FRAME SYSTEMS IN NON-LOCALLY CONVEX BANACH SPACES

N. P. PAHARI $^{(1)},$ TEENA KOHLI $^{(2)}$ AND J. L. GHIMIRE $^{(3)}$

ABSTRACT. In this paper, we define atomic decompositions in a non-locally convex Banach space $l^p(0 and discuss its existence through examples. Also, a sufficient condition for its existence is given and it is observed that if a <math>p$ -Banach space has an atomic decomposition, then the space is isomorphic to its associated p-Banach sequence space. Further, necessary and sufficient conditions for an atomic decomposition in a p-Banach space is given. Finally, we define shrinking atomic decomposition and gave a necessary and sufficient condition for it.

1. Introduction

Let X be a vector space over a field \mathbb{F} . A p-norm $\|.\|_p$ for $0 on X is a mapping from <math>X \longrightarrow \mathbb{R}$ satisfying the following properties:

- (1) $||x||_n \ge 0$, for all $x \in X$.
- (2) $||x||_n = 0 \iff x = 0.$
- (3) $\|\alpha x\|_p = |\alpha|^p \|x\|_p$, for all $x \in X$ and $\alpha \in \mathbb{F}$.
- (4) $||x+y||_p \le ||x||_p + ||y||_p$, for all $x, y \in X$.

The pair $(X, \|.\|_p)$ is called a *p*-normed linear space.

If p=1, then the p-norm is equal to norm on X.

A p-normed linear space X over a field \mathbb{F} is called a p-Banach space if it is complete.

A linear operator $T:(X,\|.\|_p)\longrightarrow (Y,\|.\|_q)$ is said to be bounded if there exists a

²⁰¹⁰ Mathematics Subject Classification. 42C15; 42C30.

Key words and phrases. p-Banach Space, p-normed linear space, Hahn Banach Theorem.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

real number M > 0 such that

$$||T(x)||_q^{\frac{1}{q}} \le M ||x||_p^{\frac{1}{p}}$$
, for all $x \in X$.

The collection of all bounded linear operators from the p-Banach space X to the q-Banach space Y is denoted by B(X,Y) which is a Banach space with norm given by

$$||T|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||T(x)||_q^{\frac{1}{q}}}{||x||_p^{\frac{1}{p}}}.$$

Let X be a p-Banach space. A linear functional $f: X \longrightarrow \mathbb{F}$ is said to be bounded on X if there exists a real number M > 0 such that

$$|f(x)| \le M ||x||^{\frac{1}{p}}$$
, for all $x \in X$.

The collection of all bounded linear functionals on the p-Banach space X is denoted by X^* which is also a Banach space with norm given by $||f|| = \sup_{\|x\|_p \le 1} |f(x)|$ and is called the conjugate space of X.

The concept of frame was first defined by Duffin and Schaeffer [7] in 1952. Frames were reintroduced in 1986 by Daubechies, Grossmann and Y. Meyer [6]. Coifman and Weiss [5], introduced the notion of atomic decomposition for certain Function spaces. Later, the notion of atomic decomposition to certain Banach spaces was extended by Feichtinger and Gröchenig [8]. Atomic decompositions were further studied by Kaushik and Sharma [10, 11, 12, 13]

In this paper, we define atomic decompositions in a non- locally convex Banach space $l^p(0 . Also, the existence of atomic decomposition is exhibited through examples. Further, a sufficient condition for its existence is given and it is proved that if a <math>p$ -Banach space has an atomic decomposition, then the space is isomorphic to its associated p-Banach sequence space. Furthermore, necessary and sufficient conditions for an atomic decomposition in a p-Banach space is given. Finally, shrinking atomic decomposition is defined and a necessary and sufficient condition for it is given.

2. Atomic decompositions in p-Banach spaces

In this section, we define atomic decomposition in a p-Banach space and give examples for its existence. Then, we give a sufficient condition, a necessary condition, and a

necessary and sufficient condition for its existence. We begin with the following definition:

Definition 1. Let X be a p-Banach space. A sequence $\{f_n\} \subset X^*$ is said to be fundamental over X if $\{x \in X : f_n(x) = 0, \text{ for all } n \in \mathbb{N}\} = \{0\}.$

Example 2.1. Consider the p-Banach space $X = l_p$, 0 with p-norm given by

$$||x||_p = \sum_{n=1}^{\infty} |x_n|^p$$
, for all $x \in X$.

