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MAXIMAL IDEALS OF TRANSITIVE BE-ALGEBRAS

M. BALA PRABHAKAR (1), S. KALESHA VALI (2) AND M. SAMBASIVA RAO (3)

Abstract. The notion of maximal ideals is introduced in transitive BE-algebras.

Some equivalent conditions are derived for a proper ideal of BE-algebra to become

a maximal ideal. The concept of semi-simple BE-algebras is introduced and its

properties are studied in terms of maximal ideals of BE-algebras.

1. Introduction

The concept of BE-algebras was introduced and extensively studied in [8]. The

class of BE-algebras was introduced as a generalization of the class of BCK-algebras

of K. Iseki and S. Tanaka [6]. Some properties of filters of BE-algebras were stud-

ied by S.S. Ahn and Y.H. Kim in [1] and by B.L. Meng in [9]. The notion of dual

ideals in BCK-algebras was introduced by E.Y. Deeba [4] in 1979. Later 2000, P.

Sun [12] investigated the homomorphism theorems via dual ideals in bounded BCK-

algebras. In [10], J. Meng introduced the notion of BCK-filters in BCK-algebras

and presented a description of the BCK-filter generated by a set. In the paper[10],

he discussed prime decompositions and irreducible decompositions. In [7], Y.B. Jun,

S.M. Hong, and J. Meng, considered the fuzzification of the concept of BCK-filters,

and investigate their properties.

In this work, the notion of maximal ideals is introduced in transitive BE-algebras.

A necessary and sufficient condition is derived for a proper ideal of BE-algebra to

become a maximal ideal. The concept of semi-simple BE-algebras is introduced and

its properties are studied in terms of maximal ideals of BE-algebras.
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2. Preliminaries

In this section, we present certain definitions and results which are taken mostly

from the papers [1], [2], [3], [8], [9] and [11] for the ready reference of the reader.

Definition 2.1. [8] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra, if it

satisfies the following properties:

(1) x ∗ x = 1,

(2) x ∗ 1 = 1,

(3) 1 ∗ x = x,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X .

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all

x, y, z ∈ X . A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all

x, y, z ∈ X . Every self-distributive BE-algebra is transitive. A BE-algebra X is

called commutative if (x∗ y) ∗ y = (y ∗x) ∗x for all x, y ∈ X . We introduce a relation

≤ on a BE-algebra X by x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X . Clearly, ≤ is

reflexive. If X is commutative, then the relation ≤ is both anti-symmetric, transitive

and so it is a partial order on X .

Theorem 2.1. [9] Let X be a transitive BE-algebra and x, y, z ∈ X . Then

(1) 1 ≤ x implies x = 1,

(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 2.2. [8] A non-empty subset F of a BE-algebra X is called a filter of X

if, for all x, y ∈ X , it satisfies the following properties:

(1) 1 ∈ F ,

(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

[1]For any a ∈ X, 〈a〉 = {x ∈ X | an ∗ x = 1 for some n ∈ N} is called the principal

filter generated a. If X is self-distributive, then 〈a〉 = {x ∈ X | a ∗ x = 1}. For

a commutative BE-algebra, define x ∨ y = (y ∗ x) ∗ x for any x, y ∈ X . Then
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x ∨ y = y ∨ x and the suprimum of x and y is x ∨ y for all x, y ∈ X . Hence (X,∨)

become a semilattice which is called a BE-semilattice.

A BE-algebra X is called bounded [3], if there exists an element 0 satisfying 0 ≤ x

(or 0 ∗ x = 1) for all x ∈ X . Define an unary operation N on a bounded BE-algebra

X by xN = x ∗ 0 for all x ∈ X .

Theorem 2.2. [3] Let X be a transitive BE-algebra and x, y, z ∈ X. Then

(1) 1N = 0 and 0N = 1,

(2) x ≤ xNN ,

(3) x ∗ yN = y ∗ xN .

