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WEAK SOLUTIONS OF COUPLED CAPUTO TYPE
MODIFICATION OF THE ERDÉLYI-KOBER IMPLICIT

FRACTIONAL DIFFERENTIAL SYSTEMS WITH RETARDED
AND ADVANCED ARGUMENTS

MOKHTAR BOUMAAZA (1) , MOUFFAK BENCHOHRA(1) AND JUAN J. TRUJILLO(2)

Abstract. In this paper, we investigate the existence of weak solutions for some

coupled systems of fractional Caputo-type modification of the Erdélyi-Kober dif-

ferential equations with retardation and anticipation. Our approach is based on

Mönch’s fixed point theorem associated with the technique of measure of weak

noncompactness. Finally, an example of our results is provided.

1. Introduction

The significance of fractional differential equations in expressing various phenom-

ena in a number of scientific domains cannot be overstated. They have use in vis-

coelasticity, electrochemistry, control, porous media, electromagnetism, and other

domains. For more information, we recommend that the reader consult the mono-

graphs [1, 2, 3, 20], the most recent research papers [23, 24] and the sources within.

Coupled systems of fractional differential equations, on the other hand, appear in a

variety of problems. Several researchers have studied the coupled system of nonlinear

fractional differential equations in recent years. We direct the reader to the article [7]

for a short example of such work. Details on the Erdélyi-Kober fractional operators

and their properties may be found in [19, 17, 18].
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Numerical approaches for Riemann-Liouville and Caputo fractional derivative oper-

ators are studied in [9, 10]. Implicit differential equations have been considered by

many authors [4, 11]. Our investigation relies upon Mönch’s fixed point theorem

combined with the technique of measures of weak noncompactness. This technique

was introduced by De Blasi [12].

In [8, 16], the authors studied the existence and uniqueness of weak solutions for

boundary value problem for Caputo and Hadamard-type fractional differential equa-

tions and Pettis-Hadamard with retardation and anticipation. In [6], the authors

investigated a coupled Pettis-Hadamard fractional differential system with retarded

and advanced argument given by





(p(ϑ), q(ϑ)) = (δ1(ϑ), δ2(ϑ)), ϑ ∈ [1− λ1, 1], λ1 > 0

(HDζ1
1 p)(ϑ) = Ψ1(ϑ, p(ϑ), q(ϑ))

(HDζ2
1 q)(ϑ) = Ψ2(ϑ, p(ϑ), q(ϑ))

(p(ϑ), q(ϑ)) = (δ̃1(ϑ), δ̃2(ϑ)), ϑ ∈ [e, e+ λ2], λ2 > 0,

; ϑ ∈ Θ := [1, e],

where λ1, λ2 > 0, ζj ∈ (1, 2], (Ξ, ‖ · ‖) is a real Banach space and

Ψj : Θ×C([−λ1, λ2],Ξ)
2 → Ξ is a given function, δ ∈ C([1−λ1, 1],Ξ) with δj(1) = 0

and δ̃j ∈ C([e, e + λ2],Ξ) with δ̃j(e) = 0, j = 1, 2.

In [5], Abbas et al. considered the following fractional differential systems:






HD
ζ1,ζ2
1 p(ϑ) = Ψ1(ϑ, p(ϑ), q(ϑ), HD

ζ1,ζ2
1 p(ϑ), HD

ζ1,ζ2
1 q(ϑ))

HD
ζ1,ζ2
1 q(ϑ) = Ψ2(ϑ, p(ϑ), q(ϑ), HD

ζ1,ζ2
1 p(ϑ), HD

ζ1,ζ2
1 q(ϑ))

ϑ ∈ Θ := [1, κ̄],

with the initial conditions




(HJ 1−γp)(ϑ) |ϑ=1= δ1

(HJ 1−γq)(ϑ) |ϑ=1= δ2,

where κ̄ > 1, ϑ ∈ Θ = [1, κ̄], ζ1 ∈ (0, 1), ζ2 ∈ [0, 1], γ = ζ1 + ζ2 − ζ1ζ2, Ψj : Θ× Ξ4 →

