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HOMODERIVATIONS ON A LATTICE

MOURAD YETTOU (1) AND ABDELAZIZ AMROUNE (2)

Abstract. In this paper, the concept of homoderivation on a lattice as a combina-

tion of two concepts of meet-homomorphisms and derivations is introduced. Some

characterizations and properties of homoderivations are provided. The relationship

between derivations and homoderivations on a lattice is established. Also, an inter-

esting class of homoderivations namely isotone homoderivations is studied. A char-

acterization of the isotone homoderivations in terms of the meet-homomorphisms is

given. Furthermore, a sufficient condition for a homoderivation to become isotonic

is established.

1. Introduction

The notion of derivation appeared on the ring structures and it has many applications

(see, e.g. [6, 7]). Szász [13] has extended this notion of derivation to the setting of

lattice structures. He has defined a derivation on a given lattice L as a function d

satisfying the following two conditions:

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)) and d(x ∨ y) = d(x) ∨ d(y), for any x, y ∈ L.

Xin et al. [17] have ameliorated this notion of derivation on a lattice by considering

only the first condition, and they have shown that the second condition obviously

holds for the isotone derivations on a distributive lattice. In the same paper, they have

characterized distributive and modular lattices in terms of their isotone derivations.

Later on, Xin [16] has focused his attention on the structure of the set of the fixed

points of a derivation on a lattice, and he has shown some relationships between this

set and the lattice ideals.
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This notion of derivation on a lattice is witnessing increased attention. It was applied

in partially ordered sets [2, 20], in distributive lattices [1, 19], in semilattices [18], in

bounded hyperlattices [14], in quantales and residuated lattices [10, 15].

In the ring structures, El Sofy [9] has introduced the notion of homoderivation on a

ring (R,+, ·) as an additive mapping h : R → R satisfies

h(x · y) = (h(x) · h(y)) + (h(x) · y) + (x · h(y)), for any x, y ∈ R.

Recently, this notion of homoderivation is also witnessing increased attention. It was

studied by many authors [3, 4, 5, 12].

Inspired by the notion of homoderivation on ring structures, we introduce the notion

of homoderivation on a lattice structure by combining the two concepts of meet-

homomorphisms and derivations introduced by Xin et al. [17]. More specifically,

we investigate some characterizations and properties of homoderivations on a lattice.

We establish the relationship between derivations and homoderivations on a lattice.

Moreover, we study the isotone homoderivations on a lattice as an interesting class of

homoderivations. We provide a characterization of the isotone homoderivations on a

lattice in terms of the meet-homomorphisms. Further, we give a sufficient condition

for a homoderivation to be isotone.

The rest of the paper is organized as follows. In Section 2, we recall some neces-

sary concepts and properties of lattices and derivations on lattices. In Section 3, we

introduce the notion of homoderivation on a lattice and investigate some of its char-

acterizations and properties. In Section 4, we study the isotone homoderivations on

a lattice as a particular class of homoderivations and we provide a characterization

of them. Finally, we present some conclusions and discuss future research in Section

5.

2. Basic concepts

In this section, we recall some basic concepts and properties of lattices and derivations

on lattices that will be needed in this paper.

2.1. Lattices. An order relation 6 on a set X is a binary relation on X that is

reflexive, antisymmetric and transitive. A set X equipped with an order relation 6

is called a partially ordered set (a poset, for short), denoted (X,6).
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Let (X,6) be a poset and A be a non-empty subset of X . An element x0 ∈ X is

called a lower bound of A if x0 6 x, for any x ∈ A. The element x0 is called the

greatest lower bound (or the infimum) of A, if x0 is a lower bound of A and m 6 x0,

for any lower bound m of A. Dually, An element x1 ∈ X is called an upper bound of

A if x 6 x1, for any x ∈ A. The element x1 is called the smallest upper bound (or

the supremum) of A, if x1 is an upper bound of A and x1 6 t, for any upper bound

t of A.

A poset (L,6) is called a meet-semilattice if any two elements x and y of L have a

greatest lower bound, denoted by x ∧ y and called the meet (infimum) of x and y.

Analogously, it is called a join-semilattice if any two elements x and y of L have a

smallest upper bound, denoted by x ∨ y and called the join (supremum) of x and y.