An element x of a bounded BE-algebra X is called dense [11] if xN = 0. We denote

the set of all dense elements of a BE-algebra X by D(X). A BE-algebra X is called

a dense BE-algebra if every non-zero element of X is dense (that is xN = 0 for all

0 6= x ∈ X). Let X and Y be two bounded BE-algebras, then a homomorphism

f : X → Y is called bounded[2], if f(0) = 0. If f is a bounded homomorphism,

then it is easily observed that f(xN) = f(x)N for all x ∈ X . For any bounded

homomorphism f : X → Y , define the dual kernel of the homomorphism f as

Dker(f) = {x ∈ X | f(x) = 0}. It is easy to check that Dker(f) = {0} whenever f

is an injective homomorphism.

3. Maximal ideals

In this section, some properties of ideals of a transitive BE-algebras are studied and

the notion of maximal ideals is introduced in transitive BE-algebras. Some properties

of maximal ideals are studied. The notion of semi-simple BE-algebra is introduced

and characterized in terms of maximal ideals.

Definition 3.1. A non-empty subset I of a BE-algebra X is called an ideal of X if

it satisfies the following conditions for all x, y ∈ X :

(I1) 0 ∈ I,

(I2) x ∈ I and (xN ∗ yN)N ∈ I imply that y ∈ I.
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Obviously the single-ton set {0} is an ideal of a BE-algebra X . For, suppose x ∈ {0}

and (xN ∗ yN)N ∈ {0} for x, y ∈ X . Then x = 0 and yNN = (0N ∗ yN)N ∈ {0}.

Hence y ≤ yNN = 0 ∈ {0}. Thus {0} is an ideal of X . In the following example, we

observe non-trivial ideals of a BE-algebra.

Example 3.1. Let X = {1, a, b, c, d, 0}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 a c c d

b 1 1 1 c c c

c 1 a b 1 a b

d 1 1 a 1 1 a

0 1 1 1 1 1 1

Clearly, (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that the set

I = {0, c, d} is an ideal of X. However, the set J = {0, a, b, d} is not an ideal of X,

because a ∈ J and (aN ∗ cN)N = (d ∗ b)N = aN = d ∈ J but c /∈ J .

Lemma 3.1. Let X be a transitive BE-algebra X. For any x, y, z ∈ X, we have:

(1) xNNN ≤ xN ,

(2) x ∗ y ≤ yN ∗ xN ,

(3) x ∗ yN ≤ xNN ∗ yN ,

(4) (x ∗ yNN)NN ≤ x ∗ yNN ,

(5) (xN ∗ yN)NN ≤ xN ∗ yN ,

(6) x ≤ y implies yN ≤ xN ,

(7) x ≤ y implies y ∗ zN ≤ x ∗ zN .

Proof. (1). Let x ∈ X . Then 1 = (x ∗ 0) ∗ (x ∗ 0) = x ∗ ((x ∗ 0) ∗ 0) = x ∗ xNN ≤

x ∗ xNNNN = xNNN ∗ xN . Hence xNNN ∗ xN = 1, which gives xNNN ≤ xN .

(2). Let x, y ∈ X . Since X is transitive, then yN = y ∗ 0 ≤ (x ∗ y) ∗ (x ∗ 0) =

(x ∗ y) ∗ xN . Hence 1 = yN ∗ yN ≤ yN ∗ ((x ∗ y) ∗ xN) = (x ∗ y) ∗ (yN ∗ xN). Thus

(x ∗ y) ∗ (yN ∗ xN) = 1. Therefore, x ∗ y ≤ yN ∗ xN .

(3). Let x, y ∈ X . Then x ∗ yN = y ∗ xN ≤ y ∗ xNNN = xNN ∗ yN .
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(4). Let x, y ∈ X . Clearly, (x ∗ yNN)N ≤ (x ∗ yNN)NNN . Since X is transitive,

then yN ∗ (x ∗ yNN)N ≤ yN ∗ (x ∗ yNN)NNN and so x ∗ (yN ∗ (x ∗ yNN)N) ≤

x ∗ (yN ∗ (x ∗ yNN)NNN). Hence

1 = (x ∗ yNN) ∗ (x ∗ yNN)

= x ∗ ((x ∗ yNN) ∗ yNN)

= x ∗ (yN ∗ (x ∗ yNN)N)

≤ x ∗ (yN ∗ (x ∗ yNN)NNN)

= x ∗ ((x ∗ yNN)NN ∗ yNN)

= (x ∗ yNN)NN ∗ (x ∗ yNN).