Ξ; j = 1, 2 are given continuous functions, (Ξ, ‖ · ‖Ξ) is a Banach space, HD
ζ1,ζ2
1 is

the Hilfer-Hadamard fractional derivative of order ζ1 and type ζ2, and
HJ 1−γ is the

Hadamard fractional operator of order 1− γ.
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Motivated by the works mentioned above, in this paper, we consider the problem:

(1.1)





ρ
cD

ζ

κ+p(ϑ) = Ψ1(ϑ, pϑ, qϑ, ρ
cD

ζ

κ+p(ϑ), ρ
cD

ζ

κ+q(ϑ)))

ρ
cD

ζ

κ+q(ϑ) = Ψ2(ϑ, pϑ, qϑ, ρ
cD

ζ

κ+p(ϑ), ρ
cD

ζ

κ+q(ϑ))
ϑ ∈ Θ := [κ, κ̄],

(1.2)





(p(ϑ), q(ϑ)) = (δ1(ϑ), δ2(ϑ)), ϑ ∈ [κ− λ1, κ], λ1 > 0,

(p(ϑ), q(ϑ)) = (δ̃1(ϑ), δ̃2(ϑ)), ϑ ∈ [κ̄, κ̄+ λ2], λ2 > 0,

where ρ
cD

ζ

κ+ is the Caputo-type fractional derivative defined in the sequel and (Ξ, ‖·‖Ξ)

is a Banach space with dual Ξ∗, such that Ξ is the dual of a weakly compactly

generated Banach space X , Ψj : Θ× C([−λ1, λ2],Ξ)
2 × Ξ2 → Ξ is a given function,

δj ∈ C([κ−λ1, κ],Ξ) with δj(κ) = 0 and δ̃j ∈ C([κ̄, κ̄+λ2],Ξ) with δ̃j(κ̄) = 0, j = 1, 2.

By pϑ we denote the element of C([−λ1, λ2]) given by:

pϑ(̺) = p(ϑ+ ̺) : ̺ ∈ [−λ1, λ2].

2. Preliminaries

We present here the definitions of Erdélyi-Kober fractional integral and Erdélyi-Kober

fractional derivative and then some auxiliary results that will be used to prove our

main results.

Consider the Banach spaces of continuous functions C([−λ1, λ2],Ξ) with the norm

‖p‖[−λ1,λ2] = sup{‖p(ϑ)‖Ξ : −λ1 ≤ ϑ ≤ λ2},

and C([κ, κ̄],Ξ) with the norm

‖p‖[κ,κ̄] = sup{‖p(ϑ)‖Ξ : κ ≤ ϑ ≤ κ̄}.

Also, let E1 = C([κ− λ1, κ],Ξ), E2 = C([κ̄, κ̄+ λ2],Ξ),

and

AC1(Θ) := {p : Θ −→ Ξ : p′ ∈ AC(Θ)},

where

p′(ϑ) = ϑ
d

dϑ
p(ϑ), ϑ ∈ Θ.
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AC(Θ,Ξ) is the space of absolutely continuous functions on Θ.

Consider the space Φ = {p : [κ−λ1, κ̄+λ2] 7−→ Ξ : p |[κ−λ1,κ]∈ C([κ−λ1, κ]), p |[κ,κ̄]∈

AC1([κ, κ̄])

and p |[κ̄,κ̄+λ2]∈ C([κ̄, κ̄+ λ2])}

with the norms

‖p‖[κ−λ1,κ] = sup{‖p(ϑ)‖Ξ : κ− λ1 ≤ ϑ ≤ κ},

‖p‖[κ̄,κ̄+λ2] = sup{‖p(ϑ)‖Ξ : κ̄ ≤ ϑ ≤ κ̄+ λ2},

‖p‖Φ = sup{‖p(ϑ)‖Ξ : κ− λ1 ≤ ϑ ≤ κ̄+ λ2}.

Let Φ := Φ× Φ be the product space with the norm

‖(p, q)‖Φ := ‖p‖Φ + ‖q‖Φ.

Let(Ξ, ω) = (Ξ, σ(Ξ,Ξ∗)) be the Banach space Ξ with weak topology.

