process has been carried out in MATLAB(R2019b) software.
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2017.

[10] P.K. Gupta, J. Singh and K.N. Rai, Solution of the heat transfer problem in tissues during

hyperthermia by finite difference-decomposition method. J Appl Math Comput 219(2013), 6882-

6892.

[11] P.K. Gupta, J. Singh, and K.N. Rai, Numerical simulation for heat transfer in tissues during

thermal therapy, J. Therm. Biol., 35(6), 295-301, 2010.

[12] P.K. Gupta, J. Singh and K.N. Rai, A numerical study on heat transfer in tissues during

hyperthermia. Math Comput Model 57, 1018-1037, 2013.

[13] J.S. Gu, and W.S. Jiang, The Haar wavelets operational matrix of integration, Int. J. Syst.

Sci., 27, 623-628, 1996.

[14] R.W.Y. Habash, R. Bansal, D. Krewski, and H.T. Alhafid, Thermal therapy, part 1: an intro-

duction to thermal therapy, Crit. Rev. Biomedic. Eng. 34(6), 459-489, 2006.

[15] M.H. Heydari, M.R. Hooshmandasl, C. Cattani, and L. Ming, Legendre Wavelets Method for

Solving Fractional Population Growth Model in a Closed System, Mathematical Problems in

Engineering, Article ID 161030, 8 pages, 2013.



228 MOHD IRFAN AND FIRDOUS A. SHAH

[16] G. Hariharan, and K. Kannan, Review of wavelet methods for the solution of reaction-diffusion

problems in science and engineering, Applied Mathematical Modelling, 38(3), 799-813, 2014.

[17] G. Hariharan and K. Kannan, An overview of Haar wavelet method for solving differential and

integral equations, World Applied Sciences Journal 23(12), 01-14, 2013.

[18] H.G. Klinger, Heat transfer in perfused biological tissue-I, Bull. Math. Bio. 36, 403-415, 1974.

[19] U. Lepik, and H. Hein, Haar Wavelets with their Applications, New York: Springer, 2014.

[20] U. Lepik, Solving integral and differential equations by the aid of nonuniform Haar wavelets,

Appl. Math. Comput., 198, 326-332, 2008.

[21] K. Mitra, S. Kumar, A. Vedavarz, and M.K. Moallemi, Experimental evidence of hyperbolic

heat conduction in processed meat, ASME J. Heat Transf. 117, 568-573, 1995.

[22] F. Nakayama, and Kuwahar, A general bioheat transfer model based on the theory of porous

media, Int. J. Heat Mass Transfer, 51, 3190-3199, 2008.

[23] J. Okajima, S. Maruyama, H. Takeda, and A. Komiya. Dimensionless solutions and general

characteristics of bioheat transfer during thermal therapy. J. Therm. Biol. 34, 377-384, 2009.

[24] H.H Pennes, Analysis of tissue and arterial blood temperature in the resting forearm, J. Appl.

Physiol. 1, 93-122, 1948.

[25] P.K. Sahu, and S.R. Saha, A new Bernoulli wavelet method for accurate solutions of nonlinear

fuzzy Hammerstein-Volterra delay integral equations, Fuzzy Sets and Systems, 309, 131-144,

2017.

[26] F.A. Shah, and M.I. Awana, A computational wavelet method for solving dual-phase-lag model

of bioheat transfer during hyperthermia treatment, Comp. and Math. Methods, 2(4), e1095,

2020, https://doi.org/10.1002/cmm4.1095.

[27] F.A. Shah, and M. Irfan, Generalized Wavelet Method for Solving Fractional Bioheat Trans-

fer Model During Hyperthermia Treatment, Int. J. of Wavelets, Multi. and Inf. Proc.,

doi.org/10.1142/S0219691320500903.

[28] H.M. Srivastava, F.A. Shah, and M. Irfan, Generalized wavelet quasilinearization method for

solving population growth model of fractional order, Math. Meth. Appl. Sci., 1-10, 2020.

[29] W. Wulff, The energy conservation equation for living tissues, IEEE Trans. Biomed. Eng., 21,

494-495, 1974.

[30] S. Weinbaum, L.M. Jiji, and D.E. Lemons, Theory and experiment for the effect of vascular

microstructure on surface tissue heat transfer-I, ASME J. of Biomech. Eng., 106, 321-330, 1984.

[31] M. Yi, and J. Huang, Wavelet operational matrix method for solving fractional differential

equations with variable coefficients, Appl. Math. Comput., 230, 383-394, 2014.

[32] K. Yue, X. Zhang, and F. Yu, An analytic solution of one-dimensional steady-state Pennes

bioheat transfer equation in cylindrical coordinates. J Therm Sci 13, 255-258, 2004.



NUMERICAL SOLUTION OF BIOHEAT TRANSFER MODEL... 229

[33] J.J. Zhao, J. Zhang, N. Kang and F. Yang, A two level finite difference scheme for one dimen-

sional Pennes bioheat equation. Appl Math Comput 171, 320-331, 2005.

(1) Department of Mathematics, University of Kashmir, South Campus, Anantnag-

192101, Jammu and Kashmir, India.

Email address : irfan.scholar@kashmiruniversity.net

(2) Department of Mathematics, University of Kashmir, South Campus, Anantnag-

192101, Jammu and Kashmir, India.

Email address : fashah@uok.edu.in


