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ON MAXIMAL IDEAL SPACE OF THE FUNCTIONALLY

COUNTABLE SUBRING OF C(F)

AMIR VEISI

Abstract. Let X be a Tychonoff space and F , a filter base of dense subsets of

X (i.e., it is closed under finite intersection) and let C(F) = limS∈F C(S), where

C(S) is the ring of all real-valued continuous functions on S. It is known that

C(F) =
⋃
{C(S) : S ∈ F}. By Cc(F) (C∗

c (F)), we mean a subring of C(F)

consisting of (bounded) functions with countable range. In this paper, we study

Mc (M∗
c), the maximal ideal space of Cc(F) (C∗

c (F)) with the hull-kernel topology.

Equivalent topology for each of them provided. It is shown that both Mc and M∗
c

are T4-spaces. More generally, they are homeomorphic. Particularly, we prove that

the maximal ideal space of Qc(X) (qc(X)) and the maximal ideal space of Q∗
c(X)

(q∗c (X)) are homeomorphic, where Qc(X) (qc(X)) is the maximal (classical) ring

of quotients of Cc(X), and Q∗
c(X) (q∗c (X)) is the subring consisting of bounded

functions.

1. Introduction

Throughout this paper, X denotes a zero-dimensional Hausdorff space, that is, a

Hausdorff space with a base of clopen (closed-open) sets. By C(X) (resp. C∗(X)),

we mean the ring of all real-valued continuous (resp. bounded) functions on X . The

subring of C(X) consisting of those functions with countable (resp. finite) image,

which is denoted by Cc(X) (resp., CF (X)) is an R-subalgebra of C(X). The subring

C∗
c (X) of Cc(X) consists of bounded elements of Cc(X), in fact, we have C∗

c (X) =

Cc(X) ∩ C∗(X). The rings Cc(X) and CF (X) are introduced and studied in [6, 7].

We may concentrate on the class of zero-dimensional spaces because it is shown
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in [6, Theorem 4.6] that for any topological space X (not necessarily completely

regular), there exists a zero-dimensional space Y which is a continuous image of X

with Cc(X) ∼= Cc(Y ) and CF (X) ∼= CF (Y ). Also, in [6, Remark 7.5], there is a

topological space X, such that there is no space Y with Cc(X) ∼= C(Y ). If S ⊆ X ,

then S is also a zero-dimensional Hausdorff space. For f ∈ Cc(S), the sets Z(f) =

{x ∈ S : f(x) = 0}, and its set-theoretic complement coz(f) = {x ∈ S : f(x) 6= 0},

are the zeroset and cozeroset of f , respectively.

From now on, F is a base for a filter on X consisting of dense subsets of X . Note

that F is closed under finite intersection, i.e., S1 ∩ S2 ∈ F whenever S1, S2 ∈ F . Let

Cc(F) = lim
S∈F

Cc(S), and C
∗
c (F) = lim

S∈F
C∗

c (S).

In the above notions, the use of the limit is to describe that the rings are direct

limits of rings of continuous functions. Here, the direct limit can be described as the

union of the rings Cc(S) modulo the equivalence that f1 ∈ Cc(S1); f2 ∈ Cc(S2) are

considered equivalent if they agree on S1 ∩ S2. Therefore,

Cc(F) =
⋃

{Cc(S) : S ∈ F}, and C∗
c (F) =

⋃
{C∗

c (S) : S ∈ F},

see [5, 2.4]. If F = {X}, then Cc(X) = Cc(F). In this section, some definitions,

preliminaries and concepts are stated. In Section 2, we study the hull-kernel topology

on Mc and M∗
c , the set of maximal ideals of Cc(F) and C∗

c (F) respectively. It is

proved that each of them is compact and Hausdorff (and hence a T4-space). In

Section 3, we introduce the real-valued functions f̂ ∈ C(M∗
c) (resp. f̃ ∈ C(Mc))

for obtaining the equivalent topologies with the hull-kernel topology on M∗
c (resp.

Mc). These are in fact the weak topologies induced by ŵ := {f̂ : f ∈ C∗
c (F)} (resp.

w̃ := {f̃ : f ∈ C∗
c (F)}), where f̂(M) =M(f), ‖f‖ = ‖f̂‖, also, forM ∈ Mc, f̃(M) is

the unique real number such that |M(f)−f̃(M)| is infinitely small or zero. In the final

section, we prove that the T4-spaces Mc and M∗
c are homeomorphic. In particular,

we show that max(Qc(X)) ∼= max(Q∗
c(X)) and max(qc(X)) ∼= max(q∗c (X)), where

Qc(X) (resp. qc(X)) is the maximal (resp. classical) ring of quotients of Cc(X), and

Q∗
c(X) (resp. q∗c (X)) is the subring consisting of bounded functions.