Consider the space Xp
c (κ, κ̄) ,(c ∈ R, 1 ≤ p ≤ ∞) of those complex-valued Lebesgue

measurable functions p on [κ, κ̄] for which ‖p‖Xp

c
< ∞ , where the norm is defined by

:

‖p‖Xp

c
=

(∫ κ̄

κ

|ϑcp(ϑ)|p
dϑ

ϑ

) 1

p

, (1 ≤ p < ∞, c ∈ R).

In particular, where c = 1
p
the space Xp

c (κ, κ̄) coincides with Lp(κ, κ̄), i.e.

X
p
1

p

(κ, κ̄) = Lp(κ, κ̄).

Denote by L∞(Θ,R), the Banach space of essentially bounded measurable functions

p : Θ −→ R equipped with the norm

‖p‖L∞ = inf{c > 0; |p(x)| ≤ c a.e. on Θ}.

Definition 2.1. A Banach space X is said to be weakly compactly generated (WCG)

if it contains a weakly compact set whose linear span is dense in X.

Definition 2.2. A function Ψ̄ : Ξ −→ Ξ is said to be weakly sequentially continuous

if Ψ̄ takes each weakly convergent sequence in Ξ to weakly convergent sequence in Ξ

(i.e. for any (xn)n in Ξ with xn −→ x in (Ξ, ω), Ψ̄(xn) −→ Ψ̄(x) in (Ξ, ω)).
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Definition 2.3. ([21]) The function x : J −→ Ξ is said to be Pettis integrable on

J if and only if there is an element pΘ ∈ Ξ corresponding to each Θ ⊂ J such that

ϕ(pΘ) =
∫
Θ
ϕ(p(̺))d̺ for all ϕ ∈ Ξ∗, where the integral on the right is supposed to

exist in the sense of Lebesgue. We have pΘ =
∫
Θ
ϕ(p(̺))d̺. Let P (J,Ξ) be the space

of all Ξ-valued Pettis integrable functions in the interval J , and let L1(Θ,Ξ) be the

Banach space of Bochner-integrable measurable functions p : Θ −→ Ξ. Define the

class

P1(J,Ξ) = {p ∈ P (J,Ξ) : ϕ(p) ∈ L1(Θ,R) for every ϕ ∈ Ξ∗}.

The space P1(J,Ξ) is normed by

‖p‖P1
= sup

ϕ∈Ξ∗,‖ϕ‖≤1

∫ κ̄

κ

|ϕ(p(x))|dυx,

where υ is the Lebesgue measure on J .

Proposition 2.1. ([21]) If p ∈ P1(Θ,Ξ) and Ψ̄ is a measurable and essentially

bounded real-valued function, then pΨ̄ ∈ P (Θ,Ξ). In what follows, the symbol ”
∫
”

denotes the Pettis integral.

Definition 2.4. ([19]) Let ζ ∈ R, c ∈ R and g ∈ Xp
c (κ, κ̄), the Erdélyi-Kober frac-

tional integral of order ζ is given by :

(2.1) (ρJ ζ

κ+g)(ϑ) =
1

Γ(ζ)

∫ ϑ

a

̺ρ−1

(
ϑρ − ̺ρ

ρ

)ζ−1

g(̺)d̺, ϑ > κ, ρ > 0

where Γ is the Euler gamma function defined by: Γ(ζ) =

∫ ∞

0

ϑζ−1e−ϑdϑ, ζ > 0.

Let g ∈ P1(Θ,Ξ). For every ϕ ∈ Ξ∗, we have

ϕ(ρJ ζ

κ+g(ϑ)) =
ρ J ζ

κ+ϕ(g(ϑ)) for a.e. ϑ ∈ Θ.

Definition 2.5. ([19]) The generalized fractional derivative is given for 0 ≤ κ < ϑ ,

by:

(2.2) (ρDζ

κ+g)(ϑ) =
ρ1−n+ζ

Γ(n− ζ)

(
̺1−ρ d

d̺

)n ∫ ϑ

a

̺ρ−1

(ϑρ − ̺ρ)1−n+ζ
g(̺)d̺.

