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CONSTRUCTION OF A RIESZ WAVELET BASIS ON LOCALLY

COMPACT ABELIAN GROUPS

SATYAPRIYA (1) AND RAJ KUMAR (2)

Abstract. We have explored the concept of Riesz multiresolution analysis on a

locally compact Abelian group G, and have extensively studied the methods of

construction of a Riesz wavelet from the given Riesz MRA. We have proved that, if

δα is the order of dilation, then precisely δα−1 functions are required to construct a

Riesz wavelet basis for L2(G). An example, supporting our theory and illustrating

the methods developed, has also been discussed in detail.

1. Introduction

An orthonormal basis B = {xβ} of a Hilbert space H is one of its most important

subsets. In terms of its basis elements, any element y ∈ H has a unique representation

of the form

y =
∑

cβxβ.

The advantage of working with orthonormal bases is that the coefficients appearing

in the above equation are easy to derive and the above equation has the exact form:

(1.1) y =
∑

〈y, xβ〉xβ .

The orthonormal bases which consist of scaled and integer-translated versions of

a single element are called wavelet bases. A central tool dedicated to the study,

construction and analysis of wavelet bases is multiresolution analysis (henceforth

abbreviated as MRA). The concept of MRA was first introduced by Mallat and
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Meyer in their paper [9]. The Hilbert space they worked in, was the space L2(R),

where R is the usual Euclidean space.

Due to S. Dahlke, [4], in the year 1994, this concept of MRA was generalized to

the separable space L2(G), where G stands for an arbitrary locally compact Abelian

(henceforth abbreviated as LCA) group. Another generalization, not with respect

to the space under consideration but with respect to the structure of MRA, was

proposed in [15, 10]. Both these papers used Riesz basis instead of an orthonormal

basis in the definition of MRA.

In the paper [12], the concept of Riesz MRA has been extended to the space L2(G)

using some methods as developed in [4]. Our aim in this paper is to contruct a

Riesz basis from the given Riesz MRA on an LCA group G. This paper has been

structured as follows. Some preliminaries and notations have been listed in section

two. A detailed method for the construction of Riesz basis via Riesz MRA has been

presented in section three. To support our theory, we have also given an elaborated

example there.

2. Preliminaries and Notations

2.1. LCA Groups. A topological group G is called an LCA group if

• it is locally compact, Hausdorff and metrizable in its topology; and,

• it can be written as a countable union of compact sets.

The symbols ′+′ and ′0′ have been used to denote the group composition and the

identity element of G, respectively. The groups of real numbers R, the circle group

T and the group of integers Z are some of the frequently used LCA groups.

The dual group of G, denoted by Ĝ, is the set of all continuous homomorphisms from

the group G to the circle group T. The elements of this group Ĝ are called characters.

Moreover, with a suitable topology and a suitable group operation, the dual group

Ĝ is also an LCA group. We refer [5, Chapter 3] for more details.

The double dual of G (or the dual of Ĝ), denoted by
ˆ̂
G, can be identified with the

group G itself and thus we can write
ˆ̂
G = G. This identification of an LCA group

and its double dual is presented in the Pontryagin duality theorem, proof of which

may be found in [5, Chapter 3]. Due to this identification, the notation (γ, x) will be
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used by us in this paper which can be interpreted as either the action of γ ∈ Ĝ on

x ∈ G; or action of x ∈
ˆ̂
G = G on γ ∈ Ĝ.

The group G is now given a translation invariant Radon measure µG, i.e. a measure

for which the following equality holds for all compactly supported functions f on G:
∫

G

f(x+ y)dµG(x) =

∫

G

f(x)dµG(x), ∀ y ∈ G.

This measure is unique up to a constant and is called the Haar measure. We refer [6,

Chapter 2] for the existence and uniqueness of Haar measure. Throughout this paper,

the Haar measure µG has been kept fixed. Further, based on this Haar measure, the

spaces L1(G), L2(G) and L∞(G) have been defined in the usual way. Moreover, due

to our assumptions of G being metrizable and being a countable union of compact

sets, L2(G) becomes a separable Hilbert space. See [8] for a detailed proof.

We now define the operator of Fourier transform on L1(G) by:

(2.1) F : L1(G) → C0(Ĝ), F(f)(γ) =

∫

G

f(x)(γ,−x)dµG(x).

Here, C0(Ĝ) is the space of all continuous functions on Ĝ vanishing at infinite.