Thus (x ∗ yNN)NN ∗ (x ∗ yNN) = 1. Therefore, (x ∗ yNN)NN ≤ (x ∗ yNN).

(5). From (4), it can be easily verified.

(6). Let x, y ∈ X be such that x ≤ y. Then by (2), 1 = x ∗ y ≤ yN ∗ xN . Hence

yN ∗ xN = 1. Therefore, yN ≤ xN .

(7). Let x, y ∈ X be such that x ≤ y. Then by (6), yN ≤ xN . Since X is transitive,

then z ∗ yN ≤ z ∗ xN . Therefore, y ∗ zN ≤ x ∗ zN . �

Proposition 3.1. Let I be an ideal of a transitive BE-algebra X. Then we have:

(1) For any x, y ∈ X, x ∈ I and y ≤ x imply y ∈ I,

(2) For any x, y ∈ X, xN = yN, x ∈ I imply y ∈ I,

(3) For any x ∈ X, x ∈ I if and only if xNN ∈ I.

Proof. (1). Let x, y ∈ X . Suppose x ∈ I and y ≤ x. Then xN ≤ yN , which implies

xN ∗ yN = 1. Hence (xN ∗ yN)N = 0 ∈ I. Since x ∈ I, then y ∈ I.

(2). Let x, y ∈ X . Assume that xN = yN . Suppose x ∈ I. Then (xN ∗ yN)N =

1N = 0 ∈ I. Since I is an ideal of X , then y ∈ I.

(3). Let x ∈ X . Suppose x ∈ I. Then (xN ∗ xNNN)N = (xNN ∗ xNN)N = 1N =

0 ∈ I. Since x ∈ I, it yields xNN ∈ I. Conversely, let xNN ∈ I for any x ∈ X .

Since x ≤ xNN , by property (1) we get that x ∈ I. �

We denote by I(X) the set of all ideals of a BE-algebra X and F(X) the set of all

filters of X . Let A be a non-empty subset of X , then the set
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[A] =
⋂
{I ∈ I(X) | A ⊆ I}

is called the ideal generated by A, denoted [A]. In the following, we characterize the

elements of a principal ideal generated by a set.

Theorem 3.1. Let X be a transitive BE-algebra and ∅ 6= A ⊆ X. Then

[A] = {x ∈ X | a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · · )) = 1 for some a1, a2, . . . , an ∈

A and n ∈ N}.

Proof. It is enough to show that [A] is the smallest ideal of X containing the set

A. Clearly, 0 ∈ [A]. Let x ∈ [A] and (xN ∗ yN)N ∈ [A]. Then there exist

a1, a2, . . . , an, b1, b2, . . . , bm ∈ A such that a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · · )) = 1

and b1N ∗ (b2N ∗ (· · · (bmN ∗ (xN ∗ yN)NN) · · · )) = 1. Hence

1 = bmN ∗ (· · · ∗ (b1N ∗ (xN ∗ yN)NN) · · · )

≤ bmN ∗ (· · · ∗ (b1N ∗ (xN ∗ yN)) · · · )

= bmN ∗ (· · · ∗ (xN ∗ (b1N ∗ yN)) · · · )

· · ·

· · ·

= xN ∗ (bmN ∗ (· · · ∗ (b1N ∗ yN)) · · · ).

Hence xN ≤ bmN ∗ (· · · ∗ (b1N ∗yN) · · · ). Since X is transitive, then 1 = anN ∗ (· · · ∗

(a1N ∗ xN) · · · ) ≤ anN ∗ (· · · ∗ (a1N ∗ (bmN ∗ (· · · ∗ (b1N ∗ yN) · · · ))) · · · ). Hence

anN ∗ (· · · ∗ (a1N ∗ (bmN ∗ (· · · ∗ (b1N ∗ yN) · · · ))) · · · ) = 1

where a1, a2, . . . , an, b1, b2, . . . , bm ∈ A. From the structure of [A], it yields that

y ∈ [A]. Therefore, [A] is an ideal of X . For any x ∈ A, we get xN ∗ (· · · ∗ (xN ∗

xN) · · · ) = 1. Hence x ∈ [A]. Therefore, A ⊆ [A].