A poset (L,6) is called a lattice if it is both a meet- and join-semilattice. Usually,

the notation (L,6,∧,∨) is used to describe a lattice.

Let (L,6,∧,∨) be a lattice and x0, x1 be two elements of L. The element x0 is called

the smallest element of L if x0 6 x, for any x ∈ L. Daully, The element x1 is called

the greatest element of L if x 6 x1, for any x ∈ L.

A lattice (L,6,∧,∨) is called bounded if it has a smallest and a greatest element,

respectively denoted by 0 and 1. Usually, the notation (L,6,∧,∨, 0, 1) is used to

describe a bounded lattice. For example, let (L1 = [0, 1], min,max) and (L2 =

]0, 1[, min,max) be two lattices ordered by the usual order of the real numbers.

Obvious that 0 is the smallest element and 1 is the greatest element of L1. Then,

(L1 = [0, 1], min,max, 0, 1) is a bounded lattice. But, L2 has not a smallest and a

greatest element. Thus, (L2 =]0, 1[, min,max) is not a bounded lattice.

A lattice (L,6,∧,∨) is called distributive if it satisfies one of the following two equiv-

alent conditions:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), for any x, y, z ∈ L;

(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), for any x, y, z ∈ L.

Let (L1,61,∧1,∨1) and (L2,62,∧2,∨2) be two lattices. A mapping ψ : L1 → L2 is

called a meet-homomorphism, if ψ(x ∧1 y) = ψ(x) ∧2 ψ(y), for any x, y ∈ L1.

Let (L,6,∧,∨) be a lattice and x, y ∈ L. The element y covers the element x if x < y

(i.e., x 6 y and x 6= y) and there is not an element z ∈ L such that x < z < y.
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The Hasse diagram of a finite lattice (L,6,∧,∨) is a digraph whose vertexes are the

elements of L and which has line segments between some their vertexes. If an element

y ∈ L covers an element x ∈ L, we get the vertex y is higher up than the vertex x

and they are connected with a line segment. For example, let (D(12), |, gcd, lcm) be

the finite lattice of the positive divisors of 12 ordered by the divisibility order |. The

Hasse diagram of (D(12), |, gcd, lcm) is given in the Figure 1.

Figure 1. The Hasse diagram of the finite lattice (D(12), |, gcd, lcm).

Further information on lattices can be found in [8, 11].

2.2. Derivations on lattices. In this subsection, we recall some basic concepts and

properties of derivations on lattices that will be needed throughout this paper.

Definition 2.1. [17] Let (L,6,∧,∨) be a lattice. A function d : L → L is called a

derivation on L if it satisfies the following condition:

d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y)), for any x, y ∈ L .

In the rest of the paper, we shortly write dx instead of d(x).

Definition 2.2. [17] Let (L,6,∧,∨) be a lattice and d a derivation on L. The

derivation d is called isotone if it satisfies the following condition:

x 6 y implies dx 6 dy, for any x, y ∈ L .

Definition 2.3. [17] Let (L,6,∧,∨) be a lattice and α an element of L. A principal

derivation on L is a function d
α
: L→ L defined as
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d
α
(x) = α ∧ x, for any x ∈ L.

The following proposition gives some properties of derivations on a lattice.

Proposition 2.1. [17] Let (L,6,∧,∨) be a lattice and d a derivation on L. Then

the following holds:

(i) dx 6 x, for any x ∈ L;

(ii) dx ∧ dy 6 d(x ∧ y), for any x, y ∈ L

For more details concerning derivations on lattices, we refer to [16, 17].

3. Homoderivations on a lattice

In this section, we introduce the notion of homoderivation on a lattice and investi-

gate some of its characterizations and properties. Further, we show the relationship

between derivations and homoderivations on a lattice.

Definition 3.1. Let (L,6,∧,∨) be a lattice. A homoderivation on L is a function

h : L→ L satisfies the following condition:

h(x ∧ y) = (h(x) ∧ h(y)) ∨ (h(x) ∧ y) ∨ (x ∧ h(y)), for any x, y ∈ L .

In the rest of the paper, we shortly write hx instead of h(x).

Example 3.1. (i) Let (L,6,∧,∨) be a lattice. The identity function of L (i.e.,

h(x) = x, for any x ∈ L) is a homoderivation on L;

(ii) Let (L,6,∧,∨, 0) be a lattice with the smallest element 0 ∈ L. The null

function of L (i.e., hx = 0, for any x ∈ L) is a homoderivation on L.

