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A NOTE ON GENERALIZED FRAME POTENTIAL

S. K. SHARMA (1) AND VIRENDER (2)

Abstract. The concept of the frame potential was defined by Benedetto and

Fickus [1] and it was showed that the finite unit norm tight frames can be

characterized as the minimizers of the the energy functional. The concept was

generalized by Carrizo and Heineken [5] and they introduced the concept of mixed

frame potential. In the present paper, we further generalize the concept introducing

the notion of generalized frame potential and observe that frame potential and

mixed frame potential are particular cases of generalized frame potential. We prove

some results concerning the generalized frame potential.

1. Introduction

Frames are main tools for use in signal processing, image processing, data compression

and sampling theory etc. Today even more uses are being found for the theory such

as optics, filter banks, signal detection as well as study of Besov spaces, Banach

space theory etc. Earlier, Fourier transform has been a major tool in analysis for

over a century. It has a serious lacking for signal analysis in which it hides in its

phases information concerning the moment of emission and duration of a signal. In

1946, Gabor [14] filled this gap and formulated a fundamental approach to signal

decomposition in terms of elementary signals.

On the basis of this development, in 1952, Duffin and Schaeffer[13] defined frames

for Hilbert spaces to study some deep problems in non-harmonic Fourier series. The
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idea of Duffin and Schaeffer did not generate much general interest outside of non-

harmonic Fourier series. But after the landmark paper of Daubechies, Grossmann

and Meyer [12], in 1986, the theory of frames began to be more widely studied.

Stability theorems for Hilbert spaces were studied in [6, 9, 10, 11]. Over the

last decade, various other generalizations of frames for Hilbert spaces have been

introduced and studied.

One of the key properties of frames is that they provide reconstruction for any

vector of the space with the coefficients which may not be unique. Frames in finite-

dimensional spaces are used in many applications. Frames in finite-dimensional

spaces avoid the approximation problems that come up while truncating infinite

frames. Finite tight frames are used frequently in information theory, sampling

theory, communication theory etc [2, 3, 4].

In finite dimensional spaces, the concept of frame potential has been introduced by

Benedetto and Fickus [1]. It turned out a very important tool regarding applications

of frames in finite-dimensional spaces. It measures the orthogonality of a system

of vectors. Recently, Carrizo and Heineken [5] introduced the concept of mixed

frame potential in finite-dimensional spaces which quantifies the bi-orthogonality,

in some sense. The notion of frame potential is closely associated with finite unit

norm tight frames. The finite norm tight frames are studied in [7, 8], where physical

interpretation of tight frames was given.

In the present paper, generalized frame potential is defined and studied. The frame

potential and the mixed frame potential are particular cases of generalized frame

potential. We prove the other results related to generalized frame potential.

Throughout the paper, K will denote R or C, H be an infinite dimensional Hilbert

space and Hd be a d-dimensional Hilbert space over K.

Definition 1.1. A sequence {fn}
∞
n=1 in a Hilbert space H is said to be a frame for

H if there exist constants A and B with 0 < A ≤ B < ∞ such that

A‖f‖2≤

∞
∑

n=1

|〈f, fn〉|
2≤ B‖f‖2, f ∈ H.(1.1)
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These positive constants A and B , respectively, are called lower and upper frame

bounds for the frame {fn}n∈N . The inequality (1.1) is called the frame inequality for

the frame {fn}n∈N . A frame {fn}n∈N in H is said to be

• tight if it is possible to choose A, B satisfying inequality (1.1) with A = B .

• Parseval if it is a tight frame with A = B = 1.

If {fn}
N
n=1 is a frame for Hd , then the bounded linear operator

T : KN → Hd, T{αn}
N
n=1 =

N
∑

n=1

αnfn, {αn}
N
n=1 ∈ K

N

is called the pre-frame operator or the synthesis operator. The adjoint operator is

given by

T ∗ : Hd → K
N , T ∗(f) = {〈f, fn〉}

N
n=1, f ∈ Hd

is called the analysis operator. By composing T and T ∗ , we obtain frame operator

S : Hd → Hd, S(f) = TT ∗(f) =

N
∑

n=1

〈f, fn〉fn, f ∈ H.