Let I be an ideal of X containing A. Let x ∈ [A]. Then there exists a1, a2, . . . , an ∈

A ⊆ I such that anN ∗ (· · · ∗ (a1N ∗ xN) · · · ) = 1. Hence (anN ∗ (· · · ∗ (a1N ∗

xN) · · · )NN)N ≤ (anN ∗ (· · · ∗ (a1N ∗ xN) · · · ))N = 0 ∈ I. Thus by Proposition

3.1(1), we get (anN ∗ (· · ·∗ (a1N ∗xN) · · · )NN)N ∈ I. Since an ∈ I and I is an ideal,

then (an−1N ∗ (· · · ∗ (a1N ∗ xN) · · · ))N ∈ I. We continue in this manner, we finally

get x ∈ I. Hence [A] ⊆ I. Therefore, [A] is the smallest ideal containing A. �
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For A = {a}, we then denote [{a}], briefly by [a]. We call this ideal by principal ideal

generated by a and is represented by [a] = {x ∈ X | (aN)n∗xN = 1 for some n ∈ N }.

The following is a direct consequence of the above theorem:

Corollary 3.1. Let X be a transitive BE-algebra. For any a, b ∈ X, and A,B ⊆ X,

we have

(1) [0] = {0},

(2) [X ] = X and [1] = X,

(3) A ⊆ B implies [A] ⊆ [B],

(4) a ≤ b implies [a] ⊆ [b],

(5) if A is an ideal, then [A] = A,

(6) if A is an ideal and a ∈ A, then [a] ⊆ A.

Proof. (1). Let x ∈ [0]. Then (0N)n ∗ xN = 1 for some n ∈ N. Hence xN = 1. Thus

x ≤ xNN = 1N = 0. Therefore, x = 0, which means [0] = {0}.

(2). For all x ∈ X , we get 1N ∗ xN = 1 = 0 ∗ xN = 1. Hence [1] = X .

(3). Suppose A ⊆ B and let x ∈ [A] then a1N ∗ (a2N ∗ (· · · (anN ∗ xN) · · · )) =

1 for some a1, a2, . . . , an ∈ A and n ∈ N. Since A ⊆ B implies a1N∗(a2N∗(· · · (anN∗

xN) · · · )) = 1 for some a1, a2, . . . , an ∈ B and n ∈ N, we get x ∈ [B] and hence

[A] ⊆ [B]

(4). Suppose a ≤ b. By Lemma 3.1(6), we get bN ≤ aN . Again by Lemma 3.1(7), we

get aN ∗xN ≤ bN ∗xN for any x ∈ X . Similarly, we can get (aN)n∗xN ≤ (bN)n∗xN

for n ∈ N. Let x ∈ [a] then (aN)n ∗ xN = 1. Thus 1 = (aN)n ∗ xN ≤ (bN)n ∗ xN .

Hence (bN)n ∗ xN = 1, which gives x ∈ [b]. Therefore, [a] ⊆ [b].

(5). From the construction of [A], it is obvious.

(6). Let A be an ideal and a ∈ A. Suppose x ∈ [a]. Then there exists n ∈ N such that

(aN)n ∗ xN = 1. Thus 1 = aN ∗ ((aN)n−1 ∗ xN) ≤ aN ∗ ((aN)n−1 ∗ xN)NN . Hence

aN ∗ ((aN)n−1 ∗ xN)NN = 1, which gives (aN ∗ ((aN)n−1 ∗ xN)NN)N = 0 ∈ A.

Since a ∈ A and A is an ideal, then ((aN)n−1 ∗ xN)N ∈ A. Now,

(aN ∗ ((aN)n−2 ∗ xN)NN)N ≤ (aN ∗ ((aN)n−2 ∗ xN))N

= ((aN)n−1 ∗ xN)N ∈ A.
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Which yields (aN ∗((aN)n−2 ∗xN)NN)N ∈ A. Since a ∈ A, then (aN)n−2 ∗xN)N ∈

A. We continue in this manner, we finally get x ∈ A. Therefore, [a] ⊆ A. �

Corollary 3.2. Let X be a transitive BE-algebra and a ∈ X. For any A ⊆ X, the

set [A ∪ {a}] is the smallest ideal of X that contains both A and a.