Let F be a totally ordered field. Then F is said to be archimedean if Z, the set of

integers is cofinal, i.e., for every x ∈ F , there exists n ∈ Z such that n ≥ x.
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Theorem 1.1. ([8, Theorem 0.21]) An ordered field is archimedean if and only if it

is isomorphic to a subfield of the ordered field R.

An element a ∈ F , is called an infinitely large element (resp. infinitely small

element) whenever a > n (resp. 0 < a < 1
n
), for each n ∈ N (the set of natural

numbers). Obviously, a is infinitely large if and only if 1
a
is infinitely small. Therefore,

F is non-archimedean if and only if it contains infinitely large elements. So in this

case, F contains infinitely small elements (see also [8, 5.6, and 5.7]). In a partially

ordered set A, the symbol a ∨ b denotes sup{a, b}, i.e., the smallest element c, if one

exists, such that c ≥ a and c ≥ b. Likewise, a ∧ b stands for inf{a, b}. When both

a ∨ b and a ∧ b exist, for all a, b ∈ A, then A is called a lattice.

In a similar way of [8, 1.12], we obtain the following corollaries.

Corollary 1.1. f ∈ Cc(F) is a unit if and only if Z(f) = ∅.

Corollary 1.2. f ∈ C∗
c (F) is a unit if and only if it is bounded away from zero, i.e.,

|f | ≥ r for some r > 0.

We also need the next results.

Theorem 1.2. ([17, Theorem 17.10]) A compact Hausdorff space X is a T4-space.

Theorem 1.3. ([17, Theorem 17.14]) A one-to-one continuous map from a compact

space X onto a Hausdorff space Y is a homeomorphism.

2. The hull-kernel topology on Mc and M∗
c

We denote by Mc and M∗
c , the set of maximal ideals of Cc(F) and C∗

c (F) re-

spectively, i.e., Mc = {M : M is a maximal ideal in Cc(F)} and M∗
c = {M :

M is a maximal ideal in C∗
c (F)}.

Definition 2.1. For f, g ∈ Cc(F) (resp. C∗
c (F)), we call f ≤ g if and only if

f(x) ≤ g(x) for all x ∈ Sf ∩Sg whenever Sf and Sg are the domain of f and g. Also,

for M(f),M(g) ∈ Cc(F)
M

(resp. C∗
c (F)
M

), we call M(f) ≤ M(g) if and only if f ≤ g

whenever f, g ∈ Cc(F) (resp. C∗
c (F)) and M ∈ Mc (resp. M∗

c)
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By the above definition, Cc(F) (resp. C∗
c (F)) is a partially ordered set. To see

the transitivity of ≤, let f ≤ g and g ≤ h. Then f(x) ≤ g(x) for all x ∈ Sf ∩ Sg,

and g(x) ≤ h(x) for all x ∈ Sg ∩ Sh. So f(x) ≤ h(x) for all x ∈ Sf ∩ Sg ∩ Sh.

Notice that if Z ⊆ Y ⊆ X and Z is dense in X , then Z is dense in Y. So the density

of Sf ∩ Sg ∩ Sh in X gives its density in Sf ∩ Sh. Now, for x ∈ Sf ∩ Sh, there

is a net (xλ)λ∈Λ ⊆ Sf ∩ Sg ∩ Sh such that xλ → x, and f(xλ) ≤ h(xλ). It gives

f(x) ≤ h(x), i.e., f ≤ h on Sf ∩ Sh. Moreover, since Cc(F) (resp. C∗
c (F)) contains

f ∨ g = 1/2(f + g+ |f − g|) and f ∧ g = −(−f ∨−g), it is a lattice-ordered ring, see

[8, 0.5, and 0.19].

Corollary 2.1. The above definition plus letting M(f) ∨ M(g) = M(f ∨ g) and

M(f) ∧M(g) = M(f ∧ g), turns Cc(F)
M

(resp. C∗
c (F)
M

) into a lattice-ordered ring. In

particular, |M(f)| :=M(f) ∨M(−f) =M(f ∨ −f) =M(|f |).

Corollary 2.2. The canonical (ring) homomorphisms

ϕ : Cc(F) → Cc(F)
M

(M ∈ Mc), ϕ
∗ : C∗

c (F) → C∗
c (F)
M

(M ∈ M∗
c),

given by ϕ(f) = M(f), and ϕ∗(f) = M(f) are lattice homomorphisms. Moreover,

each of the fields Cc(F)
M

and C∗
c (F)
M

contains a copy of R (the set of real numbers).

Proof. By Corollary 2.1, ϕ and ϕ∗ are lattice-homomorphism. For the second part,

we note that R ∼= {M(r) : r ∈ R} ⊆ C∗
c (F)
M

. Also, R ∼= {M(r) : r ∈ R} ⊆ Cc(F)
M

. �

Corollary 2.3. If M is a maximal ideal in C∗
c (F), then C∗

c (F)
M

∼= R.