Definition 2.6. ([19]) The Caputo-type generalized fractional derivative ρ
cD

ζ

κ+ is

given by

(2.3) ρ
cD

ζ

κ+g(ϑ) =

(
ρD

ζ

κ+

[
g(̺)−

n−1∑

k=0

g(k)(κ)

k!
(̺− κ)k

])
(ϑ).
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Lemma 2.1. ([19]) Let ζ, ρ ∈ R
+, and g ∈ ACn−1(Θ,Ξ), then

(2.4) (ρJ ζ

κ+

ρ
cD

ζ

κ+g)(ϑ) = g(ϑ)−
n−1∑

k=0

ck

(
ϑρ − κρ

ρ

)k

,

for some ck ∈ R, n = [ζ ] + 1.

Definition 2.7. ([12]) Let Ξ be a Banach space and ΦΞ the bounded subsets of Ξ,

and B1 the unit ball of Ξ. The De Blasi measure of weak noncompactness is the map

µ : ΦΞ → [0,∞) defined by

µ(B) = inf{ǫ > 0 : there exists a weakly compact subset Φ ofΞ : X ⊂ ǫB1 + Φ}.

The next result follows directly from the Hahn-Banach theorem.

Proposition 2.2. If Ξ is a normed space and x0 ∈ Ξ\{0}, then there exists ϕ ∈ Ξ∗

with ‖ϕ‖ = 1 and ϕ(x0) = ‖ϕ‖.

The Blasi measure of weak noncompactness satisfies the following properties.

Lemma 2.2. ([12]) Let A and B bounded sets. Then we have

(1) µ(B) = 0 ⇔ B is compact (B is weakly relatively compact)

(2) µ(cov(B)) = µ(B)

(3) µ(B) = ζ(B
ω
), (B

ω
denote the weak closure of B)

(4) A ⊂ B ⇒ µ(A) ≤ µ(B)

(5) µ(A+B) ≤ µ(A) + µ(B), where A+B = {x+ y : x ∈ A, y ∈ B}

(6) µ(υB) = |υ|µ(B); υ ∈ R, where υB = {υx : x ∈ B}

(7) µ(A ∪B) = max{µ(A), µ(B)}

(8) µ(B + x0) = µ(B) for any x0 ∈ Ξ.

Lemma 2.3. ([13]) Let V ⊂ C(Θ,Ξ) is a bounded and equicontinuous set, then

(i) the function ϑ 7−→ µ(V (ϑ)) is continuous on Θ, and

µC(V ) = max
ϑ∈Θ

µ(V (ϑ)),

(ii)

µ

(∫ κ̄

a

y(̺)d̺ : y ∈ V

)
=

∫ κ̄

a

µ(V (̺))d̺,
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where

V (ϑ) = {y(ϑ) : y ∈ V }, ϑ ∈ Θ,

and µC is the De Blasi measure of weak noncompactness defined on the bounded

sets of C(Θ).

Theorem 2.1. ([14]) Let D be a nonempty, closed, convex and equicontinuous subset

of a metrizable locally convex vector space C(Θ) such that 0 ∈ D. Suppose N : D −→

D is weakly-sequentially continuous. If the implication

(2.5) V = co(N(V ) ∪ {(0, 0)}) =⇒ V is relatively weakly compact,

holds for every subset V ⊂ D, then the operator N has a fixed point.

3. Main results

Lemma 3.1. Let 1 < ζ ≤ 2, δ ∈ C([κ−λ1, κ],Ξ) with δ(κ) = 0, δ̃ ∈ C([κ̄, κ̄+λ2],Ξ)

with δ̃(κ̄) = 0 and Ψ̄ : Θ → Ξ be a continuous function. Then, the problem

(3.1) ρ
cD

ζ

κ+p(ϑ) = Ψ̄(ϑ), for a.e ϑ ∈ Θ := [κ, κ̄], 1 < ζ ≤ 2,

(3.2) p(ϑ) = δ(ϑ), ϑ ∈ [κ− λ1, κ], λ1 > 0

(3.3) p(ϑ) = δ̃(ϑ), ϑ ∈ [κ̄, κ̄+ λ2], λ2 > 0,

has the following unique solution

(3.4) p(ϑ) =





δ(ϑ), if ϑ ∈ [κ− λ1, κ],

−

∫ T

a

G(ϑ, ̺)Ψ̄(̺)d̺, if ϑ ∈ Θ

δ̃(ϑ), if ϑ ∈ [κ̄, κ̄+ λ2],
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where