Benedetto and Fickus [1] introduced the notion of frame potential. They define frame

potential as

Definition 1.2. Let {fn}
N
n=1 be a frame for Hd . Then the frame potential of the

frame {fn}
N
n=1 is defined as

FP
(

{fn}
N
n=1

)

=
N
∑

m=1

N
∑

n=1

〈fm, fn〉〈fn, fm〉.

Generalizing the notion of frame potential, Carrizo and Heineken [5] defined the

mixed frame potential.

Definition 1.3. Let {fn}
N
n=1 and {gn}

N
n=1 be sequences in Hd . Then the mixed

frame potential of the {fn}
N
n=1 and {gn}

N
n=1 is defined as

MFP
(

{fn}
N
n=1, {gn}

N
n=1

)

=
N
∑

m=1

N
∑

n=1

〈fm, gn〉〈fn, gm〉.

In case fn = gn, for all n = 1, 2, · · ·N , MFP is FP .

2. Generalized Frame Potential

In this section, we further generalize the notion of frame potential and give the

following definition
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Definition 2.1. Let {fn}
N
n=1 be a frame for Hd and Φ be a linear operator on Hd .

Then the generalized frame potential of ({fn}
N
n=1) with respect to Φ in B(H) or the

generalized frame potential of the pair
(

{fn}
N
n=1 ⊂ Hd,Φ ∈ B(H)

)

is defined as

GFP ({fn},Φ) =

N
∑

m=1

N
∑

n=1

〈fm,Φ(fn)〉〈fn,Φ(fm)〉

and the alternating generalized frame potential of ({fn}
N
n=1) with respect to Φ in

B(H) is defined as

AGFP ({fn},Φ) =

N
∑

m=1

N
∑

n=1

〈Φ(fm), fn〉〈Φ(fn), fm〉.

In view of above definition one may observe that:

• if we take Φ = Id , then the generalized frame potential is the frame potential of

the sequence {fn}
N
n=1 .

• if we define an operator Φ on Hd such that

Φ(fi) = gi, i = 1, 2, · · ·N.

Then the generalized frame potential of
(

{fn}
N
n=1 ⊂ Hd,Φ ∈ B(H)

)

is the mixed

frame potential of
(

{fn}
N
n=1 ⊂ Hd, {gn}

N
n=1 ⊂ Hd

)

.

If {fn}
N
n=1 is the sequence of vectors in Hd with the analysis operator T ∗ and Φ be

a linear operator on Hd . Then the analysis operator T ∗
Φ of {Φ(fn)

N
n=1} is given by

T ∗
Φ = T ∗Φ∗.

In fact,

T ∗
Φ(f) = {f,Φ(fn)}

N
n=1

= {Φ∗(f), fn}
N
n=1 = T ∗(Φ∗(f)), f ∈ Hd.

Therefore

TT ∗
Φ(f) = T (T ∗(Φ∗(f)))

= T ({〈Φ∗f, fn〉}
N
n=1)

=

N
∑

n=1

〈f,Φ(fn)〉fn.
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Similarly

TΦT
∗(f) = Φ(T (T ∗(f))

= Φ

(

N
∑

n=1

〈f, fn〉fn

)

=

N
∑

n=1

〈f, fn〉Φ(fn).

Further, if Φ is injective (or surjective), then {Φ(fn)}
N
n=1 is also a frame with

the frame operator ΦSΦ∗ , where S is the frame operator for the frame {fn}
N
n=1 .

Furthermore, {Φ(fn)}
N
n=1 is a dual frame for the frame {fn}

N
n=1 .

In view of above discussion we have a following result:

Lemma 2.2. Let {fn}
N
n=1 be a frame for Hd and Φ be a linear operator on Hd .

Then

GFP ({fn}
N
n=1,Φ) = Tr((TTΦ

∗)2),

where T ∗ and T ∗
Φ are the analysis operator of {fn}

N
n=1 and {Φ(fn)}

N
n=1 .