Proof. Let f ∈ C∗
c (F). Then there exists a natural number n and S ∈ F such that

‖f‖ = supx∈S|f(x)| ≤ n. Since |f | ≤ n, it gives |M(f)| = M(|f |) ≤ M(n) =

n. Hence, |M(f)| is not an infinitely large element. In other words, C∗
c (F)
M

is an

archimedean field, i.e., C∗
c (F)
M

⊆ R. By Corollary 2.2, the proof is complete. �

Theorem 2.1. If f ∈ C∗
c (F), then ‖f‖ = supM∈M∗

c
|M(f)|.

Proof. Take S ∈ F such that f ∈ C∗
c (S). Then |f(x)| ≤ ‖f‖, for all x ∈ S. From

Definition 2.1, |f | ≤ ‖f‖ gives M(|f |) ≤ M(‖f‖). Hence, |M(f)| = M(|f |) ≤

M(‖f‖) = ‖f‖. Since M is arbitrary, supM∈M∗
c
|M(f)| ≤ ‖f‖. Conversely, if ǫ > 0,

then ‖f‖−ǫ is not an upper bound for the set {|f(x)| : x ∈ S}. So |f(x)| > ‖f‖−ǫ, for
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some x ∈ S. Let f ′ = |f |−‖f‖+ ǫ. Consequently, f ′ is positive on a neighborhood of

x. Hence, f ′∧0 is not a unit in C∗
c (F). Thus, f ′∧0 ∈ (f ′∧0) ⊆M, for someM ∈ M∗

c ,

where (f ′ ∧ 0) is the generated ideal by f ′ ∧ 0. This implies that M(f ′) ∧M = M .

So M(f ′) > M , and hence |M(f)| = M(|f |) > ‖f‖ − ǫ. Since ǫ > 0 is arbitrary, it

follows that |M(f)| ≥ ‖f‖. Thus, supM∈M∗
c
|M(f)| ≥ ‖f‖. �

Let R be a commutative ring with identity and M, the set of all maximal ideals

of R. For a ∈ R, we let

Γa = {M ∈ M : a ∈M} = {M ∈ M :M(a) = 0}, and Γ(a) = M\ Γa.

So Γ(a) = {M ∈ M : a /∈M} = {M ∈ M :M(a) 6= 0}.

It is easy to see that the sets Γa form a base for the closed sets in M, equivalently,

the sets Γ(a) form a base for the hull-kernel topology on M.

We state the next lemma without proof since it is straightforward.

Lemma 2.1. Let I be an ideal in R, a ∈ R and (a), the generated ideal by a, and let

ΓI = {M ∈ M : I ⊆M}. Then the following statements hold.

(1) Γa = Γ(a).

(2) Γa = ∅ if and only if a is a unit.

(3) ΓI = ∅ if and only if I = R.

(4)
⋂
ΓIα = Γ⋃

Iα = Γ∑
Iα, where Iα is an ideal in R.

Theorem 2.2. The space M is compact.

Proof. Suppose that A is a subset of R such that {Γ(a) : a ∈ A} is an open cover for

M. So M =
⋃

a∈A Γ(a) and hence
⋂

a∈A Γa = ∅. By Lemma 2.1(4), Γ∑
a∈A

(a) = ∅.

Hence,
∑

a∈A(a) = R. Thus, for some finite elements of A, say a1, a2, . . . , an, we

have
∑n

i=1 ai = 1. This yields that
∑n

i=1(ai) = R and thus Γ∑
n

i=1
(ai) =

⋂n

i=1 Γai = ∅.

Therefore, M =
⋃n

i=1 Γ(ai), and we are through. �

The following is an immediate consequence of Theorem 2.2.

Corollary 2.4. The space Mc (resp. M
∗
c) is compact.

Let I be a proper ideal in Cc(F) (resp. C∗
c (F)) and let Zc[I] = {Z(f) : f ∈ I}.

We observe that Zc[I] is a zc-filter, i.e., ∅ /∈ Zc[I], if Z(f), Z(g) ∈ Zc[I] (we can
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suppose that f, g ∈ I), then Z(f) ∩ Z(g) = Z(f 2 + g2) ∈ Zc[I], and further if

Z(f) ⊆ Z(h) where f ∈ I and h ∈ Cc(F) (resp. h ∈ C∗
c (F), then fh ∈ I and Z(h) =

Z(f) ∪ Z(h) = Z(fh) ∈ Zc[I]. We observe that Z−1
c [Zc[I]] := {f : Z(f) ∈ Zc[I]} ⊇ I

(note, Z−1
c [Zc[I]] is a proper ideal). If the equality holds we call I a zc-ideal. This

is equivalent to say that if Z(f) ⊆ Z(g) and f ∈ I, then g ∈ I. Therefore, each

maximal ideal in Cc(F) (resp. C∗
c (F)) as same as an arbitrary intersection of them

is a zc-ideal.