(3.5)

G(ϑ, ̺) =
ρ1−ζ

Γ(ζ)






(ϑρ − κρ)(κ̄ρ − ̺ρ)ζ−1̺ρ−1

(κ̄ρ − κρ)
− ̺ρ−1(ϑρ − ̺ρ)ζ−1, κ ≤ ̺ ≤ ϑ ≤ κ̄,

(ϑρ − κρ)(κ̄ρ − ̺ρ)ζ−1̺ρ−1

(κ̄ρ − κρ)
, κ ≤ ϑ ≤ ̺ ≤ κ̄.

Here G(ϑ, ̺) is called the Green function of (3.1)-(3.3).

Proof. From (2.4), we have

(3.6) p(ϑ) = c0 + c1

(
ϑρ − κρ

ρ

)
+ρ J ζ

κ+Ψ̄(̺), c0, c1 ∈ R,

therefore

p(κ) = c0 = 0,

p(κ̄) = c1

(
κ̄ρ − κρ

ρ

)
+

ρ1−ζ

Γ(ζ)

∫ κ̄

a

(κ̄ρ − ̺ρ)ζ−1̺ρ−1Ψ̄(̺)d̺,

and

c1 = −
ρ2−ζ

(κ̄ρ − κρ)Γ(ζ)

∫ κ̄

a

(κ̄ρ − ̺ρ)ζ−1̺ρ−1Ψ̄(̺)d̺.

Substitute the value of c0 and c1 into equation (3.6), we get equation (3.4).

p(ϑ) =





δ(ϑ), if ϑ ∈ [κ− λ1, κ],

−

∫ T

a

G(ϑ, ̺)Ψ̄(̺)d̺, if ϑ ∈ Θ

δ̃(ϑ), if ϑ ∈ [κ̄, κ̄+ λ2].
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Lemma 3.2. Let Ψj : Θ×C[−λ1, λ2]×C[−λ1, λ2]×Ξ2 −→ Ξ, j = 1, 2, be continuous

functions. (p, q) ∈ Φ2 is solution of (1.1) − (1.2) if and only if (p, q) verifies the

following coupled system:

p(ϑ) =





δ1(ϑ), if ϑ ∈ [κ− λ1, κ],

−

∫ T

a

G(ϑ, ̺)Ψ̄1(̺)d̺, if ϑ ∈ Θ

δ̃1(ϑ), if ϑ ∈ [κ̄, κ̄+ λ2],

q(ϑ) =





δ2(ϑ), if ϑ ∈ [κ− λ1, κ],

−

∫ T

a

G(ϑ, ̺)Ψ̄2(̺)d̺, if ϑ ∈ Θ

δ̃2(ϑ), if ϑ ∈ [κ̄, κ̄+ λ2],

where Ψ̄j ∈ C(Θ) verifies the system:






Ψ̄1(ϑ) = Ψ1(ϑ, p
ϑ, qϑ, Ψ̄1(ϑ), Ψ̄2(ϑ)),

Ψ̄2(ϑ) = Ψ2(ϑ, p
ϑ, qϑ, Ψ̄1(ϑ), Ψ̄2(ϑ)).

The hypotheses:

(H1): The functions (p, q, p̄, q̄) −→ Ψj(ϑ, p, q, p̄, q̄), j = 1, 2, are weakly sequen-

tially continuous for a.e. ϑ ∈ Θ.

(H2): For all p, q ∈ C([−λ1, λ2]), p̄, q̄ ∈ Ξ the functions ϑ −→ Ψj(ϑ, p, q, p̄, q̄), j =

1, 2, are Pettis integrable.