The Haar measure µĜ on Ĝ can be appropriately normalized so that for a specific

class of functions, the following inversion formula holds, (see[11, Chapter 1]);

(2.2) f(x) =

∫

Ĝ

f̂(γ)(γ, x)dµĜ(γ), x ∈ G.

In this paper, we shall always choose a normalized Haar measure µĜ for Ĝ so that the

inversion formula holds. Once this is done, the Fourier transform can be extended to

a surjective isometry F : L2(G) → L2(Ĝ) exactly as in the classical case of G = R.

To simplify notations, from now onwards, in all integrals when the context is clear,

we will write dµG(x) = dx and dµĜ(γ) = dγ.

Apart from the operator of Fourier transform as defined above, the operators of

traslation, modulation and dilation will also be used frequently throughout this paper.

The first two operators, i.e. the translation operator and the modulation operator

can be extended to L2(G) without much difficulty. For instance, for any y ∈ G, the

operator Ty and Ey given by

Tyf(x) = f(x− y) and EyF (γ) = (γ, y)F (γ)
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define the generalized versions of translation and modulation operators on L2(G)

and L2(Ĝ) respectively. Similarly, for any ξ ∈ Ĝ, the operators Tξ and Eξ define

generalized translation and modulation operators on L2(Ĝ) and L2(G) respectively.

To define a generalized dilation operator, we proceed via a method used by Dahlke in

[4], for which we first need to define dilative automorphisms. An automorphism α on

G (algebraic automorphism and topological homeomorphism) is said to be dilative

if, for any compact set K and any open neighborhood U of 0 ∈ G, there exists a

positive integer n0 such that K ⊆ αn(U), ∀ n ≥ n0. Now, let α : G → G be a

dilative automorphism on G, then there exists a δα>0 such that

∫

G

f(x)dx = δα

∫

G

f(α(x))dx

for any appropriate function f on G. This means that α induces a unitary operator

D on L2(G) given by

D : L2(G) → L2(G), Df(x) = δ
1/2
α f(α(x))

for any appropriately chosen function f on G. This D works as the dilation operator

on the space L2(G) and the constant δα is called the order of dilation for the operator

D. Further, using this dilation operator D, we can construct a dilation operator D

for the space L2(Ĝ). The following lemma sums up the required information for the

operator D. We omit the striaghtforward proof.

Lemma 2.1. Let G be an LCA group and Ĝ be its dual group. Suppose α : G → G

is a dilative automorphism on G. Then the following hold:

(i) The map, α̂ : Ĝ→ Ĝ given by

(α̂(γ), x) = (γ, α(x)); x ∈ G,

is a dilative automorphism on Ĝ.

(ii)

∫

Ĝ

F (γ)dγ = δα

∫

Ĝ

F (α̂(γ))dγ for any appropriat function F on Ĝ.

(iii) The operator D : L2(Ĝ) → L2(Ĝ) given by DF (γ) = δ
1/2
α F (α̂(γ)) is a unitary

operator on L2(Ĝ). This operator D works as dilation operator on L2(Ĝ). Order

of this dilation operator D is also δα.
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It is easy to note that all these generalized operators satisfy all the commutative

relations amongst them and behave similarly under Fourier transform and inverse

Fourier transform, as in the case of G = R.

We now introduce lattices, an important class of subgroups of LCA groups. A lattice

Λ, (sometimes called a uniform lattice), in an LCA group G, is a countable, closed

and discrete subgroup Λ of G for which the quotient group G/Λ is compact in the

quotient topology. The annihilator Λ⊥ of a lattice Λ is defined by

Λ⊥ = {γ ∈ Ĝ : (γ, λ) = 1, ∀λ ∈ Λ}.

It follows from the definition of topology on Ĝ that Λ⊥ is also a lattice in Ĝ. Further,

a lattice in G can be used to obtain a splitting of groups G and Ĝ into disjoint cosets

(see [3], Chapter 21):

Lemma 2.2. Let G be an LCA group and Λ a lattice in G. Then the following hold:

(i) There exists a Borel measurable relatively compact set Q ⊆ G such that

(2.3) G =
⋃

λ∈Λ

(λ+Q), (λ+Q) ∩ (λ′ +Q) = ∅ for λ 6= λ′; λ, λ′ ∈ Λ.

(ii) There exists a Borel measurable relatively compact set S ⊆ Ĝ such that

Ĝ =
⋃

ω∈Λ⊥

(ω + S), (ω + S) ∩ (ω′ + S) = ∅ for ω 6= ω′; ω, ω′ ∈ Λ⊥.