Example 3.2. Let (L = {0, a, b, 1},6,∧,∨) be the bounded lattice given by the Hasse

diagram in Figure 2 and h1, h2, h3, h4 be four functions on L defined in the following

table:

x 0 a b 1

h1(x) 1 b a 0

h2(x) 0 a b 0

h3(x) a a 1 1

h4(x) b 1 b 1
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Figure 2. The Hasse diagram of (L = {0, a, b, 1},6,∧,∨).

The functions h1, h2, h3 and h4 are homoderivations on L. Indeed, the function h1

satisfies

(1) h1(0 ∧ a) = h1(0) = 1 and (h1(0) ∧ h1(a)) ∨ (h1(0) ∧ a) ∨ (0 ∧ h1(a)) =

(1 ∧ b) ∨ (1 ∧ a) ∨ (0 ∧ b) = b ∨ a ∨ 0 = 1;

(2) h1(0∧ b) = h1(0) = 1 and (h1(0)∧h1(b))∨ (h1(0)∧ b)∨ (0∧h1(b)) = (1∧ a)∨

(1 ∧ b) ∨ (0 ∧ a) = a ∨ b ∨ 0 = 1;

(3) h1(0 ∧ 1) = h1(0) = 1 and (h1(0) ∧ h1(1)) ∨ (h1(0) ∧ 1) ∨ (0 ∧ h1(1)) =

(1 ∧ 0) ∨ (1 ∧ 1) ∨ (0 ∧ 0) = 0 ∨ 1 ∨ 0 = 1;

(4) h1(a ∧ b) = h1(0) = 1 and (h1(a) ∧ h1(b)) ∨ (h1(a) ∧ b) ∨ (a ∧ h1(b)) =

(b ∧ a) ∨ (b ∧ b) ∨ (a ∧ a) = 0 ∨ b ∨ a = 1;

(5) h1(a ∧ 1) = h1(a) = b and (h1(a) ∧ h1(1)) ∨ (h1(a) ∧ 1) ∨ (a ∧ h1(1)) =

(b ∧ 0) ∨ (b ∧ 1) ∨ (a ∧ 0) = 0 ∨ b ∨ 0 = b;

(6) h1(b∧ 1) = h1(b) = a and (h1(b)∧h1(1))∨ (h1(b)∧ 1)∨ (b∧h1(1)) = (a∧ 0)∨

(a ∧ 1) ∨ (b ∧ 0) = 0 ∨ a ∨ 0 = a;

(7) h1(x ∧ x) = h1(x) and (h1(x) ∧ h1(x)) ∨ (h1(x) ∧ x) ∨ (x ∧ h1(x)) = h1(x) ∨

(h1(x) ∧ x) = h1(x), for any x ∈ L = {0, a, b, 1}.

Therefore, h1 is a homoderivation on L. The other homoderivations h2, h3 and h4

can be proved similarly.

Remark 3.1. We note that Xin et al. [17] have shown that the only bijective deriva-

tion on a given lattice L is the identity function of L. But here, we can see that the

identity function of L is not the only bijective homoderivation on L. Indeed, as can

be seen from Example 3.2 that the homoderivation h1 is bijective and it is not the

identity function of L.
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In the following proposition, we show that any derivation on a given lattice is a

homoderivation.

Proposition 3.1. Let (L,6,∧,∨) be a lattice and d : L → L be a function. If d is

a derivation on L, then d is a homoderivation.

Proof. From Proposition 2.1 (ii) we have dx ∧ dy 6 d(x ∧ y), for any x, y ∈ L.

Hence, d(x ∧ y) = (dx ∧ dy) ∨ d(x ∧ y), for any x, y ∈ L. Since d is a derivation

on L, it follows that d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy), for any x, y ∈ L. Thus,

d(x ∧ y) = (dx ∧ dy) ∨ (dx ∧ y) ∨ (x ∧ dy), for any x, y ∈ L. Consequently, d is a

homoderivation on L. �

Remark 3.2. We note that the converse implication of Proposition 3.1 does not

necessarily hold. As can be seen that the homoderivation h1 given in Example 3.2 is

not a derivation. Indeed,

h1(0 ∧ a) = 1 6= (h1(0) ∧ a) ∨ (0 ∧ h1(a)) = a .

