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SOLVING CONFORMABLE EVOLUTION EQUATIONS BY AN

EXTENDED NUMERICAL METHOD

ZOUBIR DAHMANI (1), AHMED ANBER (2) AND IQBAL JEBRIL (3)

Abstract. In this paper, an extension for the tanh-function method is proposed

by using an (α1, α2, ..., αn, β)− rational transformation method, n is an arbitrary

integer. As applications and to illustrate the validity of this method, the (1+3)-

dimensional conformable time and space factional Burgers equation, and two other

(1+3)-dimensional conformable fractional evolution examples, that are useful for

academic purposes, are solved. More kink and generalized traveling wave solutions

are obtained and some three-dimensional solution graphs are presented at the end

of this paper.

1. Introduction

In recent years, fractional differential equations (FDEs for short), in the sense of

Riemann-Louville, Caputo and Grunwald-Letnikov, have played a great role in mod-

eling several real life problems. In fact, FDEs have been used to explain different real

word phenomena in numerous fields that include diffusion and dynamics in biology,

fluid mechanics, fluid flow, signal processing, and other areas [7, 11, 12, 15, 17, 18,

19, 21, 25, 26, 33].

The phenomena of dissipation, dispersion, reaction and diffusion are very related to

the above real word phenomena, and nonlinear FDEs can be successfully used to

evaluate them. Wave shapes have an effect on sediment transport, wave skewness

and asymmetry have impacts on radar altimetry signals and ship responses to wave
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impacts. Traveling wave solutions are special classes of solutions for nonlinear FDEs.

Solitary waves are traveling waves with constant speeds and shapes achieving the ori-

gin at distant locations. The appearance of solitary waves in nature is very frequent

in solid state physics, chemical kinematics, optical fibers, electrical circuits, elastic

media, and many other areas. Consequently, it is important for us to be concerned

with searching for traveling wave solutions of nonlinear FDEs to understand the dif-

ferent facts.

Recently, several methods have been proposed to obtain some of the exact solu-

tions and traveling wave solutions to nonlinear FDEs such as, variation iteration

method, Adomian decomposition method, and homotopy analysis method, see [1,

5, 6, 16, 22, 23, 24, 27, 34, 35, 36]. However, a general method for solving the

FDEs cannot be found. In particular, the exact solutions of FDEs have been very

limited before the implementation of the fractional complex transformation by the

authors of the paper [10]. After that, many numerical methods have been proposed,

such as, the fractional sub-equation method, the (G′/G)−expansion method, the

exp-function method, the first integral method, the exponential rational function

method and the (G′/G − 1/G)−expansion method and other remarkable technics,

see [8, 9, 29, 30, 31, 32].

The present paper proposes an (n+ 1)−dimensional extended tanh function method

to investigate nonlinear conformable fractional differential equations (CFDEs) using

some important ideas from the excellent papers [2, 3, 4, 10, 14, 20, 28]. By using

Khalil conformable approach [13], that has some important characteristics and it

seems more appropriate to describe the behavior of viscoelastic models and other

real word phenomena [2, 12, 13], we present recent results on traveling wave solutions

for the (1+3)-dimensional conformable time and space fractional Burgers equation

and for two other (1+3)-dimensional conformable fractional evolution examples that

are useful for academic purposes. We derive new exact solutions that do not exist

in the literature. It is very important to note that the idea of the present paper has

already been presented with Jumarie’s approach, see the paper [10] for more details.



SOLVING CONFORMABLE EVOLUTION EQUATIONS 365

2. Conformable Fractional Derivatives

In this section, we introduce some definitions and properties related to the con-

formable fractional approach in the sense of Khalil. Fore more details on this impor-

tant approach, see [13].

Definition 2.1. Let f : (0,∞) → R. The conformable fractional derivative of order

0 < α ≤ 1 is defined by

(2.1) (T αf) (t) = ∂αf(t,x)
∂tα

= lim
ε→0

(

f(t+εt1−α)−f(t)

ε

)

, t > 0.

It is to note that when α = 1, the above formula is reduced to the standard derivative

or order one.

Definition 2.2. The conformable fractional integral of a function f : (0,∞) → R of

order 0 < α ≤ 1 is defined as

(2.2) (Iαf) (t) =
t
∫

0

τα−1f (τ) dτ.