Define $f_n: X \longrightarrow \mathbb{F}$ by

$$f_n(x) = f_n(\lbrace x_i \rbrace) = x_n$$
, for all $x \in l_p$ and $n \in \mathbb{N}$.

Then, each f_n is linear. Also, f_n is bounded for each n because

$$|f_n(x)| = |x_n| \le (\sum_{n=1}^{\infty} |x_n|^p)^{\frac{1}{p}} = ||x||_p^{\frac{1}{p}}, \text{ for all } x \in X.$$

Also, for $x \in X$, $f_n(x) = 0$, for all $n \in \mathbb{N} \implies x = 0$.

Hence, $\{f_n\}$ is a fundamental sequence over $X = l_p$.

Next, we give a necessary condition for a fundamental sequence in X^* .

Theorem 2.1. If X is a p-Banach space and $\{f_n\} \subset X^*$ is fundamental over X. Then there exists an associated p-Banach sequence space $X_d = \{\{f_n(x)\} : x \in X\}$ with p-norm $\|\{f_n(x)\}\|_{X_d} = \|x\|_p$, for all $x \in X$.

Proof. Let $x \in X$. If x = 0, then $f_n(0) = 0$, for all $n \in \mathbb{N}$.

Let $x \neq 0$. Then there exist at least one $f_i \in X^*$ such that $f_i(x) \neq 0$.

Define the set of sequences associated with the p-Banach space X by

$$X_d = \{ \{ f_n(x) \} : x \in X \} .$$

Then, it is easy to verify that X_d is a p-normed linear space with the p-norm defined by

$$\|\{f_n(x)\}\|_{X_n} = \|x\|_n$$
, for all $x \in X$.

Now, we prove that X_d is a p-Banach space.

Let $\{\{f_n(x_i)\}_n\}_i$ be a p-Cauchy sequence in X_d , which using the definition of p-Cauchy sequence and p-norm on X_d implies that $\{x_i\}$ is a p-Cauchy in X which is p-Banach space and so it is p-convergent in X.

One can easily verify that $\{\{f_n(x_i)\}_n\}_i$ will converge to $\{f_n(x)\}$ in $(X_d, \|.\|_{X_d})$ and hence $(X_d, \|.\|_{X_d})$ is a p-Banach space.

Corollary 2.1. If X is a p-Banach space and $\{f_n\} \subset X^*$ is fundamental over X. Then, X is isomorphic to the p-Banach sequence space $X_d = \{\{f_n(x)\} : x \in X\}$ with $p\text{-norm } \|\{f_n(x)\}\|_{X_d} = \|x\|_p$, for all $x \in X$.

Proof. Existence of the associated p-Banach sequence space X_d is proved in Theorem 2.1.

Now, define $T: X \longrightarrow X_d$ by

$$T(x) = \{f_n(x)\}, \text{ for all } x \in X.$$

Clearly, T is linear, bijective, and an isometry.

Next, we define the notion of atomic decomposition for p-Banach spaces. We give the following definition.

Definition 2. Let $(X, \|.\|_p)$ be a p-Banach space and let X_d be a p-Banach sequence space associated with X. Let $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$. Then the pair $(\{x_n\}, \{f_n\})$ is an atomic decomposition of X with respect to X_d if

- (i) $\{f_n(x)\}_n \in X_d$, for all $x \in X$.
- (ii) There exists constants A,B > 0 such that

$$A \|x\|_{p} \le \|\{f_{n}(x)\}_{n}\|_{X_{d}} \le B \|x\|_{p}, \text{ for all } x \in X.$$

(iii)
$$x = \sum_{n=1}^{\infty} f_n(x) x_n$$
, for all $x \in X$.

In the following example, we discuss the existence of an atomic decomposition in a p-Banach space.

Example 2.2. Consider the p-Banach space $(l_p, ||.||_p)$. Let $\{e_n\}$ be the sequence of unit vectors. Then $\{e_n\}$ is a Schauder basis of l_p .

Hence for every $x \in X$, there exists a sequence $\{x_n\}$ of scalars such that $x = \sum_{n=1}^{\infty} x_n e_n$.