Proof. Let {en}
d
n=1 be an orthogonal basis of Hd . Then

GFP ({fn},Φ) =
N
∑

m=1

N
∑

n=1

〈fm,Φ(fn)〉〈fn,Φ(fm)〉

=
N
∑

m=1

N
∑

n=1

〈

d
∑

s=1

〈fm, es〉es,Φ(fn)

〉

〈fn,Φ(fm)〉

=
N
∑

m=1

N
∑

n=1

d
∑

s=1

〈fm, es〉〈es,Φ(fn)〉〈fn,Φ(fm)〉

=
d
∑

s=1

〈

N
∑

m=1

〈es, fm〉Φ(fm),
N
∑

n=1

〈es,Φ(fn)〉fn

〉

=
d
∑

s=1

〈TT ∗
Φes, TΦT

∗es〉

=
d
∑

s=1

〈

(TT ∗
Φ)

2es, es
〉

= Tr
(

(TT ∗
Φ)

2
)

.
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If {λn}
d
n=1 denotes the eigenvalues of the operator TT ∗

Φ , together with there

multiplicities. Then

GFP ({fn}
N
n=1,Φ) = Tr

(

(TT ∗
Φ)

2
)

=
N
∑

n=1

λ2
n. �

Remark 2.3. In view of Lemma (2.2), we have

AGFP ({fn}
N
n=1,Φ) = Tr

(

(T ∗
ΦT )

2
)

=
N
∑

n=1

λ̄2
n.

Remark 2.4. If {fn}
N
n=1 be a frame for Hd and Φ be a linear operator on Hd such

that TT ∗
Φ = λI , where I is the identity operator and λ ∈ K then

GFP ({fn},Φ) = λ2d.

Now we discuss some properties of generalized frame potential in terms of a special

set S({αm}
N
m−1) defined as

S({αm}
N
m=1) =

{(

{fn}
N
n=1 ⊂ Hd,Φ ∈ L(Hd)

)

: 〈fn,Φ(fn)〉 = αn, n = 1, 2, · · ·N

}

.

Theorem 2.5. Let {fn}
N
n=1 be a frame for Hd and Φ be a linear operator on Hd

such that ({fn}
N
n=1,Φ) ∈ S({αn}

N
n=1) i.e., 〈fn,Φ(fn)〉 = αn, n = 1, 2, · · · , N . Then

following statements hold:

(i) If all the eigenvalues of TT ∗
Φ are real, then GFP ({fn}

N
n=1,Φ) and

N
∑

m=1

αm are

real. Further

GFP ({fn}
N
n=1,Φ) ≥

1

d

(

N
∑

m=1

αm

)2

.

(ii) If all the eigenvalues of TT ∗
Φ are imaginary, then GFP ({fn}

N
n=1,Φ) is real and

N
∑

m=1

αm is imaginary. Further

GFP ({fn}
N
n=1,Φ) ≤

1

d

(

N
∑

m=1

αm

)2

.

(iii) If TT ∗
Φ has only one eigenvalue, then

GFP ({fn}
N
n=1,Φ) =

1

d

(

N
∑

m=1

αm

)2

.
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Proof. Let {λn}
d
n=1 be the eigenvalues of TT ∗

Φ . Then by Lemma 2.2

GFP ({fn}
N
n=1,Φ) =

N
∑

n=1

λ2
n

=

N
∑

n=1

(

(Re(λn)
2 − Im(λn)

2
)

+ 2i

N
∑

n=1

Re(λn) Im(λn).

Let {en}
d
n=1 be an orthonormal basis for Hd . Then

N
∑

n=1

λn = Tr(TT ∗
Φ)

=

d
∑

n=1

〈TT ∗
Φen, en〉

=

d
∑

n=1

〈

N
∑

m=1

〈en,Φ(fm)〉fm, en

〉

=

d
∑

n=1

N
∑

m=1

〈en,Φ(fm)〉〈fm, en〉

=
N
∑

m=1

〈fm,Φ(fm)〉

=

N
∑

m=1

αm.

In order to obtain the possible extrema for real and imaginary parts of

GFP : S({αn}
N
n=1) → K, we study the critical points of the functions Re : Λ → R

and Im : Λ → R, where

Λ =

{

(λ1, · · · , λd) ∈ C
d(≃ R

2d) :
d
∑

n=1

Re(λn) = Re

(

d
∑

m=1

αm

)

and

d
∑

n=1

Im(λn) = Im

(

d
∑

m=1

αm

)}

such that

Re
(

(λ1, · · · , λd)
)

= Re
(

(Re(λ1), · · · , Re(λd), Im(λ1), · · · , Im(λd))
)

=

N
∑

n=1

(

(Re(λn)
2 − Im(λn)

2
)
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and

Im
(

(λ1, · · · , λd)
)

= Im
(

(Re(λ1), · · · , Re(λd), Im(λ1), · · · , Im(λd))
)

= 2

d
∑

n=1

Re(λn) Im(λn).