We need also the following properties:

(2.3) IαT αf (t) = f (t)− f (0)

and

(2.4) (T αf) (t) = t1−α df(t)
dt

.

3. Outline of the Method

In this section, we present the main steps of our proposed extension for the tanh-

function method for the case of Khalil fractional theory.

We begin by considering the following nonlinear conformable fractional evolution

equation:

(3.1)

F
(

u, T β
t u, T

2β
t u, T αi

xi
u, T β

t (T
αi
xi
u), (T 2αi

xi
u), T β

t (T
2αi
xi

u), ..., i ∈ {= 1, ..., n}
)

= 0,

where u := u(x1, x2, ..., xn, t) in the unknown function, T αu are conformable partial

fractional derivatives of u of order α, 0 < α ≤ 1 and T 2αu := T α(T αu), while F is a
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polynomial of u and its derivatives.

Then, we introduce the transformation:

(3.2) U (ξ) := u (x1, x2, ...xn, t) ,

where,

ξ :=
k1x

α1

1

α1
+

k2x
α2

2

α2
+ ... +

knx
αn
n

αn

−
ctβ

β
.

So, Eq. (3.1) can be easily converted to the following nonlinear ODE:

(3.3) G
(

U, U
′

, U
′′

, U
′′′

, ...
)

= 0.

The main steps are the following:

Step 1: We look for the solutions of (3.3) in the form

(3.4) U (ξ) = S (Y ) =
m
∑

k=0

akY
k +

m
∑

k=1

bkY
−k

wherein,

(3.5) Y := tanh (µξ) , µ ∈ R,

where, µ is any arbitrary constant and ak, bk are constants to be determined later.

Step 2: We balance between the maximum order nonlinear term and the derivative of

the maximum order appearing in (3.3), then we determine m. (See for more details

[17, 28]).

Step 3: We substitute (3.4) together with (3.5) in (3.3) and using Maple, we find

µ, ak, bk.

Step 4: We insert the values that have been found in step 3 into Eq. (3.4) along with

Eq. (3.5), we construct closed-form traveling wave solutions of (3.3) from which we

find the solutions of (3.1).

4. Applications

In this section, we apply the above proposed method to search further comprehen-

sive on exact wave solutions for the (1+3)-dimensional conformable time and space

fractional Burgers equation and for two other (1+3)-dimensional conformable time

and space fractional evolution examples that are useful for academic purposes.
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Example 4.1. We begin the examples by considering the (1+3)-dimensional con-

formable Burgers equation:

(4.1)

∂βu(t,x1,x2,x3)
∂tβ

+ au∂α1u(t,x1,x2,x3)

∂x
α1

1

− ∂2α1u(t,x1,x2,x3)

∂x
2α1

1

−∂2α2u(t,x1,x2,x3)

∂x
2α2

2

− ∂2α3u(t,x1,x2,x3)

∂x
2α3

3

= 0, 0 < α1, α2, α3, β ≤ 1.

It is to note that Eq. (4.1) is the generalization of the (1+3)-dimensional classical

Burgers equation. Also, the case of α1 = α2 = α3 = 1, Eq. (4.1) is used to describe

the physical processes of propagation of weakly nonlinear acoustic waves through a

gas-filled pipe, see [26].

To search for traveling wave solutions for Eq. (4.1), we use the transformation:

(4.2) u (t, x1, x2, x3) = U (ξ) , ξ =
k1x

α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β
,

We have

(4.3)

∂βu(t,x1,x2,x3)
∂tβ

= t1−β ∂u(t,x1,x2,x3)
∂t

= t1−β ∂U(ξ)
∂t

= t1−βUξ
∂ξ

∂t
= t1−βUξ

(

−βc

β
tβ−1

)

= −cUξ.

Therefore,

(4.4)

∂αiu(t,x1,x2,x3)

∂x
αi
i

= x1−αi

i
∂u(t,x1,x2,x3)

∂xi
= x1−αi

i
∂U(ξ)
∂xi

= kiUξ,

which allows us to obtain

(4.5)

∂2αiu(t,x1,x2,x3)

∂x
2αi
i

= ∂αi

∂x
αi
i

(

∂αiu(t,x1,x2,x3)

∂x
αi
i

)

= k2
iUξξ.