Let $\{f_n\} \subset X^*$ be a sequence of bounded linear functionals such that

$$f_n(e_m) = \delta_{nm}$$
, for all $m, n \in \mathbb{N}$.

Then, for each $n \in \mathbb{N}$, we have

$$f_n(x) = \sum_{i=1}^{\infty} x_i f_n(e_i) = x_n, \quad x \in X$$

Thus $x = \sum_{n=1}^{\infty} f_n(x)e_n$, where $\{f_n(x)\} = \{x_n\} \in l_p = X_d$. Hence property (ii) holds trivially in view of the definition of p-norm of x.

Remark 1. Let X be a p-Banach space, X_d be a p-Banach sequence space such that $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to X_d . Then X is isomorphic to a subspace of X_d .

Indeed, if $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to X_d , then there exists an isomorphism $T: X \longrightarrow T(X) \subset X_d$ defined by

$$T(x) = \{f_n(x)\}, \text{ for all } x \in X.$$

Definition 3. Let $(X, \|.\|_p)$ be a p-Banach space and let X_d be a p-Banach sequence space associated with X. Then $\{f_n\} \subset X^*$ is said to be an X_d -frame of X with respect to X_d if

- (i) $\{f_n(x)\}_n \in X_d$, for all $x \in X$.
- (ii) There exists constants A,B > 0 such that

$$A \|x\|_p \le \|\{f_n(x)\}_n\|_{X_d} \le B \|x\|_p$$
, for all $x \in X$.

In the following result, we give a sufficient condition for the existence of an X_d -frame for X.

Theorem 2.2. Let X be a p-Banach space, X_d be a p-Banach sequence space such that X is isomorphic to a subspace of X_d , then there exists a sequence $\{f_n\} \subset X^*$ such that $\{f_n\}$ is an X_d -frame for X.

Proof. Let $X \cong Z_d$ under the isomorphism T, where Z_d is a subspace of X_d . Then for every $\{a_n\} \in Z_d$ there exists $x \in X$ such that if f_n is the coordinate functionals, then

- (i) $\{f_n(x)\}_n \in X_d$, for all $x \in X$.
- (ii) There exists constants A, B > 0 such that

$$A \|x\|_p \le \|\{f_n(x)\}_n\|_{X_d} \le B \|x\|_p$$
, for all $x \in X$.

Next, we give some characterizations of atomic decompositions of X with respect to X_d .

Theorem 2.3. Let X be a p-Banach space, $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$. If $X = \bar{A}$ where $A = \{\sum_{i=1}^n f_i(x)x_i\}$. Then the following conditions are equivalent:

(i) $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to the associated p-Banach sequence space $X_d = \{\{a_i\} : \sum_{i=1}^{\infty} a_i x_i < \infty\}$ with p-norm

$$\|\{a_i\}\|_{X_d} = \sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^n a_i x_i \right\|_p.$$

(ii) The sequence $\{P_n\}$ of projections defined by

$$P_n(x) = \sum_{i=1}^n f_i(x)x_i, \text{ for all } x \in X$$

is uniformly bounded.

(iii) $\lim_{n\to\infty} P_n(x) = x$, for all $x \in X$.

In this case $\sup ||P_n||^p$ is called the norm of the $\{x_n\}$.

Proof. (i) \Longrightarrow (iii) Suppose that $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X. Then every $x \in X$ can be written as $x = \sum_{n=1}^{\infty} f_n(x) x_n$. Hence $x = \lim_{n \to \infty} P_n(x)$. (iii) \Longrightarrow (ii) Suppose that $\lim_{n \to \infty} P_n(x) = x$, for all $x \in X$.

Then the sequence $\{\|P_nx\|_p\}_n$ of real numbers is convergent and hence bounded for each $x \in X$. Therefore, using Banach-Steinhaus Theorem we conclude that $\{P_n\}$ is uniformly bounded on X.

(ii) \Longrightarrow (i) Suppose that there exists a K > 0 such that

$$||P_n|| \le K$$
, for all $n \in \mathbb{N}$.