Corollary 3.3. If X is self-distributive and a ∈ X. Then

[a] = {x ∈ X | aN ∗ xN = 1}.

Proposition 3.2. Let X be a transitive BE-algebra and I is an ideal of X. For any

a ∈ X,

[I ∪ {a}] = {x ∈ X | ((aN)n ∗ xN)N ∈ I for some n ∈ N}.

Proof. Let us consider, B = {x ∈ X | ((aN)n ∗ xN)N ∈ I for some n ∈ N}. It is

enough to show that B is the smallest ideal of X containing both I and a. Clearly,

0 ∈ B. Let x, y ∈ X be such that x ∈ B and (xN ∗ yN)N ∈ B. Then there exists

m,n ∈ N such that ((aN)n ∗ xN)N ∈ I and ((aN)m ∗ (xN ∗ yN)NN)N ∈ I. By

Lemma 3.1(5), we have

(aN)m ∗ (xN ∗ yN)NN ≤ (aN)m ∗ (xN ∗ yN) = xN ∗ ((aN)m ∗ yN).

By Lemma 3.1(6), we get (xN ∗ ((aN)m ∗ yN))N ≤ ((aN)m ∗ (xN ∗ yN)NN)N ∈ I.

By applying the transitivity of X and Lemma 3.1(2), we get

xN ∗ ((aN)m ∗ yN) ≤ ((aN)n ∗ xN) ∗ ((aN)n ∗ ((aN)m ∗ yN))

≤ ((aN)n ∗ xN)NN ∗ ((aN)n+m ∗ yN)NN.

Hence (((aN)n ∗ xN)NN ∗ ((aN)n+m ∗ yN)NN)N ≤ (xN ∗ ((aN)m ∗ yN))N ∈ I.

Since ((aN)n ∗xN)N ∈ I and I is an ideal, then ((aN)n+m ∗yN)N ∈ I. Thus y ∈ B.

Therefore, B is an ideal of X . Let x ∈ I. Clearly, aN ∗ xN ≤ (aN ∗ xN)NN . Then

by Lemma 3.1(6),

(xN ∗ (aN ∗ xN)NN)N ≤ (xN ∗ (aN ∗ xN))N

= (aN ∗ (xN ∗ xN))N

= (aN ∗ 1)N

= 0.
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Hence (xN ∗ (aN ∗ xN)NN)N = 0 ∈ I. Since x ∈ I and I is an ideal, then

(aN ∗ xN)N ∈ I. Thus x ∈ B. Since (aN ∗ aN)N = 0 ∈ I, then a ∈ B. Therefore,

B is an ideal of X containing both I and a.

Suppose K is an ideal of X such that I ⊆ K and a ∈ K. Let x ∈ B. Then

((aN)n ∗ xN)N ∈ I ⊆ K for some n ∈ N. Then

(aN)n ∗ xN = aN ∗ ((aN)n−1 ∗ xN) ≤ aN ∗ ((aN)n−1 ∗ xN)NN .

Hence (aN ∗ ((aN)n−1 ∗ xN)NN)N ≤ ((aN)n ∗ xN)N ∈ K. Since a ∈ K, then

((aN)n−1 ∗ xN)N ∈ K. We continue in this manner, finally we get x ∈ K. Hence

B ⊆ K. Thus B is the smallest ideal of X containing both I and a. �

Corollary 3.4. Let X be a self-distributive BE-algebra and I is an ideal of X. Then

for any a ∈ X, [I ∪ {a}] = {x ∈ X | (aN ∗ xN)N ∈ I}.

Definition 3.2. An ideal I of a BE-algebra X is said to be proper if I 6= X .

Definition 3.3. A proper ideal M of a BE-algebra X is said to be maximal, if M is

not properly contained in any other proper ideal of X (that is M ⊆ I ⊆ X implies

M = I or I = X for any ideal I of X).

Example 3.2. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 1 1 d d

b 1 c 1 c d c

c 1 b b 1 d b

d 1 a b c 1 a

0 1 1 1 1 1 1

Clearly, (X, ∗, 0, 1) is a bounded BE-algebra. It is easy to check that I1 = {0},

I2 = {0, a}, I3 = {0, b}, I4 = {0, c}, I5 = {0, a, b} and I6 = {0, a, c} are ideals of X

in which I2, I3, I4, I5 and I6 are proper ideals. Also here we can easily observe that I5

and I6 are only maximal ideals of X.
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Theorem 3.2. A proper ideal M of a transitive BE-algebra X is maximal if and

only if [M ∪ {x}] = X for any x ∈ X −M .