In view of Proposition 3.1 and Remark 3.2, we conclude that the set of all derivations

on L (denotedD(L)) is a proper subset of the set of all homoderivations on L (denoted

H(L)), i.e., D(L)  H(L).

The following theorem determines the necessary and sufficient condition under which

a homoderivation on a lattice is a derivation.

Theorem 3.1. Let (L,6,∧,∨) be a lattice and h a homoderivation on L. Then h is

a derivation if and only if hx 6 x, for any x ∈ L.

Proof. The proof of the direct implication follows from proposition 2.1 (i). Conversely,

let x, y ∈ L. The fact that hx 6 x and hy 6 y implies that hx ∧ hy 6 hx ∧ y and

hx ∧ hy 6 x ∧ hy. Then hx ∧ hy 6 (hx ∧ y) ∨ (x ∧ hy). Since h is a homoderivation

on L, it follows that

h(x ∧ y) = (hx ∧ hy) ∨ (hx ∧ y) ∨ (x ∧ hy) = (hx ∧ y) ∨ (x ∧ hy) .

Therefore, h is a derivation on L. �

Proposition 3.2. Let (L,6,∧,∨, 1) be a lattice with the greatest element 1 ∈ L and

h be a homoderivation on L. Then x ∧ h1 6 hx, for any x ∈ L.
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Proof. Let x ∈ L, since h is a homoderivation on L, it follows that

hx = h(x ∧ 1) = (hx ∧ h1) ∨ (hx ∧ 1) ∨ (x ∧ h1)

= (hx ∧ h1) ∨ hx ∨ (x ∧ h1)

= hx ∨ (x ∧ h1) .

Thus, x ∧ h1 6 hx. �

The above proposition leads to the following characterization.

Corollary 3.1. Let (L,6,∧,∨, 1) be a lattice with the greatest element 1 ∈ L and h

be a homoderivation on L. Then x 6 hx, for any x ∈ L if and only if 1 is a fixed

point of h (i.e., h(1) = 1).

Proposition 3.3. Let (L,6,∧,∨, 0, 1) be a bounded lattice and h be a homoderivation

on L. Then h0 = 1 if and only if hx ∨ x = 1, for any x ∈ L.

Proof. We suppose that h0 = 1 and let x ∈ L. Since h is a homoderivation on L, it

follows that h0 = h(0 ∧ x) = (h0 ∧ hx) ∨ (h0 ∧ x) ∨ (0 ∧ hx) = hx ∨ x. Therefore,

hx ∨ x = 1. To prove the converse implication, we suppose that x ∨ hx = 1, for any

x ∈ L. Then h0 = 0 ∨ h0 = 1, hence h0 = 1. �

Proposition 3.4. Let (L,6,∧,∨, 0) be a distributive lattice and h be a homoderiva-

tion on L. Then h0 6 hx ∨ x, for any x ∈ L.

Proof. Since h is a homoderivation on L and L is distributive, it follows that h0 =

h(0∧ x) = (h0∧ hx)∨ (h0∧ x)∨ (0∧ hx) = (h0∧ hx)∨ (h0∧ x) = h0∧ (hx∨ x), for

any x ∈ L. Thus, h0 6 hx ∨ x, for any x ∈ L. �

4. Isotone homoderivations on a lattice

In this section, we study the isotone homoderivations on a lattice as a particular

class of homoderivations. More precisely, we provide a characterization of the iso-

tone homoderivations in terms of the meet-homomorphisms and we show a sufficient

condition for a homoderivation on a lattice becomes isotone.
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Definition 4.1. Let (L,6,∧,∨) be a lattice. A homoderivation h on L is called

isotone if it satisfies the following condition:

x 6 y implies hx 6 hy, for any x, y ∈ L .

Example 4.1. Let (L = {0, a, b, c, d, 1},6,∧,∨) be the bounded lattice given by the

Hasse diagram in Figure 3. Let h1 and h2 be two functions on L defined in the fol-

lowing table:

x 0 a b c d 1

h1(x) c c c c d 1

h2(x) c c c d d 1

Figure 3. The Hasse diagram of (L = {0, a, b, c, d, 1},6,∧,∨).