In the same way of [8, Theorem 2.9], we obtain the next theorem.

Theorem 2.3. Let I be a zc-ideal in Cc(F) (resp. C∗
c (F)). Then the following

statements are equivalent.

(1) I is prime.

(2) I contains a prime ideal.

(3) For all g, h ∈ Cc(F) (resp. C∗
c (F)), if gh = 0, then g ∈ I or h ∈ I.

(4) For every f ∈ Cc(F) (resp. C∗
c (F)), there is a zero set in Zc[I] on which f

does not change sign.

Theorem 2.4. Cc(F) (resp. C∗
c (F)) is a Gelfand ring (a pm-ring, i.e., every prime

ideal is contained in a unique maximal ideal).

Proof. Suppose that P is a prime ideal, and, M1 and M2 are distinct maximal ideals

of Cc(F) (resp. C∗
c (F)) which contains P. Hence, M1 ∩M2 is a zc-ideal containing

P . By Theorem 2.3, M1 ∩M2 is prime, which is a contradiction. �

Remark 1. It is known that the structure space (maximal ideals with the hull-kernel

topology) of a pm-ring is Hausdorff. For more details, see [3, Theorem 1.2].

By combining Corollary 2.4, Remark 1 and Theorem 1.2, we get the following.

Corollary 2.5. The spaces Mc and M∗
c are T4-spaces.

An ideal I in a partially ordered ring is called convex if 0 ≤ x ≤ y and y ∈ I, then

x ∈ I, or equivalently, if a ≤ b ≤ c and a, c ∈ I, then b ∈ I. By definition, an ideal I

in a lattice-ordered ring is said to be absolutely convex, whenever |x| ≤ |y| and y ∈ I

imply that x ∈ I. So every absolutely convex ideal is convex, see [8, 5.1].
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Lemma 2.2. If I is a zc-ideal in Cc(F) (resp. C∗
c (F)), then I is absolutely convex.

Proof. Suppose that f, g ∈ Cc(F) (resp. C∗
c (F)) and |f | ≤ |g|, where g ∈ I. So

there are Sf , Sg ∈ F such that f ∈ Cc(Sf) and g ∈ Cc(Sg). Let S = Sf ∩ Sg. Then

Z(g) ⊆ Z(f), on S. Now, since g ∈ I and I is a zc-ideal, f ∈ I, and we are done. �

Corollary 2.6. Every maximal ideal of Cc(F) (resp. C∗
c (F)) is absolutely convex.

Proposition 2.1. Let M ∈ Mc (resp. M∗
c) and the topology on Mc (resp. M∗

c) be

the hull-kernel topology. Then each of the sets {M : M(f) 6= r}, {M : M(f) > r}

and {M : M(f) < r} is open, where r ∈ R and f ∈ Cc(F) (resp. f ∈ C∗
c (F)). So

each of the sets {M :M(f) = r}, {M :M(f) ≤ r}, and {M :M(f) ≥ r} is closed.

Proof. The results are obtained by the facts that {M : M(f) 6= r} = Γ(f − r), {M :

M(f) > r} = {M :M(f ∨ r) 6= r}, and {M :M(f) < r} = {M :M(−f) > −r}. �

Corollary 2.7. Let M ∈ Mc (resp. M
∗
c). Then each of the sets {M : |M(f)| 6= r},

{M : |M(f)| > r} and {M : |M(f)| < r} is open, where r ∈ R and f ∈ Cc(F) (resp.

f ∈ C∗
c (F)). Hence, each of the sets {M : |M(f)| = r}, {M : |M(f)| ≤ r} and

{M : |M(f)| ≥ r} is closed.

Proof. Using the following facts and Proposition 2.1, we get the results.

{M : |M(f)| < r} = {M :M(f) < r} ∩ {M : −r < M(f)},

{M : |M(f)| > r} = {M :M(f) > r} ∪ {M :M(f) < −r}, and

{M : |M(f)| 6= r} = {M : |M(f)| > r} ∪ {M : |M(f)| < r}.

�

3. The functions f̂ on M∗
c (resp. f̃ on Mc) and their applications

By Corollary 2.3, C∗
c (F)
M

∼= R for each M ∈ M∗
c . So this permits us to define

f̂ : M∗
c → R with f̂(M) =M(f) for each f ∈ C∗

c (F).

Proposition 3.1. Let f, g ∈ C∗
c (F), r ∈ R and M ∈ M∗

c. Then the following

statements hold.
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(1) f̂ + g = f̂ + ĝ, f̂ g = f̂ ĝ, and r̂f = rf̂ .

(2) ‖f‖ = ‖f̂‖.

(3) f̂ is continuous.

(4) Let ŵ := {f̂ : f ∈ C∗
c (F)} and τŵ be the weak topology on M∗

c induced by

ŵ. Then {f̂−1((a, b)) : a, b ∈ R} is a base for τŵ.