Moreover, the sets Q and S are respectively in one to one correspondance with the

quotient groups G/Λ and Ĝ/Λ⊥.

Remark 1. In this paper, the uniform lattice Λ and the dilative automorphism α

are chosen such that α(Λ) ⊆ Λ. Moreover, any pair (Λ, α) satisfying this relation is

called a scaling system on G.

The set Q ⊂ G which appears in equation (2.3) is called a fundamental domain

associated with the lattice Λ. Also note that the sets of the form of Q, which satisfies

the two conditions of the equation (2.3), have been called tiles in [7]. In this paper

we will use the term fundamental domain for such sets. We now further refine the

fundamental domain Q and thus give the definition of a self-similar fundamental
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domain. The fundamental domain Q is said to be self-similar if for some finite

subset Λ0 of Λ, we have the following representation (see [7]):

(2.4) Q =
⋃

λ∈Λ0

(α−1(λ) + α−1(Q));

Throughout this paper, we will assume that the fundamental domain Q associated

with the lattice Λ is self-similar. Thus for Q, we have a representation of the form

(2.4). Naturally, the immediate problem we face now is to find a precise representation

of the set Λ0 which appears in (2.4). The following lemma, proved in [13], gives us

the required insight to this problem.

Lemma 2.3. Let G be an LCA group with a uniform lattice Λ and an automorphism

α. If Q is a self-similar fundamental domain associated to the lattice Λ, then the

following hold:

(i) The set Λ0, which appears in (2.4), is a complete set of coset representatives for

α(Λ) in Λ.

(ii) |Λ/α(Λ)| = δα.

Throughout this paper we shall also assume that S is a self-similar fundamental

domain of Ĝ associated to the lattice Λ. All the results, which we have stated for Q,

hold analogously for S. Thus S has a representation of the form:

(2.5) S =
⋃

λ∈Λ⊥

0

(α̂−1(ω) + α−1(S));

where Λ⊥
0 ⊂ Λ⊥ is finite.

Now, all the above information presented above and the fact |Λ/α(Λ)| = |Λ⊥/α̂(Λ⊥)|

can be used to write

(2.6) Λ/α(Λ) = {λ0 + α(Λ), λ1 + α(Λ), · · · , λδα−1 + α(Λ)}

and

(2.7) Λ⊥/α̂(Λ⊥) = {ω0 + α̂(Λ⊥), ω1 + α̂(Λ⊥), · · · , ωδα−1 + α̂(Λ⊥)}.
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Further, we will use a result proved by K. Gröchenig and W. R. Madych to make the

choice (see [7, Lemma 4])

λ0 = 0 ∈ G and ω0 = 0 ∈ Ĝ.

To simplify the calculations in section three, we make one last assumption here. From

here onwards, we assume that the group Λ⊥/α̂(Λ⊥) is cyclic. Moreover, let ω1+α̂(Λ
⊥)

be the generator of this group. From here onwards

ωj + α̂(Λ⊥) = jω1 + α̂(Λ⊥), ∀ 0 ≤ j ≤ δα − 1.

The following lemma and the subsequent corollary gives us a relation between λ′is

and ω′
is which appear in (2.6) and (2.7) respectively. We refer [14] for a direction of

their proofs.

Lemma 2.4. Let G be an LCA group and let (Λ, α) be a scaling system defined on

G. if, for each j ∈ {0, 1, · · · , δα − 1}, we write γj = α̂−1(ωj), then we have

(2.8)
δα−1
∑

j=0

(γj, λk) = 0; ∀ k ∈ {1, 2, 3, · · · , δα − 1}.

Corollary 2.1. Let G be an LCA group and let (Λ, α) be a scaling system defined

on G. If all the notations are same as used in Lemma 2.4, then for any k, l ∈ Λ, we

have

(2.9)
δα−1
∑

j=0

(γj , λk − λl) = 0; ∀ k, l ∈ {1, 2, 3, · · · , δα − 1}, k 6= l.

Remark 2. Due to the assumption of Λ⊥/α̂(Λ⊥) being a cyclic group, we get the

following relation:

γj + Λ0 = jγ1 + Λ0.

We will now list some more notations corresponding to the group G, which shall also

be applicable to the group Ĝ in a similar way.
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• For any f, g ∈ L2(G), the term fg, a member of L1(G), is used to denote the

point-wise product of f and g.

• If H ⊂ G, then the function XH is given by:

XH(x) =











1 , x ∈ H

0 , x /∈ H

is called the indicator function of H or the characteristic function of H .