Using Lagrange’s multiplier method, if (λ1, · · · , λd) is a critical point of Re and Im

then

λ1 = λ2 = · · · = λd =
1

d

N
∑

m=1

αm.

Further,

• If Im(λ1, · · · , λd) = 0, then

min
Λ

Re = (λ1, · · · , λd) and Im(λ1, · · · , λd) = 0.

• If Re(λ1, · · · , λd) = 0, then

max
Λ

Re = (λ1, · · · , λd) and Im(λ1, · · · , λd) = 0.

• If Re(λ1, · · · , λd) 6= 0 and Im(λ1, · · · , λd) 6= 0, then (λ1, · · · , λd) is a saddle point

of both the functions Re and Im.

Therefore,

(i) if ({fn}
N
n=1,Φ) ∈ S({αn}

N
n=1) such that every eigenvalue of TT ∗

Φ is real then

GFP ({fn}
N
n=1,Φ) and

N
∑

m=1

αm are real. Further

GFP ({fn}
N
n=1,Φ) ≥

1

d

(

N
∑

m=1

αm

)2

.

(ii) if ({fn}
N
n=1,Φ) ∈ S({αn}

N
n=1) such that every eigenvalue of TT ∗

Φ is imaginary,

then GFP ({fn}
N
n=1,Φ) is real and

N
∑

m=1

αm is imaginary. Further

GFP ({fn}
N
n=1,Φ) ≤

1

d

(

N
∑

m=1

αm

)2

.

(iii) if TT ∗
Φ has only one eigenvalue, then

GFP ({fn}
N
n=1,Φ) =

1

d

(

N
∑

m=1

αm

)2

. �
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Remark 2.6. The bounds in Theorem 2.5(i) and Theorem 2.5(ii) may not be

accomplished, but are attained when TT ∗
Φ has only one eigenvalue which holds if

TT ∗
Φ =

(

1

d

N
∑

m=1

αm

)

I .

Theorem 2.7. Let {fn}
N
n=1 be a frame for Hd and Φ be a linear operator on Hd

such that ({fn}
N
n=1,Φ) ∈ S({αn}

N
n=1) and TT ∗

Φ = A.I , where A ∈ K. Then

A =
1

d

(

N
∑

m=1

αm

)

.

Proof. Let {en}
d
n=1 be an orthonormal basis of Hd . Since TT ∗

Φ = A.I , we have

1

d

N
∑

m=1

αm =
1

d

N
∑

m=1

〈fm,Φ(fm)〉

=
1

d

N
∑

m=1

〈

d
∑

j=1

〈fm, ej〉ej,Φ(fm)

〉

=
1

d

N
∑

m=1

d
∑

j=1

〈fm, ej〉〈ej,Φ(fm)〉

=
1

d

d
∑

j=1

〈

N
∑

m=1

〈ej,Φ(fm)〉fm, ej

〉

=
1

d

d
∑

j=1

〈TT ∗
Φ(ej), ej〉

= A. �

Definition 2.8. Let {fn}
N
n=1 ⊂ Hd , φ : Hd → Hd be a linear operator and c ∈ K.

Then {fn}
d
n=1 is said to φc− dual frame if

N
∑

m=1

〈f, φ(fm)〉 fm = cf, f ∈ span{fm}
N
m=1.

or

N
∑

m=1

〈f, fm〉φ(fm) = cf, f ∈ span{φ(fm)}
N
m=1.

Definition 2.9. Let {fn}
N
n=1 be a frame for Hd and Φ be a bounded linear operator

on Hd . Then the mth - generalized frame potential of the pair (f ∈ Hd,Φ ∈ B(H))
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denoted as GFPm(f,Φ) is defined as

GFPm(f,Φ) = 〈fm,Φ(fm)〉
2 +

∑

n=1

n6=m

〈fn,Φ(f)〉〈f,Φ(fn)〉+GFP ({fn}n 6=m,Φ).