Substituting (4.2), (4.3) and (4.5) in (4.1), we get

(4.6) − (k2
1 + k2

2 + k2
3)Uξξ − cUξ + ak1UUξ = 0.
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Consequently,

(4.7) − (k2
1 + k2

2 + k2
3)Uξ − cU + ak1

2
U2 = 0.

Hence, we get

(4.8) U (ξ) = a0 + a1Y + b1Y
−1.

Therefore, we have

(4.9) Uξ =
d(U)
dξ

= µ (1− Y 2) dU
dY

= µ (1− Y 2) (a1 − b1Y
−2) .

Substituting (4.9) in (4.7), we can write

(4.10)

− (k2
1 + k2

2 + k2
3)µ (1− Y 2) (a1 − b1Y

−2)

−c (a0 + a1Y + b1Y
−1) + ak1

2
(a0 + a1Y + b1Y

−1)
2
= 0.

It yields then that

(4.11)

aa2
0
k1

2
+ ak1a1b1 − ca0 − µ (a1 + b1) (k

2
1 + k2

2 + k2
3)

+ (−ca1 + ak1a1a0)Y +
(

a1µ (k2
1 + k2

2 + k2
3) +

ak1a
2

1

2

)

Y 2

+ (−cb1 + ak1b1a0) Y
−1 +

(

b1µ (k2
1 + k2

2 + k2
3) +

ak1b
2

1

2

)

Y −2 = 0.

This allows us to write

(4.12)

aa2
0
k1

2
+ ak1a1b1 − ca0 − µ (a1 + b1) (k

2
1 + k2

2 + k2
3) = 0

−ca1 + ak1a1a0 = 0

a1µ (k2
1 + k2

2 + k2
3) +

ak1a
2

1

2
= 0

−cb1 + ak1b1a0 = 0

b1µ (k2
1 + k2

2 + k2
3) +

ak1b
2

1

2
= 0
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The above system admits the following sets of algebraic solutions:

(4.13) a0 =
2c
ak1

, a1 = 0, b1 = 0, µ = A,

(4.14) a0 =
c

ak1
, a1 = 0, b1 =

c
ak1

, µ = − c
2B

,

(4.15) a0 =
c

ak1
, a1 = 0, b1 = − c

ak1
, µ = c

2B
,

(4.16) a0 =
c

ak1
, a1 =

c
ak1

, b1 = 0, µ = − c
2B

,

(4.17) a0 =
c

ak1
, a1 = − c

ak1
, b1 = 0, µ = c

2B
,

(4.18) a0 =
c

ak1
, a1 =

c
2ak1

, b1 =
c

2ak1
, µ = − c

4B
,

(4.19) a0 =
c

ak1
, a1 = − c

2ak1
, b1 = − c

2ak1
, µ = c

4B
,

where B = k2
1 + k2

2 + k2
3, A ∈ R.

Consequently, we have the following explicit solutions:

(4.20) u (t, x1, x2, x3) =
2c
ak1

,

(4.21)

u (t, x1, x2, x3) =
c

ak1
+ c

ak1

(

tanh −c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

−1

= c
ak1

+ c
ak1

coth −c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

(4.22)

u (t, x1, x2, x3) =
c

ak1
− c

ak1

(

tanh c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

−1

= c
ak1

− c
ak1

coth c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

(4.23) u (t, x1, x2, x3) =
c

ak1
+ c

ak1
tanh −c

2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

(4.24) u (t, x1, x2, x3) =
c

ak1
− c

ak1
tanh c

2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,
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(4.25)

u (t, x1, x2, x3) =
c

ak1
+ c

2ak1
tanh −c

4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

+ c
2ak1

coth −c
4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

and

(4.26)

u (t, x1, x2, x3) =
c

ak1
− c

2ak1
tanh c

4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

− c
2ak1

coth c
4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

.

Figure 1 presents the graph of solution (4.24) for Eq. (4.1) with a = −3,

k1 =
9
10
, k2 = 0, k3 = 0, c = 9

10
, α1 =

3
4
and β = 3

5
.