• For any H ⊂ G, we say that a function f : G→ C is H-periodic, if

f(x+ h) = f(x); ∀ x ∈ G and ∀ h ∈ H.

Now, since, the quotient G/Λ is in one to one correspondence with the fundamental

domain Q ⊂ G associated to the lattice Λ ⊂ G, therefore we are here tempted to

assert a relation between the spaces Lp(G/Λ) and Lp(Q) (p=1 or 2 or ∞). But before

that, we define the spaces Lp(Q):

Lp(Q) = {f ∈ Lp(G) : f = 0 a.e. G/Q}; p=1, 2 or ∞.

Further, for the fundamental domain S associated with the lattice Λ⊥ ⊂ Ĝ, we define

the space Lp(S) (p=1,2 or ∞) in a similar fashion. In both the above cases, the

fundamental domains can be chosen as self similar. The following remark provides

us an orthonormal family in L2(S) which is also its basis. For more details, we refer

[2].

Remark 3. Let, for each λ ∈ Λ, ηλ : Ĝ → C be defined by ηλ(γ) = (γ, λ)XS(γ).

Then the family,
{

1
√

µĜ(S)
ηλ

}

λ∈Λ

forms an orthonormal basis for L2(S).

Using the above-given notation of the periodic functions, we note that there is a one

to one correspondence between L2(G/Λ) and the set of all Λ−periodic functions f

such that fXQ ∈ L2(Q). So, with a slight abuse of notation, we write f ∈ L2(G/Λ)

whenever f is a Λ−periodic function on G satisfying fXQ ∈ L2(Q). Analogously, we

give the definition for the space L2(Ĝ/Λ⊥).
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We end our discussion about LCA groups by giving a lemma which helps us in

explicitly representating the elements of the space L2(Ĝ/Λ⊥). Proof of this lemma

uses the information provided in Remark 3 and it follows without much complications.

Lemma 2.5. If, for each λ ∈ Λ, the functions ηλ are defined as in Remark 3, then

the following are equivalent :

(i) F ∈ L2(Ĝ/Λ⊥).

(ii) There exists a sequence {cλ}λ∈Λ ∈ l2(Λ) such that

F =
∑

λ∈Λ

cλελ;

where ελ : Ĝ→ C is given by, ελ(γ) = (γ, λ).

2.2. Riesz Bases. We will now have a brief discussion on Riesz bases in an arbitrary

separable Hilbert space. For a detailed study on Riesz bases and their properties, we

refer [3].

Definition 2.1. Let H be a separable Hilbert space and I be a countable index set.

A sequence of elements {fβ}β∈I is called a Riesz basis for H if there exist a bounded

bijective operator U : H → H and an orthonormal basis {eβ}β∈I of H such that, for

each β ∈ I, fβ = Ueβ .

In the lemma below, we give one of the most used implications of the Riesz bases.

For more details, we refer [3].

Lemma 2.6. If {fβ}β∈I is a Riesz basis for H, then there exist constants A,B > 0

such that

(2.10) A||f ||2 ≤
∑

β∈I

|〈f, fβ〉|
2 ≤ B||f ||2.

The numbers A and B are called the Riesz bounds. Precisely, A is the lower Riesz

bound and B is the upper Riesz bound. Moreover, the largest possible value of A is

called the optimal lower Riesz bound and the smallest possible value of B is called

the optimal upper Riesz bound.

The following lemma gives us one of the main characterizations of the Riesz bases in

a separable Hilbert space. It does not involve any knowledge of the Riesz bounds.

Proof of this lemma may be deduced using various results given in [3].
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Lemma 2.7. Let H be a separable Hilbert space and I be a countable index set. Then,

a sequence {fβ}β∈I in H is a Riesz basis for H if and only if the map T : l2(I) → H,

given by

T ({cβ}) =
∑

β∈I

cβfβ,

is well defined and bijective.

When we are studying the wavelet theory, more often than not, we encounter a family

of the type {Tλφ}λ∈Λ where φ ∈ L2(G). We wish to see the condtions under which

such a family is Riesz basis. For that, we first introduce a function Φ corresponding

to this given function φ.

Definition 2.2. Let G be an LCA group with dual group Ĝ and let (Λ, α) be the

scaling system defined on Ĝ. If φ ∈ L2(G) is given then corresponding to this function

φ, the function Φ is given by

(2.11) Φ(γ) =
∑

ω∈Λ⊥

|φ̂(γ + ω)|2, γ ∈ Ĝ.