Proof. (1). Evident. (2). Note that if n is an upper bound for f , then |f̂(M)| =

|M(f)| = M(|f |) ≤ M(n) = n. So f̂ is bounded, and thus ‖f̂‖ = supM∈M∗
c
|M(f)|.

By Theorem 2.1, ‖f‖ = ‖f̂‖. (3). Observe that

f̂−1((a, b)) = {M ∈ M∗
c : a < M(f) < b}

= {M ∈ M∗
c : a < M(f)} ∩ {M ∈ M∗

c :M(f) < b}.

By Proposition 2.1, the result holds. (4). It follows from the definition of the weak

topology. �

Proposition 3.2. The family {ĝ −1((−r, r)) : g ∈ C∗
c (F), r > 0} is a base for τŵ on

M∗
c.

Proof. It is sufficient to show the following equality,

{f̂ −1((a, b)) : f ∈ C∗
c (F), and a, b ∈ R} = {ĝ −1((−r, r)) : g ∈ C∗

c (F), r > 0}. To

see this, let M ∈ f̂ −1((a, b)). Then a < f̂(M) =M(f) < b. Hence,

a− a+b
2
< M(f)− a+b

2
< b− a+b

2
.

Now, if we put s = a+b
2
, r = b−a

2
, and g = f − s, then −r < M(g) < r. So M ∈

ĝ −1((−r, r)). The reverse inclusion is obvious. �

Lemma 3.1. The hull-kernel topology on M∗
c (denoted by τ

Ŝ
) coincides with τŵ.

Proof. Consider V = f̂ −1((−r, r)), where r > 0 and f ∈ C∗
c (F), as a basic open set

in τŵ. Hence, V = {M ∈ M∗
c : |f̂(M)| = |M(f)| < r}. By Corollary 2.7, V is an

open set in M∗
c , i.e., τŵ ⊆ τŜ. Also, the equality

Γ(f) = {M ∈ M∗
c :M(f) 6= 0} = f̂ −1(R \ {0}),

gives Γ(f) ∈ τŵ, i.e., τŜ ⊆ τŵ. �
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Remind that a subset S of a ring R is called dense in R if AnnRS = {r ∈ R : rs =

0, for all s ∈ S} = 0.

Theorem 3.1. C∗
c (F) is a dense R-subalgebra of C(M∗

c).

Proof. Let ψ : C∗
c (F) → C(M∗

c) be defined by ψ(f) = f̂ . By Proposition 3.1, ψ is an

algebra homomorphism. Also, if we let 0 6= f ∈ C∗
c (F), then 0 6= ‖f‖ = ‖f̂‖. This

yields that f̂ 6= 0 and hence ψ is a one-to-one mapping. Thus, C∗
c (F) is a subring (in

fact, an R-subalgebra) of C(M∗
c). Briefly, we can state

C∗
c (F) ∼= ψ(C∗

c (F)) = {f̂ : f ∈ C∗
c (F)} ⊆ C(M∗

c).

Now, suppose that g ∈ C(M∗
c) such that g.C∗

c (F) = 0. So the function g1̂ is zero,

i.e., g(M)1̂(M) = g(M)M(1) = g(M) = 0, for each M ∈ M∗
c . Hence, g = 0 which

gives C∗
c (F) is dense in C(M∗

c), and we are done. �

Recall that C∗
c (F)
M

∼= R, for each M ∈ M∗
c (see Corollary 2.3). But whenever

M ∈ Mc, the field
Cc(F)
M

may contain R properly, in other words, it contains infinitely

large elements. In the rest of this section, our discussion is on the space Mc.

Lemma 3.2. Let M ∈ Mc and M(f) ∈ Cc(F)
M

. If |M(f)| is not infinitely large, then

there exists a unique real number s such that |M(f)− s| is infinitely small or zero.

Proof. Recall that |M(f)| = sup{M(f),M(−f)} =M(f) ∨M(−f) =M(|f |). Since

|M(f)| is not infinitely large, there exists a natural number n1 such that |M(f)| < n1.

Let A = {r ∈ R : r < M(f)}. Observe that −n1 ∈ A and n1 is an upper bound for A.

So A has a supremum in R. Let supA = s. If M(f) ∈ R, then M(f) = s and hence

|M(f)−s| = 0 clearly. In the case M(f) /∈ R, we see that s− 1
n
< s < M(f) < s+ 1

n
.

So |M(f)−s| < 1
n
, for all n. Hence, |M(f)−s| is infinitely small. For the uniqueness

of s, suppose that s′ ∈ R also satisfies the conditions of the lemma. Therefore,

|s− s′| ≤ |s−M(f)|+ |M(f)− s′| <
1

2n
+

1

2n
=

1

n
for all n.