Figure 1. 3D plot of traveling wave solution (4.24) of (4.1)

Sketched within the intervals 0 ≤ x1 ≤ 100 and 0 ≤ t ≤ 100

The second example is useful for academic purposes. It is the following.
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Example 4.2. We consider the CFDE with its time and space derivatives:

(4.27)

∂βu(t,x1,x2,x3)
∂tβ

+ ∂α1

∂x
α1

1

(

∂α2u(t,x1,x2,x3)

∂x
α2

2

)

+ ∂α1

∂x
α1

1

(

∂α3u(t,x1,x2,x3)

∂x
α3

3

)

+ ∂α2

∂x
α2

2

(

∂α3u(t,x1,x2,x3)

∂x
α3

3

)

+ au∂α1u(t,x1,x2,x3)

∂x
α1

1

+bu∂α2u(t,x1,x2,x3)

∂x
α2

2

+ du∂α3u(t,x1,x2,x3)

∂x
α3

3

= 0, 0 < α1, α2, α3, β ≤ 1.

With the same arguments as before, we can consider:

(4.28) u (t, x1, x2, x3) = U (ξ) , ξ =
k1x

α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β
.

Hence, we obtain

(4.29)

∂βu(t,x1,x2,x3)
∂tβ

= −cUξ

∂2βu(t,x1,x2,x3)
∂t2β

= c2Uξ

∂αiu(t,x1,x2,x3)

∂x
αi
i

= kiUξ

∂αi

∂x
αi
i

(

∂αju(t,x1,x2,x3)
∂x

αj

)

= kjkiUξξ,

Substituting (4.29) and (4.28) into Eq. (4.27), we have

(4.30) (k1k2 + k3k1 + k2k3)Uξξ − cUξ + (ak1 + bk2 + dk3)UUξ = 0.

So, we obtain

(4.31) (k1k2 + k3k1 + k2k3)Uξ − cU + ak1+bk2+dk3
2

U2 = 0.

Consequently, we get

(4.32) U (ξ) = U (ξ) = a0 + a1Y + b1Y
−1.

Thanks to (3.5) and (3.6), we have

(4.33) Uξ =
d(U)
dξ

= µ (1− Y 2) dU
dY

= µ (1− Y 2) (a1 − b1Y
−2)



372 ZOUBIR DAHMANI, AHMED ANBER AND IQBAL JEBRIL

Substituting (4.33) in (4.31), we find

(4.34)

(k1k2 + k3k1 + k2k3)µ (a1 + b1 − a1Y
2 − b1Y

−2)− c (a0 + a1Y + b1Y
−1)

+ak1+bk2+dk3
2

(a20 + 2a1b1 + 2a0a1Y + a21Y
2 + 2a0b1Y

−1 + b21Y
−2) = 0.

Therefore, it yields that

(4.35)

a1Bµ+ b1Bµ+ ak1+bk2+dk3
2

(a20 + 2a1b1)− ca0

+ ((a+ b+ d) a0a1 − ca1) Y +
(

ak1+bk2+dk3
2

a21 − Ba1µ
)

Y 2

+ ((a+ b+ d) a0b1 − cb1)Y
−1 +

(

ak1+bk2+dk3
2

b21 − Bb1µ
)

Y −2 = 0.

Hence, we have

(4.36)

a1Bµ+ b1Bµ+ ak1+bk2+dk3
2

(a20 + 2a1b1)− ca0 = 0

(a+ b+ d) a0a1 − ca1 = 0

(

ak1+bk2+dk3
2

a21 − Ba1µ
)

= 0

(a+ b+ d) a0b1 − cb1 = 0

ak1+bk2+dk3
2

b21 −Bb1µ = 0

Solving the above algebraic system, we obtain the following solutions:

(4.37) a0 =
2c
D
, a1 = 0, b1 = 0, µ = A,

(4.38) a0 =
c
D
, a1 =

c
D
, b1 = 0, µ = c

2B
,

(4.39) a0 =
c
D
, a1 = − c

D
, b1 = 0, µ = − c

2B
,

(4.40) a0 =
c
D
, a1 = 0, b1 =

c
D
, µ = c

2B
,

(4.41) a0 =
c
D
, a1 = 0, b1 = − c

D
, µ = − c

2B
,
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(4.42) a0 =
c
D
, a1 =

c
2D

, b1 =
c
2D

, µ = c
4B

,

and

(4.43) a0 =
c
D
, a1 = − c

2D
, b1 = − c

2D
, µ = − c

4B
,

where B = k2
1 + k2

2 + k2
3, D = ak1 + bk2 + dk3 and A ∈ R.