It is easy to note that according to the notations used previously in this paper,

Φ ∈ L1(Ĝ/Λ⊥). We now give an equivalent condition for the family {Tλφ}λ∈Λ to be

a Riesz sequence, i.e. a Riesz basis for its closed linear span. A detailed proof of the

following lemma for the case of G = R has already been proved in [3].

Lemma 2.8. Let φ ∈ L2(G) be given. Then the family {Tλφ}λ∈Λ is a Riesz sequence

with bounds A and B if and only if

A ≤ Φ(γ) ≤ B,

for all γ ∈ Ĝ.

We shall use above lemma to verify whether a family of the form {Tλφ}λ∈Λ is a Riesz

sequence or not.

Now we wish to generalize the above given Lemma, i.e. we wish to seek an alternate

characterization for the family of the type

{Tλfi : λ ∈ Λ, 1 ≤ i ≤ n}
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to be a Riesz sequence; f ′
is being appropriately chosen function. The following lemma

gives us the required result. Its detailed and extensive proof may be found in [15].

Lemma 2.9. Let f1, f2, · · ·fn ∈ L2(G) and let L(γ) , γ ∈ Ĝ, denote the n×n matrix

L(γ) =

[

∑

ω∈Λ⊥

f̂i(γ + ω)f̂j(γ + ω)

]

1≤i,j≤n

.

If θ and Θ respectively denote the smallest and the largest eigenvalue of L(γ), then

the family

{Tλfi : λ ∈ Λ, 1 ≤ i ≤ n}

is a Riesz basis if and only if there exist some constants C,D > 0 such that

0 < C ≤ θ ≤ Θ ≤ D.

2.3. Riesz Multiresolution Analysis. The concept of MRA with the structure of

Riesz bases for the space L2(R) has been given [10] and the concept of classical MRA

for L2(G) has been presented in [4]. We combine the definitions in these two papers

to give the definition of Riesz MRA on the space L2(G). Note that we have already

given this definition in our paper [12].

Definition 2.3. A Riesz multiresolution analysis for L2(G) consists of a sequence of

closed subspaces {Vj}j∈Λ of L2(G) and a function φ ∈ V0 such that

(i) the subspaces Vj are nested, i.e.

· · · ⊆ V−1 ⊆ V0 ⊆ V1 ⊆ · · · ;

(ii) the subspaces Vj have a dense union and a trivial intersection, i.e.

∪
j∈Z
Vj = L2(G) and ∩

j∈Z
Vj = {0};

(iii) they are related by the dilation property: Vj = DjV0;

(iv) the subspaces Vj are translation invariant, i.e.

f ∈ Vj =⇒ Tλf ∈ Vj , ∀ λ ∈ Λ and ∀ j ∈ Z;

(v) {Tλφ}λ∈Λ is a Riesz basis for V0.
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The subspaces Vj are called the approximation subspaces or the multiresolution sub-

spaces and the function φ is called the scaling function.

In the theorem below, we sum up all the conditions which need to be imposed on the

scaling function φ to generate a Riesz MRA for the space L2(G). All these conditions

have been extensively investigated in our paper [12].

Theorem 2.1. Let G be an LCA group with the dual group Ĝ and let (Λ, α) be a

scaling system defined on G. A function φ ∈ L2(G) is said to generate a Riesz MRA

if and only if the following conditions are satisfied:

(i) The family {Tλφ}λ∈Λ is a Riesz sequence.

(ii) The subspaces Vj are defined by

(2.12) Vj = Dj(span{Tkφ}k∈Λ) = span{DjTkφ}k∈Λ, j ∈ Z.

(iii) The function φ̂ is nonzero on a neighbourhood of 0 ∈ Ĝ.

(iv) There exists a function m0 ∈ L∞(Ĝ/Λ⊥) such that

(2.13) φ̂(α̂(γ)) = m0(γ)φ̂(γ)

holds for all γ ∈ Ĝ.

Equation (2.13) is called the refinement equation and if a function φ satisfies this

equation, then it is called refinable. Further, the function m0 appearing in (2.13) is

called the refinement mask. Also note that this function m0 is unique.

3. Constructing Riesz Wavelet From Given Riesz MRA

Throughout this section, we will assume that we have a function φ which generates

a Riesz MRA, i.e. all the conditions of Theorem 2.1 are satisfied for this function.

Here, using Lemma 2.8, we also get existence of positive numbers A,B > 0 such that

0 < A ≤ Φ(γ) ≤ B; ∀ γ ∈ Ĝ.