If $x \in A$, then $P_m(x) = x$, for all $m \ge n$. Therefore

$$\lim_{n \to \infty} P_n(x) = x, \text{ for all } x \in A.$$

If $x \in X$, then for every $\epsilon > 0$ there exists $y \in A$ such that

$$||x-y||_p < \frac{\epsilon}{3}$$

Since $y \in A$, $P_n(y) \to y$ and so for $\epsilon > 0$, there exists $M \in \mathbb{N}$ such that

(2.1)
$$||P_n y - y||_p < \frac{\epsilon}{3}, \text{ for all } n \ge M$$

This yields $\lim_{n\to\infty} P_n(x) = x$, for all $x \in X$ and so $x = \sum_{i=1}^{\infty} f_i(x)x_i$. Then $\{f_i(x)\} \in X_d$.

Also for every $x \in X$, we compute

$$||x||_{p} = \left\| \lim_{n \to \infty} P_{n} x \right\|_{p}$$

$$\leq \sup \left\| \sum_{i=1}^{n} f_{i}(x) x_{i} \right\|_{p}$$

$$\leq K ||x||_{p}.$$

Hence (i) holds.

Lemma 2.1. Let $(X, \|.\|_p)$ be a p-Banach space, $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$ such that $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to X_d . Then $\|x_n\|_p \|f_n\|^p \leq 2K$, where K is the norm of $\{x_n\}_p$.

Proof. Since $||f_n(x)x_n||_p = ||P_n(x) - P_{n-1}(x)||_p \le 2K ||x||_p$, for all $x \in X$. This implies $|f_n(x)|^p ||x_n||_p \le 2K ||x||_p$ and so we obtain

$$||x_n||_p ||f_n||^p \le 2K.$$

In the following result, we discuss construction of an associated p-Banach space and its basis.

Lemma 2.2. Let $(X, \|.\|_p)$ be a p-Banach space and $\{x_n\} \subset X \setminus \{0\}$. Then the sequence space $X_d = \{\{a_n\} : \sum_{n=1}^{\infty} a_n x_n \text{ converges in } X\}$ is a p-Banach space with the p-norm

$$\|\{a_i\}\|_{X_d} = \sup_{n \in \mathbb{N}} \left\| \sum_{i=1}^n a_i x_i \right\|_p$$

for which the canonical unit vectors form a basis.

Proof. It can be easily proved that X_d is a p-normed linear space using the fact that $\|.\|_p$ is a p-norm on X.

For $(X_d, \|.\|_{X_d})$ to be a p-Banach space let $\{c^n\}$ be a p-Cauchy sequence in X_d which implies for every $\epsilon > 0$ there exist $K(\epsilon) \in \mathbb{N}$ such that for all $n, m \geq K$, we have

$$||c^n - c^m||_{X_d} = ||\{c_i^n - c_i^m\}||_{X_d} = \sup_{k \in \mathbb{N}} \left\| \sum_{i=1}^k (c_i^n - c_i^m) x_i \right\|_p < \frac{\epsilon}{2},$$

which implies for all $n, m \geq K$ and $k \in \mathbb{N}$ that

$$\left\| \sum_{i=1}^k (c_i^n - c_i^m) x_i \right\|_p < \frac{\epsilon}{2}.$$

Hence for each $k \in \mathbb{N}$ and $n, m \geq K$, we obtain

$$\left\| c_k^n - c_k^m \right\|^p \left\| x_k \right\|_p = \left\| (c_k^n - c_k^m) x_k \right\|_p = \left\| \sum_{i=1}^k (c_i^n - c_i^m) x_i - \sum_{i=1}^{k-1} (c_i^n - c_i^m) x_i \right\|_p < \epsilon.$$

This implies that $\{c_i^n\}$ is a Cauchy sequence of real numbers and hence convergent to say $\{c_i\}$ for each i. It follows easily now that $\{c^n\}$ converges to c in X_d . Now for $\{e_i\}$ to form a basis for X_d , it is enough to prove that $\{e_i\}$ is complete and there exists a constant $C \geq 1$ such that for every $m \geq n$ and every sequence a_1, a_2, \dots, a_m of scalars,

$$\left\| \sum_{i=1}^n a_i e_i \right\|_{X_d} \le C \left\| \sum_{i=1}^m a_i e_i \right\|_{X_d}.$$