The functions h1 and h2 are isotone homoderivations on L. Indeed,

(i) the function h1 is a homoderivation:

(1) h1(0 ∧ a) = h1(0) = c and (h1(0) ∧ h1(a)) ∨ (h1(0) ∧ a) ∨ (0 ∧ h1(a)) =

(c ∧ c) ∨ (c ∧ a) ∨ (0 ∧ c) = c ∨ a ∨ 0 = c;

(2) h1(0 ∧ b) = h1(0) = c and (h1(0) ∧ h1(b)) ∨ (h1(0) ∧ b) ∨ (0 ∧ h1(b)) =

(c ∧ c) ∨ (c ∧ b) ∨ (0 ∧ c) = c ∨ b ∨ 0 = c;

(3) h1(0 ∧ c) = h1(0) = c and (h1(0) ∧ h1(c)) ∨ (h1(0) ∧ c) ∨ (0 ∧ h1(c)) =

(c ∧ c) ∨ (c ∧ c) ∨ (0 ∧ c) = c ∨ c ∨ 0 = c;

(4) h1(0 ∧ d) = h1(0) = c and (h1(0) ∧ h1(d)) ∨ (h1(0) ∧ d) ∨ (0 ∧ h1(d)) =

(c ∧ d) ∨ (c ∧ d) ∨ (0 ∧ d) = c ∨ c ∨ 0 = c;

(5) h1(0 ∧ 1) = h1(0) = c and (h1(0) ∧ h1(1)) ∨ (h1(0) ∧ 1) ∨ (0 ∧ h1(1)) =

(c ∧ 1) ∨ (c ∧ 1) ∨ (0 ∧ 1) = c ∨ c ∨ 0 = c;
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(6) h1(a ∧ b) = h1(0) = c and (h1(a) ∧ h1(b)) ∨ (h1(a) ∧ b) ∨ (a ∧ h1(b)) =

(c ∧ c) ∨ (c ∧ b) ∨ (a ∧ c) = c ∨ b ∨ a = c;

(7) h1(a ∧ c) = h1(a) = c and (h1(a) ∧ h1(c)) ∨ (h1(a) ∧ c) ∨ (a ∧ h1(c)) =

(c ∧ c) ∨ (c ∧ c) ∨ (a ∧ c) = c ∨ c ∨ a = c;

(8) h1(a ∧ d) = h1(a) = c and (h1(a) ∧ h1(d)) ∨ (h1(a) ∧ d) ∨ (a ∧ h1(d)) =

(c ∧ d) ∨ (c ∧ d) ∨ (a ∧ d) = c ∨ c ∨ a = c;

(9) h1(a ∧ 1) = h1(a) = c and (h1(a) ∧ h1(1)) ∨ (h1(a) ∧ 1) ∨ (a ∧ h1(1)) =

(c ∧ 1) ∨ (c ∧ 1) ∨ (a ∧ 1) = c ∨ c ∨ a = c;

(10) h1(b ∧ c) = h1(b) = c and (h1(b) ∧ h1(c)) ∨ (h1(b) ∧ c) ∨ (b ∧ h1(c)) =

(c ∧ c) ∨ (c ∧ c) ∨ (b ∧ c) = c ∨ c ∨ b = c;

(11) h1(b ∧ d) = h1(b) = c and (h1(b) ∧ h1(d)) ∨ (h1(b) ∧ d) ∨ (b ∧ h1(d)) =

(c ∧ d) ∨ (c ∧ d) ∨ (b ∧ d) = c ∨ c ∨ b = c;

(12) h1(b ∧ 1) = h1(b) = c and (h1(b) ∧ h1(1)) ∨ (h1(b) ∧ 1) ∨ (b ∧ h1(1)) =

(c ∧ 1) ∨ (c ∧ 1) ∨ (b ∧ 1) = c ∨ c ∨ b = c;

(13) h1(c ∧ d) = h1(c) = c and (h1(c) ∧ h1(d)) ∨ (h1(c) ∧ d) ∨ (c ∧ h1(d)) =

(c ∧ d) ∨ (c ∧ d) ∨ (c ∧ d) = c ∧ d = c;

(14) h1(c ∧ 1) = h1(c) = c and (h1(c) ∧ h1(1)) ∨ (h1(c) ∧ 1) ∨ (c ∧ h1(1)) =

(c ∧ 1) ∨ (c ∧ 1) ∨ (c ∧ 1) = c ∧ 1 = c;