We begin the construction of Riesz wavelet by writing an orthogonal decomposition

of the space L2(G). For each j ∈ Z, let Wj denote the orthogonal complement of Vj

in Vj+1. Then it is easy to see that

Vj+1 = Vj ⊕Wj
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and hence

L2(G) =
⊕

j∈Z

Wj.

Next, we show that the spaces Wj are related to each other by the same dilation

property as the subspaces Vj . This property of the subspaces W ′
js reduces our work

and now we only need to find some functions whose family of Λ-translates form a

Riesz basis for W0. All this information is presented in the following lemma. We

refer [3] for its detailed proof.

Lemma 3.1. Assume that φ ∈ L2(G) generates an Riesz MRA. Then the following

holds:

(i) Wj = DjW0, ∀j ∈ Z.

(ii) If the functions ψ1, ψ2 · · ·ψn ∈ W0 are such that the family of its Λ-translates,

{Tλψi : λ ∈ Λ, 1 ≤ i ≤ n}, is a Riesz for W0, then for all j ∈ Z, the family

{DjTλψi : λ ∈ Λ, 1 ≤ i ≤ n} is a Riesz basis for Wj, and the family

{DjTλψi : λ ∈ Λ, 1 ≤ i ≤ n, j ∈ Z}

is a Riesz basis for L2(G). Moreover, all these bases have exactly the same Riesz

bounds.

From the above lemma, we see that the space W0 is of utmost importance to us and

thus we give its characterization in the following lemma.

Lemma 3.2. Assume that φ ∈ L2(G) generates a Riesz MRA with order of dilation

δα and two-scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Let F ∈ L2(Ĝ/Λ⊥) and define f ∈ V1 by:

(3.1) f̂(α̂(γ)) = F (γ)φ̂(γ).

Then the following hold:

(i) If we write S ′ = α̂−1(S), then

(3.2) 〈f, Tλφ〉 = δα

∫

S′

(

δα−1
∑

j=0

Tγj (FΦH0)(γ)

)

(α(γ), λ)dγ
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(ii) A function f ∈ V1 belongs to W0 if and only if

(3.3)

δα−1
∑

j=0

Tγj (FΦH0) = 0

a.e. on Ĝ.

The proof of this lemma is on similar lines as given in [1]. Further, we mention it

here that the LCA group which has been considered in [1] is the Euclidean group R.

As pointed out before, we now only need to find some functions in W0 such that the

family consisting of their translated versions forms a Riesz basis for W0. From the

previous works on MRA and Riesz MRA on the Euclidean group R, we get a hint

that δα − 1 functions should suffice. So our focus now shifts to find the existance of

δα − 1 functions ψ1, ψ2, · · · , ψδα−1 such that the family

(3.4) {Tλψi : λ ∈ Λ, 1 ≤ i ≤ δα − 1}

forms a Riesz basis for W0. We intend to achieve this in two steps:

• We find δα − 1 functions ψ1, ψ2, · · · , ψδα−1 such that Λ-transalates of these

functions generate the space W0, i.e.

(3.5) W0 = span{Tλψi : λ ∈ Λ, 1 ≤ i ≤ δα − 1}.

• We will then show that these functions, as obtained in above step, are such

that the family (3.4) forms a Riesz basis for the space W0.

In the lemma below, we give a sufficient condition, in terms of solvability of a system

of linear equation, for the family {Tλψi : λ ∈ Λ, 1 ≤ i ≤ δα−1} to generate the space

W0. This alternate characterization will be of much use to us.

Lemma 3.3. Let G be an LCA group and let φ ∈ L2(G) generates a Riesz MRA

of δα order of dilations and with two scale symbol H0 ∈ L∞(Ĝ/Λ⊥). Suppose there

exist functions m1, m2, · · · , mδα ∈ L∞(Ĝ/Λ⊥) and the functions ψ1, ψ2, · · · , ψδα−1 are

defined via

(3.6) ψ̂i(α̂(γ)) = mi(γ)φ̂(γ).
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Further assume that there exist functions G0, G1, · · · , Gδα−1 ∈ L∞(Ĝ/Λ⊥) such that

the following system of equations

δα−1
∑

j=0

Tγj (m0Φmi)(γ) =0; i ∈ {1, 2, · · · , δα − 1};(3.7)

TγiΦ(γ)
δα−1
∑

j=0

Tγimj(γ)Gj(γ) =δi,0(γ)Φ(γ); i ∈ {0, 1, · · · , δα − 1}(3.8)

is satisfied for all γ ∈ Ĝ, then

W0 = span{Tλψi : λ ∈ Λ, 1 ≤ i ≤ δα − 1}.