Consequently, we obtain the following generalized solitary wave solutions:

(4.44) u (t, x1, x2, x3) =
2c
D
,

(4.45) u (t, x1, x2, x3) =
c
D
+ c

D
tanh c

2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

(4.46) u (t, x1, x2, x3) =
c
D
− c

D
tanh

(

− c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

,

(4.47)

u (t, x1, x2, x3) =
c
D
+ c

D

(

tanh c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

−1

= c
D
+ c

D
coth c

2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

,

(4.48)

u (t, x1, x2, x3) =
c
D
− c

D

(

tanh
(

− c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)))

−1

= c
D
− c

D
coth

(

− c
2B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

,

(4.49)

u (t, x1, x2, x3) =
c
D
+ c

2D
tanh c

4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

+ c
2D

coth c
4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

and

(4.50)

u (t, x1, x2, x3) =
c
D
− c

2D
tanh −c

4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

− c
2D

coth −c
4B

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

)

.

Figure 2 presents the graph of solution (4.49) for Eq. (4.27) with a = 3, b = −2,

d = −3, k1 = 3, k2 = 0, k3 = 0, c = 5, α1 =
3
4
and β = 7

10
.
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Figure 2. 3D plot of traveling wave solution (4.49) of (4.27)

Sketched within the intervals 0 ≤ x1 ≤ 50 and 0 ≤ t ≤ 50

Example 4.3. The 3rd example is the following nonlinear CFDE which is also useful

for academic purposes:

(4.51)

2 ∂β

∂tβ

(

∂α2u(t,x1,x2,x3)

∂x
α2

2

)

+ 3
(

∂α2u(t,x1,x2,x3)

∂x
α2

2

)(

∂2α1u(t,x1,x2,x3)

∂x
2α1

1

)

+3
(

∂α1u(t,x1,x2,x3)

∂x
α1

1

)(

∂α1

∂x
α1

1

∂α2u(t,x1,x2,x3)

∂x
α2

2

)

− 3
(

∂α1

∂x
α1

1

∂α3u(t,x1,x2,x3)

∂x
α3

3

)

+ ∂α2

∂x
α2

2

(

∂3α1u(t,x1,x2,x3)

∂x
3α1

1

)

= 0, 0 < α1, α2, α3, β ≤ 1.

We take

(4.52) u (t, x1, x2, x3) = U (ξ) , ξ =
k1x

α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β
,
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So, we have

(4.53)

∂βu(t,x1,x2,x3)
∂tβ

= −cUξ

∂β

∂tβ

(

∂αiu(t,x1,x2,x3)

∂x
αi
i

)

= −ckiUξξ

∂αiu(t,x1,x2,x3)

∂x
αi
i

= kiUξ

∂αi

∂x
αi
i

(

∂αju(t,x1,x2,x3)
∂x

αj

)

= kjkiUξξ.

Substituting (4.53) and (4.52) into (4.51), we can write

(4.54) 6k2
1k2UξUξξ − (3k1k3 + 2ck2)Uξξ + k3

1k2Uξξξξ = 0,

and consequently, we obtain

(4.55) k3
1k2Uξξξ − (3k1k3 + 2ck2)Uξ + 3k2

1k2 (Uξ)
2 = 0.

Taking

(4.56) U (ξ) = U (ξ) = a0 + a1Y + b1Y
−1,

then, by (3.5) and (3.6), we have

(4.57)

Uξ =
d(U)
dξ

= µ (1− Y 2) dU
dY

= a1µ+ b1µ− a1µY
2 − b1µY

−2.