(H3): There exist pj, qj ∈ C([κ, κ̄],R+), j = 1, 2, such that, for all ϕ ∈ Ξ∗,

|ϕ(Ψj(ϑ, p, q, p̄, q̄))| ≤
pj(ϑ)‖p‖[−λ1,λ2] + qj(ϑ)‖q‖[−λ1,λ2]

1 + ‖ϕ‖+ ‖p‖[−λ1,λ2] + ‖q‖[−λ1,λ2] + ‖p̄‖Ξ + ‖q̄‖Ξ

for a.e. ϑ ∈ Θ, and each p, q ∈ C([−λ1, λ2]) and p̄, q̄ ∈ Ξ.
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(H4): For each bounded measurable sets Bj ⊂ C[−λ1, λ2], j = 1, 2, and each

ϑ ∈ Θ, we have

µ(Ψ1(ϑ,B1, B2,
ρ
cD

ζ

κ+(B1),
ρ
cD

ζ

κ+(B2)), 0) ≤ p1(ϑ) sup
̺∈[−λ1,λ2]

µ(B1(̺))+q1(ϑ) sup
̺∈[−λ1,λ2]

µ(B2(̺))

and

µ(0,Ψ2(ϑ,B1, B2,
ρ
cD

ζ

κ+(B1),
ρ
cD

ζ

κ+(B2))) ≤ p2(ϑ) sup
̺∈[−λ1,λ2]

µ(B1(̺))+q2(ϑ) sup
̺∈[−λ1,λ2]

µ(B2(̺)),

where

ρ
cD

ζ

κ+(Bj) = {ρcD
ζ

κ+(p) : p ∈ Bj}, j = 1, 2.

Set

p∗j = sup
ϑ∈Θ

pj(ϑ), q∗j = sup
ϑ∈Θ

qj(ϑ), j = 1, 2

G̃ = sup

{∫ κ̄

a

|G(ϑ, ̺)|d̺, ϑ ∈ Θ

}
.

Theorem 3.1. Suppose that (H1) - (H4) hold. If

(3.7) G̃(p∗1 + q∗1 + p∗2 + q∗2) < 1,

then (1.1)-(1.2) has at least one weak solution defined on Θ.

Proof. Let S : Φ× Φ 7−→ Φ× Φ be the operator given by

(3.8)

S(p, q)(ϑ) = (S1(p, q),S2(p, q)) =





(δ1(ϑ), δ2(ϑ)), if ϑ ∈ [κ− λ1, κ],

−

(∫ T

a

G(ϑ, ̺)Ψ̄1(̺)d̺,

∫ T

a

G(ϑ, ̺)Ψ̄2(̺)d̺

)
, ϑ ∈ Θ

(δ̃1(ϑ), δ̃2(ϑ)), if ϑ ∈ [κ̄, κ̄+ λ2].

First, notice that the hypotheses imply that, for each Ψ̄j ∈ C(Θ), j = 1, 2, the function

ϑ −→ G(ϑ, ̺)Ψ̄j(ϑ) are Pettis integrable over Θ. Define

D =





(p, q) ∈ Φ× Φ :

‖(p, q)‖Φ ≤ ̟,

‖p(ϑ2)− p(ϑ1)‖Ξ ≤ (p∗1 + q∗1)
∫ κ̄

κ
|G(ϑ2, ̺)−G(ϑ1, ̺)|d̺,

and ‖q(ϑ2)− q(ϑ1)‖Ξ ≤ (p∗2 + q∗2)
∫ κ̄

κ
|G(ϑ2, ̺)−G(ϑ1, ̺)|d̺,




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where

(3.9) ̟ ≥ max
{
L1 + L2, ‖δ1‖[κ−λ1,κ] + ‖δ2‖[κ−λ1,κ], ‖δ̃1‖[κ̄,κ̄+λ2] + ‖δ̃2‖[κ̄,κ̄+λ2]

}
.

Clearly, the subset D is closed, convex end equicontinuous. We shall show that the operator

S satisfies all the assumptions of Theorem 2.1. The proof will be given in several steps.

Step 1. S maps D into itself.

Let (p, q) ∈ D, ϑ ∈ Θ and assume that (S(p, q))(ϑ) 6= (0, 0). Then there exists ϕ ∈ Ξ∗ such

that ‖Sj(p, q)(ϑ)‖Ξ = ϕ (Sj(p, q)(ϑ)). Thus, for any j ∈ {1, 2} we have

‖Sj(p, q)(ϑ)‖Ξ = ϕ

(∫ T

a

G(ϑ, ̺)Ψ̄j(̺)d̺

)
,

where Ψ̄j ∈ C(Θ), with

Ψ̄j(ϑ) = Ψj(ϑ, p
ϑ, qϑ, Ψ̄1(ϑ), Ψ̄2(ϑ)).