So s = s′, and we are done. �

Corollary 3.1. If M ∈ Mc and f ∈ C∗
c (F), then there exists a unique real number

s such that |M(f)− s| is infinitely small or zero.
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Proof. Note thatM(f) ∈ Cc(F)
M

and ‖f‖ ≤ n, for some n ∈ N. So |M(f)| =M(|f |) ≤

‖f‖ ≤ n, and thus |M(f)| is not infinitely large. Lemma 3.2 now gives the result. �

The uniqueness of s in the previous results will enable us to define the real-valued

functions f̃ on Mc with several interesting properties.

Definition 3.1. For f ∈ C∗
c (F) andM ∈ Mc, we define f̃ : Mc → R with f̃(M) = s.

Lemma 3.3. Let M ∈ Mc, M(f),M(g), |M(f)| and |M(g)| are infinitely small

elements of Cc(F)
M

. Then each of the elements |M(f) −M(g)|, |M(f) +M(g)|, and

|M(f)| + |M(g)| is also infinitely small. Furthermore, if |M(h)| is not an infinitely

large element in Cc(F)
M

, then |M(fh)| is an infinitely small element.

Proof. First, we note that 0 < |M(f)| + |M(g)| < 1
2n

+ 1
2n

= 1
n
for each n ∈ N.

Therefore, 0 < |M(f) −M(g)| < 1
n
. Also, we have 0 < |M(f) +M(g)| < 1

n
. Since

|M(h)| is not infinitely large, there exists n0 ∈ N such that |M(h)| < n0, and further

|M(f)| < 1
nn0

for all n. So 0 < |M(f)M(h)| < 1
n
, i.e., |M(fh)| is infinitely small. �

Proposition 3.3. If f, g ∈ C∗
c (F) and r ∈ R, then the following statements hold.

(1) ˜(f + g) = f̃ + g̃.

(2) f̃ g = f̃ g̃.

(3) r̃f = r̃f̃ = rf̃ .

Proof. (1). Let M ∈ Mc. By Corollary 3.1 and Definition 3.1, |M(f) − f̃(M)| and

|M(g) − g̃(M)| are infinitely small or zero. According to Lemma 3.3, |M(f + g) −

(f̃ + g̃)(M)| is infinitely small or zero. Also, since f + g is bounded, |M(f + g) −

˜(f + g)(M)| is infinitely small or zero. By the uniqueness of s in Lemma 3.2, the

result holds. (2). Note that |M(fg) − f̃ g(M)| is infinitely small or zero. Now, let

A = |M(fg)− f̃(M)g̃(M)|. Then

A = |M(fg)− f̃(M)g̃(M) + f̃(M)M(g)− f̃(M)M(g)|(3.1)

= |f̃(M)(M(g)− g̃(M)) +M(g)(M(f)− f̃(M))|(3.2)

≤ |f̃(M)||M(g)− g̃(M)|+ |M(g)||M(f)− f̃(M)|.(3.3)
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Since |M(g)| is bounded and |f̃(M)| is real, the phrase in relation (3.3) is infinitely

small or zero. By Lemmas 3.2 and 3.3, the result is obtained. (3). It follows from

(2), by replacing g with r. �

The next result is immediate. Compare it with Theorem 3.1.

Corollary 3.2. The mapping ϕ : C∗
c (F) → C(Mc) given by ϕ(f) = f̃ is an algebra

homomorphism.

The weak topology induced by the family w̃ := {f̃ : f ∈ C∗
c (F)} on Mc is denoted

by τw̃. In the same way of Proposition 3.2, we have the next result.

Proposition 3.4. The family {g̃ −1((−r, r)) : g ∈ C∗
c (F), r > 0} is a base for τw̃ on

Mc.

Recall that the two ideals of a commutative ring are called coprime, whenever the

sum of them is the whole of the ring. So every two distinct maximal ideals of a ring,

are coprime.

Lemma 3.4. If M1 and M2 are distinct maximal ideals of Cc(F). Then the ideals

M ′
1 :=M1 ∩ C

∗
c (F) and M ′

2 :=M2 ∩ C
∗
c (F) are coprime.

Proof. Since M1 +M2 = Cc(F), there exist f ∈M1 and g ∈M2 such that 1 = f + g.

We note that f

1+|f |
∈M ′

1\M
′
2 and

g

1+|g|
∈M ′

2\M
′
1. Since maximal ideals are absolutely

convex (Corollary 2.6), we have |f | ∈M1 and |g| ∈M2. Notice that f+g = 1 implies

that |f |+ |g| 6= 0. Now, let

f ′ =
|f |

|f |+ |g|
, and g′ =

|g|

|f |+ |g|
.

Then f ′ ∈M ′
1, g

′ ∈M ′
2, and, f

′ + g′ = 1. Thus M ′
1 +M ′

2 = C∗
c (F). �

Theorem 3.2. Let w̃ and τw̃ be as defined previously. Then (Mc, τw̃) is Hausdorff.