Proof. Let M be a proper ideal of X . Assume that M is maximal. Let x ∈ X −M .

Suppose [M ∪ {x}] 6= X . Choose a ∈ X such that a /∈ [M ∪ {x}]. Hence M ⊆

[M ∪ {x}] ⊂ X . Since M is maximal, then M = [M ∪ {x}]. Hence x ∈ M , which is

a contradiction. Therefore, [M ∪ {x}] = X .

Conversely, assume the condition. Suppose there exists an ideal I of X such that

M ⊆ I ⊆ X . Let M 6= I. Then M ⊂ I. Choose x ∈ I such that x /∈ M . By the

assumed condition, we get [M ∪ {x}] = X . If a ∈ X , then a ∈ [M ∪ {x}]. Hence

((xN)n ∗ aN)N ∈ M ⊆ I for some n ∈ N. Then

(xN)n ∗ aN = xN ∗ ((xN)n−1 ∗ aN) ≤ xN ∗ ((xN)n−1 ∗ aN)NN .

By Lemma 3.1(6) and Proposition 3.1(1), we get (xN ∗ ((xN)n−1 ∗ aN)NN)N ≤

((xN)n ∗ aN)N ∈ I. Since x ∈ I, implies ((xN)n−1 ∗ aN)N ∈ I. We continue in

this manner, finally we get a ∈ I. Hence I = X . Therefore, M is a maximal ideal of

X . �

Example 3.3. Consider the BE-algebra, X = {0, a, b, c, d, 1} given in Example 3.2.

Here, the set I5 = {0, a, b} is a maximal ideal of X. Take, c ∈ X then clearly

[I5 ∪ {c}] = X for c ∈ X − I5. Similarly, [I5 ∪ {d}] = X for d ∈ X − I5.

Theorem 3.3. Let X be a BE-algebra and I is an ideal of X. Then

(1) I is proper if and only if 1 /∈ I.

(2) each proper ideal is contained in a maximal ideal.

Proof. (1) Assume that I is proper. Then I 6= X . Suppose 1 ∈ I. For x ∈ X , we

have (1N ∗ xN)N = 1N = 0 ∈ I. Since 1 ∈ I and I is an ideal, then x ∈ I. Hence

X ⊆ I. Thus I = X , which is a contradiction. The converse is clear.

(2) By the Zorn’s lemma, it follows immediately. �

Theorem 3.4. Every BE-algebra contains at least one maximal ideal.

Proof. Since {0} is a proper ideal of X , it is clear by above Theorem 3.3. �
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Proposition 3.3. Let I be a proper ideal of a self-distributive BE-algebra X. Then

I is maximal if and only if for any x ∈ X,

x /∈ I implies xN ∈ I.

Proof. Let I be a proper ideal of X . Assume that I is maximal. Let x /∈ I. Then

[I ∪ {x}] = X . Hence 1 ∈ [I ∪ {x}]. Since X is self-distributive, then xNNN =

(xN ∗ 1N)N ∈ I. Since xN ≤ xNNN , then xN ∈ I.

Conversely, assume the condition. Suppose I is not maximal. Then there exists

a proper ideal Q of X such that I ⊂ Q. Choose x ∈ Q − I. Then x /∈ I. By the

assumed condition, we get xN ∈ I ⊆ Q. Since xNNN ≤ xN , then (xN ∗ 1N)N =

xNNN ∈ Q. Since x ∈ Q and Q is an ideal, then 1 ∈ Q which is contradiction to

that Q is proper. Therefore, I is a maximal ideal of X . �

Definition 3.4. Let X be a BE-algebra. Then the radical of X , denoted as rad(X),

defined as,

rad(X) = ∩{I | I ∈ Max(X)}

where Max(X) is the family of all maximal ideals of X .