For every sequence a_1, a_2, \dots, a_m of scalars and $m \geq n$, we have

$$\left\| \sum_{i=1}^{n} a_{i} e_{i} \right\|_{X_{d}} = \sup_{\mathbb{N} \leq n} \left\| \sum_{i=1}^{N} a_{i} x_{i} \right\|_{p} \leq \sup_{\mathbb{N} \leq m} \left\| \sum_{i=1}^{N} a_{i} x_{i} \right\|_{p} = \left\| \sum_{i=1}^{m} a_{i} e_{i} \right\|_{X_{d}}.$$

If $\{a_i\}$ is an arbitrary sequence in X_d , then for every $\epsilon > 0$ there exists M such that for all m > n > M, we have

$$\left\| \sum_{i=n+1}^{m} a_i x_i \right\|_p < \frac{\epsilon}{2}.$$

This gives

$$\sup_{\mathbb{N}>n} \left\| \sum_{i=n+1}^{N} a_i x_i \right\|_p \le \frac{\epsilon}{2} < \epsilon, \text{ for all } n > M.$$

Hence for all n > M, we obtain

$$\left\| \{a_i\} - \sum_{i=1}^n a_i e_i \right\|_{X_d} = \sup_{\mathbb{N} > n} \left\| \sum_{i=n+1}^N a_i x_i \right\|_p < \epsilon.$$

We conclude this section with the following result concerning atomic decompositions for p-Banach spaces.

Lemma 2.3. Let $(X, \|.\|_p)$ be a p-Banach space and $\{f_n\} \subset X^*$. Then the following conditions are equivalent:

- (i) There exists a sequence $\{x_n\} \subset X$ such that $x = \sum_{n=1}^{\infty} f_n(x) x_n$ for all $x \in X$.
- (ii) There is a p-Banach sequence space X_d with the canonical unit vectors $\{e_n\}_n$ as a basis such that $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to X_d and a bounded linear operator $S: X_d \longrightarrow X$ such that $S(e_n) = x_n$.

Proof. It follows by using the techniques given in [3].

3. SHRINKING ATOMIC DECOMPOSITION IN p-BANACH SPACE

Shrinking Schauder frames were introduced and studied by Liu [15] while shrinking atomic decompositions in locally convex Banach spaces were studied by Carando and Lassalle [2]. In this section, we define shrinking atomic decompositions in p- Banach spaces. We begin with the following definition:

Definition 4. Let $(X, \|.\|_p)$ be a p-Banach space and let X_d be a p-Banach sequence space associated with X. Let $\{x_n\} \subset X$ and $\{f_n\} \subset X^*$. Then the atomic decomposition $(\{x_n\}, \{f_n\})$ is said to be shrinking if

$$\lim_{n\to\infty} ||f\circ T_N|| = 0, \text{ for all } f\in X^*,$$

where $T_N: X \longrightarrow X$ is defined as

$$T_N(x) = \sum_{n=N}^{\infty} f_n(x) x_n$$
, for all $x \in X$.

Remark 2. Since $T_N = I - P_{N-1}$, it is uniformly bounded on X.

Theorem 3.1. Let $(\{x_n\}, \{f_n\})$ be an atomic decomposition for the p-Bancah space X with respect to the p-Banach sequence space X_d and let $\pi: X \longrightarrow X^{**}$ be the natural embedding. Then the following statements are equivalent:

- (i) $(\{x_n\}, \{f_n\})$ is shrinking.
- (ii) $(\{f_n\}, \{\pi_{x_n}\})$ is an atomic decomposition for X^* with respect to the p-Banach sequence space Z_d which has canonical unit vectors as basis.

Proof. (i) \Longrightarrow (ii) Since $(\{x_n\}, \{f_n\})$ is an atomic decomposition for X with respect to X_d , we have

- (i) $(\{f_n(x)\}) \in X_d$, for all $x \in X$.
- (ii) There exist constants A,B > 0 such that

$$A \|x\|_p \le \|\{f_n(x)\}_n\|_{X_d} \le B \|x\|_p$$
, for all $x \in X$.

(iii)
$$x = \sum_{n=1}^{\infty} f_n(x) x_n$$
, for all $x \in X$.

We claim that $(\{f_n\}, \{\pi(x_n)\})$ is an atomic decomposition for X^* with respect to the p-Banach sequence space Z_d which has the canonical unit vectors as basis.