Proof. Let M1 and M2 be distinct maximal ideals of Cc(F), and let M ′
1 and M ′

2 be

their intersections with C∗
c (F), respectively. By Lemma 3.4, f + g = 1, for some

f ∈M ′
1 and g ∈M ′

2. Notice that |M1(f)− f̃(M1)| = |f̃(M1)| and |M2(g)− g̃(M2)| =

|g̃(M2)| are infinitely small or zero. Since the real numbers |f̃(M1)| and |g̃(M2)|
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cannot be infinitely small, they are zero. Hence, f̃(M2) = (̃1− g)(M2) = 1̃(M2) −

g̃(M2) = 1. Now, if we put U1 = f̃ −1((−∞, 1
2
)) and U2 = f̃ −1((1

2
,∞)), then U1 and

U2 are disjoint open sets containingM1 andM2, respectively. SoMc is Hausdorff. �

Corollary 3.3. Let τ
S̃
be the hull-kernel topology on Mc. Then τS̃ = τw̃.

Proof. Let X = (Mc, τS̃), Y = (Mc, τw̃) and let i : X → Y be the identity function.

Recall that X is compact (Corollary 2.4) and Y is Hausdorff (Theorem 3.2). More-

over, notice that g̃ −1((−r, r)) =
⋃

0<r′<r{M : |M(g)| < r′}, see Proposition 3.4 and

Corollary 2.7. So i is continuous. Now, Theorem 1.3 completes the proof. �

4. A homeomorphism between T4-spaces Mc and M∗
c

In this section, we show that the topological spaces Mc andM∗
c are homeomorphic.

Lemma 4.1. Let M ∈ Mc and τ ∗(M) = {f ∈ C∗
c (F) : f̃(M) = 0}. Then τ ∗(M) is

a maximal ideal in C∗
c (F).

Proof. By Proposition 3.3, τ ∗(M) is an ideal of C∗
c (F). We claim that 1 /∈ τ ∗(M).

Otherwise, 1̃(M) = 0. Consequently, 1 = |M(1)| = |M(1)− 1̃(M)| is infinitely small

or zero, a contradiction. Hence, τ ∗(M) is a proper ideal. Recall that if f ∈M∩C∗
c (F),

then M(f) = 0 and thus f̃(M) = 0. So τ ∗(M) ⊇ M ∩ C∗
c (F). Suppose that f ∈

C∗
c (F) \ τ ∗(M). Thus, f /∈ M and therefore Cc(F) = (M, f) (note, M ∈ Mc). So

1 = m+ fg, for some m ∈M and some g ∈ Cc(F). Therefore, 1 =M(1) =M(m) +

M(f)(M(g) = M(f)M(g). Since f /∈ τ ∗(M), we have 0 6= f̃(M) and thus |M(f)|

is not infinitely small. Otherwise, by Lemma 3.3, |f̃(M)| = |M(f)− f̃(M)−M(f)|

is infinitely small, a contradiction. Hence, |M(g)| is not infinitely large. There is a

unique real number s such that |M(g) − s| is infinitely small or zero (Lemma 3.2).

Evidently, s− 1 < M(g) < s+ 1. Let

g′ = ((s− 1) ∨ g) ∧ (s+ 1).

Clearly g′ ∈ C∗
c (F) and M(g) = M(g′). Therefore, M(f)M(g′) = 1. So fg′ − 1 ∈

M ∩ C∗
c (F) ⊆ τ ∗(M). Since 1 = (1 − fg′) + fg′, we have (τ ∗(M), f) = C∗

c (F). This

gives τ ∗(M) is a maximal ideal in C∗
c (F), and we are trough. �
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Remark 2. If M ∈ Mc, 0 6= s ∈ R and τ ∗s (M) = {f ∈ C∗
c (F) : f̃(M) = s}, then

τ ∗s (M) contains the unit s. So it is not a proper ideal, i.e., τ ∗s (M) = C∗
c (F). Hence,

the assumption f̃(M) = 0 is necessary in the definition of τ ∗(M) in Lemma 4.1.

Lemma 4.2. Let M∗ ∈ M∗
c and F = {(|f | − r) ∨ 0 : f ∈ M∗, and r > 0}. Then I,

the generated ideal by F in Cc(F), is a proper ideal (and hence it is contained in a

maximal ideal of Cc(F)).

Proof. Suppose fi ∈ M∗, 1 ≤ i ≤ n, and ri > 0. Since f =
∑n

i=1 f
2
i ∈ M∗, neither f

nor fi is a unit, hence it is not bounded away from zero (Corollary 1.2). Therefore,

Imfi ∩ (−ri, ri) 6= ∅, also, Imf ∩ (−r2, r2) 6= ∅, where r = min{ri : 1 ≤ i ≤ n}. Let

A = {x : f(x) < r2}. Then A 6= ∅ and f 2
i ≤ f < r2, on A. Thus, |fi| − r < 0, and

A ⊆
⋂n

i=1 Z((|fi| − r) ∨ 0). Now, we claim that 1 /∈ I = (F ), otherwise,

1 =

n∑

i=1

gi((|fi| − r) ∨ 0),

where gi ∈ Cc(F). Therefore, ∅ = Z(1) ⊇
⋂n

i=1 Z((|fi|− r)∨ 0) ⊇ A, a contradiction.