In the next result, we will find certain conditions which are satisfied by generalized

frame potential

Theorem 2.10. Let {αm}
N
m=1 ⊆ K. If ({fn},Φ) be a local extrema or saddle

point of the real and imaginary point of GFP : S({αn}
N
n=1) → K then for each

m = 1, 2, · · · , N there exist c ∈ K such that

N
∑

n=1

〈fm,Φ(fn)〉fn = cfm

N
∑

n=1

n6=m

〈Φ(fm), fn〉Φ(fn) = cΦ(fm).

Proof. As ({fn},Φ) is a local extrema or a saddle point of the real or the imaginary

part of the generalized frame potential GFP restricted to S({αn}
N
n=1), we have

(fm,Φ) is a local extrema or a saddle point of the real or the imaginary part of

GFPm in S(αm) = {(f ∈ Hd,Φ ∈ L(Hd)) : 〈f,Φ(f)〉 = αm} , where

GFPm(f,Φ) = α2
m +

N
∑

n=1

n6=m

〈fn,Φ(f)〉〈f,Φ(fn)〉+
N
∑

n=1

n6=m

N
∑

r=1

r 6=m

〈fn,Φ(fr)〉〈Φ(fr), fn〉.

So, the corresponding constrained problem of several variables can be solved using

Lagrange multipliers. Therefore there exist c1, c2 ∈ R such that

(1) ∇Re(GFPm)(f,Φ)|(fm,Φ)= c1 ∇Re(〈f,Φ(f)〉)|(fm,Φ)+c2 ∇Im(〈f,Φ(f)〉)|(fm,Φ).

or there exist c3, c4 ∈ R such that

(2) ∇Im(GFPm)(f,Φ)|(fm,Φ)= c3 ∇Re(〈f,Φ(f)〉)|(fm,Φ)+c4 ∇Im(〈f,Φ(f)〉)|(fm,Φ).

Therefore, from (1), we have the following equations

(i) ∇Re(f)Re(GFPm)(f,Φ)|(fm,Φ)= c1 ∇Re(f)Re(〈f,Φ(f)〉)|(fm,Φ)+

c2 ∇Re(f)Im(〈f,Φ(f)〉)|(fm,Φ).

(ii) ∇Im(f)Re(GFPm)(f,Φ)|(fm,Φ)= c1 ∇Im(f)Re(〈f,Φ(f)〉)|(fm,Φ)+

c2 ∇Im(f)Im(〈f,Φ(f)〉)|(fm,Φ).
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(iii) ∇Re(Φ(f))Re(GFPm)(f,Φ)|(fm,Φ)= c1 ∇Re(Φ(f))Re(〈f,Φ(f)〉)|(fm,Φ)+

c2 ∇Re(Φ(f))Im(〈f,Φ(f)〉)|(fm,Φ).

(iv) ∇Im(Φ(f))Re(GFPm)(f,Φ)|(fm,Φ)= c1 ∇Im(Φ(f))Re(〈f,Φ(f)〉)|(fm,Φ)+

c2 ∇Im(Φ(f))Im(〈f,Φ(f)〉)|(fm,Φ).

Therefore, from (i) and (ii), we have

Re







N
∑

n=1

n6=m

〈φ(fm), fn〉Φ(fn)






= c1Re(Φ(fm))− c2Im(Φ(fm))

Im







N
∑

n=1

n6=m

〈φ(fm), fn〉Φ(fn)






= c1Im(Φ(fm)) + c2Re(Φ(fm)).

From (iii) and (iv), we have

Re







N
∑

n=1

n6=m

〈fm, φ(fn)〉fn






= c1Re(fm) + c2Im(fm)

Im







N
∑

n=1

n6=m

〈fm, φ(fn)〉fn






= c1Im(fm)− c2Re(fm).

This gives

N
∑

n=1

n6=m

〈φ(fm), fn〉Φ(fn) = c1Φ(fm) + ic2Φ(fm)

= (c1 + ic2)Φ(fm)

and

N
∑

n=1

n6=m

〈fm, φ(fn)〉fn = c1fm − ic2fm

= (c1 − ic2)fm.

So we obtain the desired result if we take c = c1 + ic2 . Similarly, from (2), we can

have

N
∑

n=1

n6=m

〈φ(fm), fn〉Φ(fn) = (c4 − ic3)Φ(fm)
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and

N
∑

n=1

n6=m

〈fm, φ(fn)〉fn = (c4 + ic3)fm.