Using some earlier known results, Lemma 2.4, Corollary 2.1 and some of their easy

manipulations, we see that the above Lemma is easy to prove. Therefore, we skip its

proof here.

Making use of the above lemma, we now explicitly construct δα−1 functions ψ1, ψ2, · · · , ψδα−1

which generate W0 in the sense of (3.5). Again, we will not give a detailed proof of

the following theorem, but will briefly give the directions for the same.

Theorem 3.1. Let G be an LCA group and let φ ∈ L2(G) generate a Riesz MRA

with order of dilations δα and two scale symbol m0 ∈ L∞(Ĝ/Λ⊥). Then there always

exist δα − 1 functions ψ1, ψ2, · · · , ψδα−1 in W0 generating W0.

Proof. It is only required to prove that the equation sets given by (3.7) and (3.8) hold

true on S, the self-similar fundamental domain associated to the lattice Λ⊥ ⊂ Ĝ.

Next we define the set S0 by:

(3.9) S0 = {γ ∈ S : |m0(γ)| ≥ |(Tγim0)(γ)|, ∀ 0 ≤ i ≤ δα − 1}

and then for each j ∈ {1, 2, · · · , δα − 1} further define

(3.10) Sj = γj + S0

These sets Sj satisfy the following equality:

δα−1
⋃

j=0

Sj = S.

We note that, on any set Sj , the set of equations given by (3.7) gives us essentially

the same information and that is
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mi on S1 =
1

(m0Φ) on S1

δα−1
∑

j=1

(mi on Sj × (m0Φ) on Sj)

In the following table, we list one of the many possible choices for the values of these

functions m′
is. We have also used Remark 2 to obtain these entries and to ensure the

consistency between them.

Table 1. Table for the functions m′
js

S0 S1 S2 · · · · · · Sδα−1

m1 −
H0(γ−γ1)Φ(γ−γ1)

H0(γ)Φ(γ)
1 0 · · · · · · 0

m2 −
H0(γ−γ2)Φ(γ−γ2)

H0(γ)Φ(γ)
0 1 · · · · · · 0

m3 −
H0(γ−γ3)Φ(γ−γ3)

H0(γ)Φ(γ)
0 0 · · · · · · 0

· · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·

mδα−1 −
H0(γ−γ(δα−1))Φ(γ−γ(δα−1))

H0(γ)Φ(γ)
0 0 · · · · · · 1

Further note that finding the functions G0, G1, · · · , Gδα−1, which satisfy equation set

(3.8), is a routine exercise and it can be done quite easily once we use the function

m′
is as given in Table 1. �

This completes our quest for δα − 1 functions which generate the space W0. We now

show that the family of the type (3.4), constructed using the functions obtained in

above theorem, is indeed a Riesz basis for W0.

Theorem 3.2. Assume that φ ∈ L2(G) generates a Riesz MRA with order of dila-

tions δα and two scale symbol m0 ∈ L∞(Ĝ/Λ⊥). Further assume that the functions

ψ1, ψ2, · · · , ψδα−1 are defined by (3.6) and the functions F1, F2, · · · , Fδα−1 are assumed

to be as they appear in Theorem 3.1. Then the family (3.4) generates a Riesz basis

for the space L2(G).

Proof. We intend to use Lemma 2.9 to prove our assertion. Moreover, here we will

consider the functions m1, m2, · · · , mδα−1 as obtained in Table 1. Instead of the

matrix L(γ), we will use the matrix L(α̂(γ)). Now, θ and Θ will respectively denote
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the smallest and largest eigenvalues of the matrix L(α̂(γ)). We now proceed to show

that there exist some constants C,D > 0 such that

0 < C < θ ≤ Θ < D.

It is enough to prove the above relation for γ ∈ S ′ = α̂−1(S) only. First note that,

just like the previous case, we devide the set S ′ into δα disjoint parts. We let

S ′
0 = {γ ∈ S ′ : |m0(γ)| ≥ |(Tγim0)(γ)|, ∀ 0 ≤ i ≤ δα − 1}

and then for each j ∈ {1, 2, · · · , δα − 1} further define

S ′
j = γj + S ′

0.

It is easy to note that, for any j ∈ {0, 1, · · · , δα − 1}, S ′
j ⊆ Sj .

As noted earlier, L(α̂(γ)) is (δα − 1) × (δα − 1) matrix. Below, we write a general

expression for the matrix L(α̂(γ)).