If ϑ ∈ [κ− λ1, κ], then

‖S(p, q)(ϑ)‖Ξ ≤ ‖δ1‖[κ−λ1,κ] + ‖δ2‖[κ−λ1,κ] ≤ ̟,

and if ϑ ∈ [κ̄, κ̄+ λ2], then

‖S(p, q)(ϑ)‖Ξ ≤ ‖δ̃1‖[κ̄,κ̄+λ2] + ‖δ̃2‖[κ̄,κ̄+λ2] ≤ ̟.

For each ϑ ∈ Θ, we obtain

‖(Sj(p, q))(ϑ)‖Ξ ≤

∫ κ̄

κ

|G(ϑ, ̺)||ϕ(Ψ̄j(̺))|d̺, j = 1, 2.

By (H3), we get

|ϕ(Ψ̄j(ϑ))| ≤ p∗j + q∗j .

Therefore

‖(Sj(p, q))(ϑ)‖Ξ ≤ (p∗j + q∗j )

∫ κ̄

κ

|G(ϑ, ̺)|d̺

≤ (p∗j + q∗j )G̃ = Lj.

Thus, for each ϑ ∈ [κ− λ1, κ̄+ λ2], we have

‖Sj(p, q)(ϑ)‖Ξ ≤ Lj ,



26 MOKHTAR BOUMAAZA, MOUFFAK BENCHOHRA AND JUAN J. TRUJILLO

which implies that

‖Sj(p, q)‖Φ ≤ Lj.

Then we have

‖S(p, q)‖Φ ≤ L1 + L2

≤ ̟.

Next, Let ϑ1, ϑ2 ∈ Θ = [κ, κ̄], ϑ1 < ϑ2, and (p, q) ∈ D be such that

(Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1) 6= 0.

Then there exists ϕ ∈ Ξ∗ such that

‖(Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1)‖Ξ = ϕ((Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1)),

and ‖ϕ‖ = 1. Then, for any j ∈ {1, 2}, we get

‖(Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1)‖Ξ = ϕ((Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1))

≤ ϕ

(∫ κ̄

κ

|G(ϑ2, ̺)−G(ϑ1, ̺)|Ψ̄j(̺)

)

where Ψ̄j ∈ C(Θ), with

Ψ̄j(ϑ) = Ψj(ϑ, p
ϑ, qϑ, Ψ̄1(ϑ), Ψ̄2(ϑ)).

Thus, we have

‖(Sj(p, q))(ϑ2)− (Sj(p, q))(ϑ1)‖Ξ ≤

∫ κ̄

κ

|G(ϑ2, ̺)−G(ϑ1, ̺)||ϕ(Ψ̄j(̺))|d̺

≤ (p∗j + q∗j )

∫ κ̄

κ

|G(ϑ2, ̺)−G(ϑ1, ̺)|d̺.

Consequently,

S(D) ⊂ D.

Step 2. S is weakly sequentially continuous.

Let {(pn, qn)}n be a sequence in D ×D, and let (pn(ϑ), qn(ϑ)) −→ (p(ϑ), q(ϑ)) in (Ξ, ω)×

(Ξ, ω) for each ϑ ∈ [κ − λ1, κ̄ + λ2]. Fix ϑ ∈ [κ − λ1, κ̄ + λ2]. Since for any j ∈ 1, 2,

the function Ψj(ϑ, p
ϑ
n, q

ϑ
n,

ρ
c D

ζ

κ+pn(ϑ),
ρ
c D

ζ

κ+qn(ϑ)) satisfies assumption (H1), we have that it
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converges weakly uniformly to Ψj(ϑ, p
ϑ, qϑ,

ρ
c D

ζ

κ+p(ϑ),
ρ
c D

ζ

κ+q(ϑ)). Hence the Lebesgue dom-

inated convergence theorem for Pettis integral implies that (S(pn, qn))(ϑ) converges weakly

uniformly to (S(p, q))(ϑ) in (Ξ, ω). We do it for each ϑ ∈ Θ, so S(pn, qn) −→ S(p, q). Then

S : D −→ D is weakly sequentially continuous.