Thus, in case if ({fm}
N
m=1,Φ) is a local extrema of the real and the imaginary part

of the restricted generalized frame potential, then c4 = c1 and c3 = c1. �

Theorem 2.11. Let {αm}
N
m=1 ⊆ K. If ({fn},Φ) be a local extrema or saddle point of

the real and imaginary point of generalized frame potential GFP : S({αn}
N
n=1) → K

then

(1) for each m = 1, 2, · · · , N , fm is the eigenvector of TT ∗
Φ and Φ(fm) is an

eigenvector of TφT
∗ , and the corresponding eigenvalues are conjugates.

(2) for {λj}
J
j=1 the sequence of distinct eigenvalues of TT ∗

Φ , there exists a

sequence of indexing sets {Ij}
J
j=1 = {1, 2, · · · , N}, such that {fm}m∈Ij is Φλj

generalized dual frame.

where T ∗ and T ∗
Φ are the analysis operator of {fn}

N
n=1 and {Φ(fn)}

N
n=1 .

Proof. (1) Since ({fn},Φ) be a local extrema or saddle point of the real and imaginary

point of GFP : S({αn}
N
n=1) → K then for each m = 1, 2, · · · , N there exist c ∈ K

such that

N
∑

n=1

〈fm,Φ(fn)〉 = cfm and

N
∑

n=1

n6=m

〈Φ(fm), fn〉 = cΦ(fm).

This gives

TT ∗
Φ(fm) = 〈fm,Φ(fm)〉fm +

N
∑

n=1

n6=m

〈fm,Φ(fn)〉fn

= (αm + c)fm.

Therefore, fm is an eigenvalue of TT ∗
Φ . Similarly

TΦT
∗(Φ(fm)) = 〈Φ(fm), fm〉Φ(fm) +

N
∑

n=1

n6=m

〈Φ(fm), fn〉Φ(fn)

= (αm + c)fm.

Thus, Φ(fm) is an eigenvector of TΦT
∗ and eigenvalues are conjugates.
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(2) Let {λj}
J
j=1 be the sequence of distinct eigenvalues of TT

∗
Φ . Since (TT

∗
Φ)

∗ = TΦT
∗ ,

therefore the eigenvalues of TΦT
∗ are the conjugates of the eigenvalues of TT ∗

Φ . Let

{Rj}
J
j=1 be the set of all right eigenvectors of TT ∗

Φ and {Lj}
J
j=1 be the set of all left

eigenvectors of TT ∗
Φ , i.e. for each j = 1, · · · , J we have:

Rj = {f ∈ Hd : TT
∗
Φf = λjf} = {f ∈ Hd : f

∗TΦT
∗ = λjf

∗}

Lj = {f ∈ Hd : f
∗TT ∗

Φ = λjf
∗} = {f ∈ Hd : TΦT

∗f = λjf}.

We know that if i 6= j then Ri ⊥ Lj . Let {Ij}
J
j=1 be the sequence of indexing sets

given by

Ij =
{

m ∈ {1, · · · , N} : TT ∗
Φfm = λjfm and TΦT

∗Φ(fm) = λjΦ(fm)
}

.

Take j ∈ {1, · · · , J} and f ∈ Rj . If m /∈ Ij then m ∈ Ii for some i 6= j , hence

Φ(fm) ∈ Li following that 〈f,Φ(fm)〉 = 0. This yields

∑

m∈Ij

〈f,Φ(fm)〉fm = TT ∗
Φf = λjf.

Analogously we obtain that for f ∈ Lj

∑

m∈Ij

〈f, fm〉Φ(fm) = TΦT
∗f = λjf.

Since span{fm}m∈Ij ⊆ Rj , and span{Φ(fm)}m∈Ij ⊆ Lj , we have

∑

m∈Ij

〈f,Φ(fm)〉fm = TT ∗
Φf = λjf, f ∈ span{fm}m∈Ij and

∑

m∈Ij

〈f, fm〉Φ(fm) = TΦT
∗f = λjf, f ∈ span{Φ(fm)}m∈Ij .

Therefore, {fm}m∈Ij is Φλj
-generalized dual frames. Moreover, if λj 6= 0 then

span{fm}m∈Ij = Rj and span{Φ(fm)}m∈Ij = Lj . �
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Birkhǎuser, Boston, 1998.

[11] O. Christensen, An introduction to Frames and Riesz Bases, Birkhäuser, 2003.
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