L(α̂(γ)) = [aij ]1≤i,j≤δα−1 ;

where aij , the entry at the intersection of ith row and jth column, has the explicit

expression:

aij =

δα−1
∑

k=0

(

mi(γ − γk)mj(γ − γk)Φ(γ − γk)
)

.

The proof after this is a routine exercise to verify that the eigenvalues of this matrix

L(α̂(γ)) are bounded below away from zero, as well as bounded above. This step has

to be repeated for γ in each S ′
j . �

We conclude our paper with an illustrative example as given below.

Example 3.1. Let G = R denote the Euclidean group of real numbers under multi-

plication. For any Borel set B in G, a Haar measure µG on G is given by:

µG(B) =

∫

B

dµG(t); where dµG(t) = dt.

The set Λ = Z works as a uniform lattice in G, and the map α : x 7→ 3x works as a

dilative automorphism of G. One representation for the quotient group Λ/α(Λ) is

Λ

α(Λ)
=

Z

3Z
= {3Z, 1 + 3Z, 2 + 3Z}.
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Now, if we let Q = [0, 1), then it is easy to note that

Q =

[

0,
1

3

)

⋃

[

1

3
,
2

3

)

⋃

[

2

3
, 1

)

=α−1(Q) ∪ (α−1(1) + α−1(Q)) ∪ (α−1(2) + α−1(Q))

Thus Q is a self-similar fundamental domain associated with Λ and α. Further note

that for the chosen measure µG, we have µG(Q) = 1.

For any x, ξ ∈ G, the map x 7→ e2πixξ is a continuous homomorphism from G to T.

Defining the characters of G in this way, i.e. by writing (ξ, x) = φξ(x), we get that

the Pontryagin dual group of R is R i.e., Ĝ = G. The measure µĜ is normalized

appropriately so that the inversion formula and the Parseval formula hold. Further,

the annihilator Λ⊥ of Λ and the automorphism α̂ of Ĝ(corresponding to the automor-

phism α of G) can be derived accordingly. We choose the following epresentation for

the quotient group Λ⊥/α̂(Λ⊥)

Λ⊥

α̂(Λ⊥)
=

Z

3Z
= {3Z, 1 + 3Z, 2 + 3Z}.

A self-similar fundamental domain S of Ĝ is given by S = [0, 1) . It is easy to see

that µĜ(S) = 1.

We now define a function φ on G via its Fourier transform by:

φ̂(γ) = XA1(γ) + 2XA2(γ), γ ∈ Ĝ,

where

A1 =
[

−1
3
, 1
3

)

and A2 =
[

−1
2
, −1

3

)
⋃
[

1
3
, 1
2

)

.

It is easy to see that if the we define the subspaces Vj by Vj = span{Tλφ : λ ∈ Λ}

and chose the two-scale symbol m0 such that its restriction on the set S = [0, 1) is

given by:

XA3(γ) + 2XA4(γ);

where

A3 =
[

0, 1
9

)

∪
[

8
9
, 1
)

and A4 =
[

1
9
, 1
6

)

∪
[

5
6
, 8
9

)

;



RIESZ WAVELET VIA RIESZ MRA ON LCA GROUPS 273

then the function φ generates a Riesz MRA for the space L2(R).

Now, with the notations taken from last two theorems, we note that

S0 =
[

0, 1
6

)
⋃
[

5
6
, 1
)

, S1 =
[

1
6
, 1
2

)

and S2 =
[

1
2
, 5
6

)

.

Applying a procedure as mentioned in Theorem 3.1, we get that

m1(γ) = XA5(γ) and m2(γ) = XA6(γ);

where

A5 =
[

1
6
, 1
2

)

and A6 =
[

1
2
, 5
6

)

.

Now we define the functions ψ1 and ψ2 as mentioned in (3.6). We finally obtain

ψ̂1(γ) =XA7(γ) + 2XA8(γ)

ψ̂2(γ) =XA9(γ) + 2XA10(γ);

where

A7 =
[

1
2
, 1
)

, A8 =
[

1, 3
2

)

, A9 =
[

−1, −1
2

)

and A10 =
[

−3
2
,−1

)

.(3.11)

At last, we note that the smallest eigenvalue of the matrix L(γ) is 1 and the largest

eigenvalue is 2. So using Lemma 2.9, it is now easy to conclude for us that the family

{DjTkψi : k ∈ Z and i = 1, 2} is a Riesz basis for the space L2(R).
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