Uξξ =
d2(U)
dξ2

= µ2 (1− Y 2)
(

−2Y dU
dY

+ (1− Y 2) d2U
dY 2

)

Uξξξ =
d3(U)
dξ3

= µ3 (1− Y 2)











2 (3Y 2 − 1) dU
dY

−6Y (1− Y 2) d2U
dξ2

+ (1− Y 2)
2 d3U
dY 3











= −2a1µ
3 + 2b1µ

3 + 8a1µ
3Y 2 + 4b1µ

3Y −2 − 6a1µ
3Y 4 − 6b1Y

−4µ3.
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Substituting (4.57) in (4.55), we obtain

(4.58)

k3
1k2 (−2a1µ

3 + 2b1µ
3 + 8a1µ

3Y 2 + 4b1µ
3Y −2 − 6a1µ

3Y 4 − 6b1Y
−4µ3)

+3k2
1k2 (a1 + b1)

2 µ2 + 6k2
1k2a1b1µ

2 + 3k2
1k2b

2
1µ

2Y −4 + 3k2
1k2a

2
1µ

2Y 4

−6k2
1k2 (a1 + b1) b1µ

2Y −2 − 6k2
1k2 (a1 + b1) a1µ

2Y 2

− (3k1k3 + 2ck2) (a1µ+ b1µ− b1µY
−2 − a1µY

2) = 0.

Therefore, it yields that

(4.59)

−2k3
1k2a1µ

3 + 2k3
1k2b1µ

3 + 3k2
1k2 (a1 + b1)

2 µ2

+6k2
1k2a1b1µ

2 − (3k1k3 + 2ck2) (a1 + b1)µ

+ (8k3
1k2a1µ

3 − 6k2
1k2a1 (a1 + b1)µ

2 + a1 (3k1k3 + 2ck2)µ)Y
2

+ (4k3
1k2b1µ

3 − 6k2
1k2 (a1 + b1) b1µ

2 + (3k1k3 + 2ck2) b1µ)Y
−2

+ (3k2
1k2a

2
1µ

2 − 6k3
1k2a1µ

3)Y 4 + (3k2
1k2b

2
1µ

2 − 6b1k
3
1k2µ

3)Y −4 = 0.

So, we can write

(4.60)

−2k3
1k2a1µ

3 + 2k3
1k2b1µ

3 + 3k2
1k2 (a1 + b1)

2 µ2

+6k2
1k2a1b1µ

2 − (3k1k3 + 2ck2) (a1 + b1)µ = 0

8k3
1k2a1µ

3 − 6k2
1k2a1 (a1 + b1)µ

2 + a1 (3k1k3 + 2ck2)µ = 0

4k3
1k2b1µ

3 − 6k2
1k2 (a1 + b1) b1µ

2 + (3k1k3 + 2ck2) b1µ = 0

3k2
1k2a1µ

2 (a1 − 2k1µ) = 0

3k2
1k2b1µ

2 (b1 − 2k1µ) = 0.
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Based on this system, we get:

(4.61) a0 = D, a1 = 0, b1 = 0, µ = E,

(4.62) a0 = D, a1 = 0, b1 =
√

Bk1
2A

, µ = 1
4

√

2B
Ak1

,

(4.63) a0 = D, a1 =
√

Bk1
A

, b1 = 0, µ = 1
2

√

B
Ak1

,

where A = k2
1k2, B = 3k1k3 + 2ck2 and D,E ∈ R.

Therefore, we have the following solutions:

(4.64) u (t, x1, x2, x3) = D

(4.65) u (t, x1, x2, x3) = D +
√

Bk1
2A

coth
(

1
4

√

2B
Ak1

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

.

(4.66) u (t, x1, x2, x3) = D +
√

Bk1
A

tanh
(

1
2

√

B
Ak1

(

k1x
α1

1

α1

+
k2x

α2

2

α2

+
k3x

α3

3

α3

− ctβ

β

))

.

Conclusion

We have presented an (n+ 1)−dimensional extended tanh function method for solv-

ing the (1+3)-dimensional conformable time and space fractional Burgers equations.

Using the same method, two other (1+3)-dimensional conformable time-and-space-

fractional evolution equations, that are useful for academic purposes, have also been

solved. The work on the proposed examples has allowed us to derive many kink and

traveling wave solutions. At the end of the paper, we have plotted the dynamics of

some traveling wave solutions in terms of time and 1-space coordinates to complete

the study and to confirm the power of this method to handle many other nonlinear

conformable fractional evolution equations in the sense of R. Khalil of various forms.
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