From condition (iii) it is clear that

$$f(x) = \sum_{n=1}^{\infty} \pi_{x_n}(f) f_n(x) = \sum_{n=1}^{\infty} f(x_n) f_n(x)$$
, for all $f \in X^*$.

Hence it is enough to show that series on the right is convergent in X^* .

For M > N,

$$\left\| \sum_{n=N}^{M-1} f(x_n) f_n \right\| = \sup_{\|x\|_p \le 1} \left| (f \circ (T_N - T_M))(x) \right| \le \|f \circ T_N\| + \|f \circ T_M\|$$

which vanishes as $M, N \to \infty$ as the atomic decomposition $(\{x_n\}, \{f_n\})$ is shrinking. Therefore there exists a p-Banach sequence space Z_d with the canonical unit vectors $\{e_n\}$ as a basis such that $(\{f_n\}, \{\pi_{x_n}\})$ satisfy conditions (i) and (ii) of the atomic decomposition for X^* with respect to Z_d .

(ii) \Longrightarrow (i) Clearly for each $f \in X^*$, we have

$$||f \circ T_N|| = \sup_{\|x\|_p \le 1} |(f \circ T_N)(x)|$$

$$= \sup_{\|x\|_p \le 1} \left| \sum_{n=N}^{\infty} f_n(x) f(x_n) \right|$$

$$= \sup_{\|x\|_p \le 1} |f(x) - S_N(x)|$$

$$= ||f - S_N||,$$

where $S_N(x) = \sum_{n=1}^{N-1} f_n(x) f(x_n)$.

Hence using the fact that $(\{f_n\}, \{\pi_{x_n}\})$ is an atomic decomposition for X^* , we conclude that $||f \circ T_N|| \to 0$.

Acknowledgement

The authors would like to thank the editor and the anonymous referee(s) for their critical remarks and fruitful suggestions for the improvement of the manuscript.

References

- M. A. Ariño, On shrinking bases in p-Banach spaces, Math. Proc. Camb. Phil. Soc. 103(1988), 127-132.
- [2] D. Carando, S. Lassalle, Duality, reflexivity and atomic decompositions in Banach spaces, *Studia Math.* **191**(2009), 67–80.
- [3] P. Casazza, O. Christensen and D. T. Stoeva, Frame expansions in separable Banach spaces, J. Math Anal. Appl. 307(2005), 710-723.
- [4] O. Christensen, An introduction to frames and Riesz bases, Second Edition, Birkhäuser, 2016.
- [5] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83(1977), 569-645.
- [6] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phy. 27(1986) 1271-1283.
- [7] R. J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, *Trans. Amer. Math. Soc.* **72**(1952), 341-366.
- [8] H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal. 86(1989), 307-340.

- [9] H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions, II, *Monatsh. fur Mathematik* **108**(1989), 129-148.
- [10] S.K. Kaushik and S.K. Sharma, On a Generalization of Atomic Decompositions, *Albanian J. Math.* 5(2011), no. 1, 21–29.
- [11] S.K. Kaushik and S.K. Sharma, On Unconditional Atomic Decompositions in Banach spaces. J. Appl. Func. Anal. 6(2011), no. 4, 343–355.
- [12] S.K. Kaushik and S.K. Sharma, On Similar Atomic Decomposition. Proceedings of Third National Conference on Mathematical techniques: Emerging Paradigms for Electronics and IT Industries (2010), TS 3.6.1–TS 3.6.4.
- [13] S.K. Kaushik and S.K. Sharma, On Atomic Decompositions satisfying certain properties, J. Adv. Res. Pure Math. 3(2011), 40–48.
- [14] R. Kemper, p-Banach Spaces and p-Totally Convex Spaces, Applied Categorical Structures 7(1999), 279-295.
- [15] R. Liu, On shrinking and boundedly complete Schauder frames of Banach spaces, J. Math. Anal. Appl. 365(2010), 385–398.
- [16] I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21(1962), 351-369.
- [17] I. Singer, Basis in Banach spaces I, Springer, 1970.
- (1) Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal.

Email address: nppahari@gmail.com

(2) Department of Mathematics, Janki Devi Memorial College, University of Delhi, Delhi-110060, India.

Email address: teenakohli10@gmail.com

(3) Central Department of Mathematics, Tribhuvan University, Kirtipur, Kathmandu, Nepal.