So I is a proper ideal of Cc(F). �

Theorem 4.1. Let τ ∗(M) be as defined in Lemma 4.1. Then the following statements

hold.

(1) The mapping τ ∗ : Mc → M∗
c, which M 7→ τ ∗(M) is a one-to-one correspon-

dence.

(2) f̂ ◦ τ ∗ = f̃ , for every f ∈ C∗
c (F).

(3) τ ∗ is continuous.

Proof. (1). Let M1,M2 ∈ Mc be distinct, and let f be the function in the proof of

Theorem 3.2. We saw there that f̃(M1) = 0 6= f̃(M2) = 1. So f̃ ∈ τ ∗(M1) \ τ
∗(M2).

Hence, τ ∗ is one-to-one. Next, suppose that M∗ ∈ M∗
c . In Lemma 4.2, the existence

of a maximal ideal M of Cc(F) corresponding to M∗ has been proved. We now

claim that τ ∗(M) = M∗. Let f ∈ M∗ and r > 0. Using Lemma 4.2, we get

(|f | − r) ∨ 0 ∈M. So |M(f)| =M(|f |) < r. Since r is an arbitrary positive number,

|0 − M(f)| = M(|f |) is infinitely small or zero. Remind that |f̃(M) − M(f)| is

infinitely small or zero. So f̃(M) = 0 and hence M∗ ⊆ τ ∗(M). Since M∗ is maximal,
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M∗ = τ ∗(M), which gives τ ∗ is onto. The proof of (1) is now complete. (2). Assume

that M ∈ Mc and f̂ ◦ τ ∗(M) = r, for some r ∈ R. So τ ∗(M)(f) = r = τ ∗(M)(r)

and thus f − r ∈ τ ∗(M). Consequently, ˜(f − r)(M) = 0 = (f̃ − r̃)(M). Therefore,

f̃(M) = r̃(M) = r. (3). Let f ∈ C∗
c (F). Consider Γf = {M ∈ M∗

c : M(f) = 0} and

Γf ′ = {M ∈ Mc :M(f) = 0} as basic closed sets in M∗
c and Mc respectively. Then

f̂(M) = 0, for each M ∈ Γf . Hence,

τ ∗−1(Γf) = {M ∈ Mc : τ
∗(M)(f) = 0 = f̂(τ ∗(M))}.

By (2), f̃(M) = 0. Recall that |M(f) − f̃(M)| = |M(f)| is infinitely small or zero.

Since f is bounded, |M(f)| is not infinitely small. So it is zero, i.e., f ∈M and thus

M ∈ Γf ′. Consequently, τ ∗−1(Γf) = Γf ′ , i.e., τ ∗ is continuous. �

We are now in a position to say that the T4-spaces Mc and M∗
c are homeomorphic.

Theorem 4.2. The T4-spaces Mc and M∗
c are homeomorphic.

Proof. By Theorem 4.1, τ ∗ is one-to-one, onto, and continuous. Since Mc is compact

and M∗
c is Hausdorff, the result holds by Theorems 1.3. �

We conclude the article with the following result. But before that, a summary of

rings Qc(X) and qc(X) is mentioned. The maximal (resp. classical) ring of quotients

of Cc(X) will be denoted byQc(X) (resp. qc(X)). These rings have been characterized

in [12] and [2], respectively. By Q∗
c(X) (resp. q∗c (X)), we mean the subring of Qc(X)

(resp. qc(X)) consisting of bounded functions. Also, max(Qc(X)) (resp. max(qc(X)))

denotes the maximal ideal space of Qc(X) (resp. qc(X)).

Corollary 4.1. Let X be a zero-dimensional space. Then

max(Qc(X)) ∼= max(Q∗
c(X)), and max(qc(X)) ∼= max(q∗c (X))

Proof. Recall that a subset of X is a σ-clopen set in X if it is a countable union of

clopen (closed-open) sets in X . Let

F1 = {V ⊆ X : V is a dense open subset of X}, and

F2 = {V ⊆ X : V is a dense σ-clopen subset of X}.
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Then both F1 and F2 are filter base on X . In view of [12, Theorem 2.12] and [2,

Theorem 2.2], we have Qc(X) = limV ∈F1
Cc(V ) and qc(X) = limV ∈F2

Cc(V ). Hence,

Qc(X) = Cc(F1) and qc(X) = Cc(F2). Theorem 4.2 now yields the result. �
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