(15) h1(d ∧ 1) = h1(d) = d and (h1(d) ∧ h1(1)) ∨ (h1(d) ∧ 1) ∨ (d ∧ h1(1)) =

(d ∧ 1) ∨ (d ∧ 1) ∨ (d ∧ 1) = d ∧ 1 = d;

(16) h1(x ∧ x) = h1(x) and (h1(x) ∧ h1(x)) ∨ (h1(x) ∧ x) ∨ (x ∧ h1(x)) =

h1(x) ∨ (h1(x) ∧ x) = h1(x), for any x ∈ L = {0, a, b, c, d, 1}.

(ii) the function h1 satisfies if x 6 y, then h1(x) 6 h1(y), for any x, y ∈ L =

{0, a, b, c, d, 1}. Thus h1 is isotone.

The isotone homoderivation h2 can be proved similarly.

In the following theorem, we provide a characterization of the isotone homoderivations

on a lattice in terms of the meet-homomorphisms.

Theorem 4.1. Let (L,6,∧,∨) be a lattice and h a homoderivation on L. Then d is

isotone if and only if h is a meet-homomorphism.
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Proof. On the one hand, the fact that h is a homoderivation on L guarantees that

hx ∧ hy 6 h(x ∧ y), for any x, y ∈ L. On the other hand, since h is isotone, it holds

that h(x ∧ y) 6 hx and h(x ∧ y) 6 hy, for any x, y ∈ L. Then h(x ∧ y) 6 hx ∧ hy,

for any x, y ∈ L. Thus, h(x ∧ y) = hx ∧ hy, for any x, y ∈ L. Consequently, h is a

meet-homomorphism on L. Conversely, we suppose that h is a meet-homomorphism

and let x, y ∈ L such that x 6 y. Then hx = h(x ∧ y) = hx ∧ hy. Thus, hx 6 hy.

Therefore, h is isotone. �

The following theorem gives a sufficient condition for a homoderivation on a lattice

to be isotone.

Theorem 4.2. Let (L,6,∧,∨) be a lattice and h a homoderivation on L. If x 6 hx

for any x ∈ L, then h is isotone.

Proof. Let x, y ∈ L such that x 6 y, then hx = h(x ∧ y). The fact that x 6 hx and

y 6 hy we obtain that x 6 hy, x 6 (hx ∧ hy) and (hx ∧ y) 6 (hx ∧ hy). Since d is a

homoderivation on L and x 6 y, it follows that

hx = h(x ∧ y) = (hx ∧ hy) ∨ (hx ∧ y) ∨ (x ∧ hy)

= (hx ∧ hy) ∨ (hx ∧ y) ∨ x

= (hx ∧ hy) ∨ x ∨ (hx ∧ y)

= (hx ∧ hy) ∨ (hx ∧ y)

= hx ∧ hy .

Hence, hx 6 hy. Thus, h is isotone. �

In the following, we give a counter-example to show that the sufficient condition in

Theorem 4.2 does not a necessary condition.

Example 4.2. Let (D(12), |, gcd, lcm) be the lattice of the positive divisors of 12

given by the Hasse diagram in Figure 4. Let h be the principal derivation on D(12)

defined as

h(x) = gcd(3, x), for any x ∈ D(12).
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Since any principal derivations on a lattice is isotone, Proposition 3.1 guarantees that

h is an isotone homoderivation on D(12). But, the fact that 4 ∤ h(4) guarantees that

the converse implication of Theorem 4.2 does not necessarily hold.

Figure 4. The Hasse diagram of the lattice (D(12), |, gcd, lcm).

5. Conclusion and future research

In this paper, we have introduced the notion of homoderivation on a lattice as a

combination of the two concepts of meet-homomorphisms and derivations. We have

investigated some characterizations and properties of homoderivations on a lattice.

We have established the relationship between derivations and homoderivations on

a lattice. Moreover, we have studied the isotone homoderivations on a lattice as

an interesting class of homoderivations. We have provided a characterization of the

isotone homoderivations on a lattice in terms of the meet-homomorphisms. Further,

we have given a sufficient condition for a homoderivation to be isotone.

Finally, we intend to extend this notion of homoderivation to other interesting alge-

braic structures.
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