It is clear that rad(X) is always exists for a BE-algebra. In the contemporary algebra,

the following is a standard terminology. We say that a BE-algebra is semi-simple if

rad(X) = {0}. We first observe the non-trivial examples:

Example 3.4. Let X = {0, a, b, 1}. Define an operation ∗ on X as follows:

∗ 1 a b 0

1 1 a b 0

a 1 1 b b

b 1 a 1 a

0 1 1 1 1

Clearly, (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that the sets

I1 = {0}, I2 = {0, a}, I3 = {0, b} are ideals of X in which I2 and I3 are the only

maximal ideals. Hence rad(X) = I2 ∩ I3 = {0}. Therefore, X is semi-simple.
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Example 3.5. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c d 0

1 1 a b c d 0

a 1 1 1 1 d d

b 1 c 1 c d c

c 1 b b 1 d b

d 1 a b c 1 a

0 1 1 1 1 1 1

Clearly, (X, ∗, 0, 1) is a bounded BE-algebra. It is easy to check that I1 = {0},

I2 = {0, a}, I3 = {0, b}, I4 = {0, c}, I5 = {0, a, b} and I6 = {0, a, c} are ideals of X

in which I5 and I6 are only maximal ideals of X. Hence rad(X) = I5∩I6 = I2 6= {0}.

Therefore, X is not semi-simple.

Theorem 3.5. A transitive BE-algebra X is semi-simple if and only if for each

0 6= x ∈ X, there exists a proper ideal I of X such that [I ∪ {x}] = X.

Proof. Assume that X is semi-simple. Then
⋂

I∈Max(X)

I = {0}. Let 0 6= x ∈ X . Then

there exists a maximal ideal I of X such that x /∈ I (otherwise, if every maximal ideal

contains x, then 0 6= x ∈
⋂

I∈Max(X)

I = {0}). Since I is maximal, then [I ∪ {x}] = X .

Conversely, assume the condition. Suppose
⋂

I∈Max(X)

I 6= {0}. Choose 0 6= x ∈
⋂

I∈Max(X)

I. By the assumed condition, there exists a proper ideal I of X such that

[I∪{x}] = X . Hence x /∈ I. Consider, T = {J |J is an ideal of X, x /∈ J and I ⊆ J}.

Clearly, I ∈ T and T 6= ∅. Clearly, T is a partially ordered set, with the set inclusion,

in which every chain has an upper bound. By the Zorn’s lemma, T has a maximal

element say I0. Then x /∈ I0 and I ⊆ I0. Suppose there exists a proper ideal M of

X such that I ⊆ I0 ⊂ M ⊆ X . By the maximality of M , we get x ∈ M . Hence

X = [I∪{x}] ⊂ [M∪{x}] = M . Thus I0 is a maximal ideal of X and x /∈ I0, which is

a contradiction. Therefore,
⋂

I∈Max(X)

I = {0}, which means that X is semi-simple. �

Example 3.6. Consider the BE-algebra, X = {0, a, b, 1} given in Example 3.4.

Here, the sets I2 = {0, a}, I3 = {0, b} are proper ideals of X. Take, 0 6= b ∈ X
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then clearly [I2 ∪ {b}] = X. Similarly, [I3 ∪ {a}] = X for 0 6= a ∈ X. Hence X is

semi-simple.

Theorem 3.6. Let X be a self-distributive BE-algebra. Then for every 0 6= x ∈ X

there exists a maximal ideal I of X such that x /∈ I.

Proof. Let 0 6= x ∈ X . We first claim that [xN ] is a proper ideal of X . Suppose

1 ∈ [xN ]. Since X is self-distributive, then xNNN = xNN ∗ 1N = 1. Hence

x ≤ xNN ≤ xNNNN = 0. Thus x = 0, which is a contradiction. Therefore,

[xN ] is a proper ideal of X . Then there exists a maximal ideal I of X such that

[xN ] ⊆ I. Suppose x ∈ I. Then (xN ∗ 1N)N = xNNN ≤ xN ∈ [xN ] ⊆ I. Hence

(xN ∗ 1N)N ∈ I. Since x ∈ I, then 1 ∈ I, which is a contradiction. Therefore, I is

a maximal ideal of X such that x /∈ I. �

Corollary 3.5. Every self-distributive BE-algebra is semi-simple.
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