Step 3. Now let V be a subset of D such that V = conv(S(V ) ∪ {(0, 0)}). Obviously

V (ϑ) ⊂ conv(S(V )(ϑ) ∪ {(0, 0)}).

Since V is bounded and equicontinuous, the function ϑ 7−→ q(ϑ) = µ(V (ϑ)) is continuous

on [κ− λ1, κ̄+ λ2]. By (H1)− (H3), Lemma 2.3, and the properties of measure µ, for each

ϑ ∈ Θ, we have

q(ϑ) ≤ µ(S(V )(ϑ) ∪ {(0, 0)})

≤ µ((SV )(ϑ))

≤ µ ({((S1p)(ϑ), (S2q)(ϑ)) : (p, q) ∈ V })

≤

∫ κ̄

κ

|G(ϑ, ̺)|µ({(Ψ1(ϑ, p
ϑ, qϑ,ρc D

ζ

κ+p(ϑ),
ρ
c D

ζ

κ+q(ϑ)), 0)})d̺

+

∫ κ̄

κ

|G(ϑ, ̺)|µ({(0,Ψ2(ϑ, p
ϑ, qϑ,ρc D

ζ

κ+p(ϑ),
ρ
c D

ζ

κ+q(ϑ)))})d̺

≤

∫ κ̄

κ

|G(ϑ, ̺)|(p1(̺)µ({(p(̺), 0); (p, 0) ∈ V })

+ q1(̺)µ({(q(̺), 0); (q, 0) ∈ V })d̺

+

∫ κ̄

κ

|G(ϑ, ̺)|(p2(̺)µ({(0, p(̺)); (0, p) ∈ V })

+ q2(̺)µ({(0, q(̺)); (0, q) ∈ V }))d̺

≤

∫ κ̄

κ

|G(ϑ, ̺)|(p1(̺) + q1(̺) + p2(̺) + q2(̺))µ(V (̺))d̺

≤ G̃(p∗1 + q∗1 + p∗2 + q∗2)‖q‖c.

Thus

‖q‖c ≤ G̃(p∗1 + q∗1 + p∗2 + q∗2)‖q‖c.

From (3.7 ), we get ‖q‖c = 0, that is µ(V (ϑ)) = 0 for each ϑ ∈ Θ.

For ϑ ∈ [κ− λ1, κ], we have

q(ϑ) = µ((δ1(ϑ), δ2(ϑ)))

= 0.
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Also for ϑ ∈ [κ̄, κ̄+ λ2] we have

q(ϑ) = µ(δ̃1(ϑ), δ̃2(ϑ))

= 0,

then V (ϑ) is relatively compact in Ξ. In view of Ascoli-Arzela theorem V is weakly relatively

compact in Φ. Applying Theorem 2.1, we conclude that S has a fixed point which is a

solution of the problem (1.1) − (1.2).

4. An Example

Let

Ξ = l1 =

{
p = (p1, p2, . . . , pn, . . .),

∞∑

k=1

|pn| < ∞

}
,

be the Banach space with the norm

‖p‖Ξ =

∞∑

k=1

|pn|.

Consider the following fractional differential equation:

(4.1)





(p(ϑ), q(ϑ)) = (12ϑ, ϑ
2 + ϑ), ϑ ∈ [−1, 0],

1
cD

3

2

0+
pn(ϑ) = Ψ(ϑ, pϑn, qϑn,

1
cD

3

2

0+
pn(ϑ),

1
cD

3

2

0+
pn(ϑ)), ϑ ∈ Θ = [0, 1]

1
cD

3

2

0+
qn(ϑ) = g(ϑ, pϑn, qϑn,

1
cD

3

2

0+
pn(ϑ),

1
cD

3

2

0+
pn(ϑ)), ϑ ∈ Θ = [0, 1]

(p(ϑ), q(ϑ)) = (ϑ− 1, ϑ2 − ϑ), ϑ ∈ [1, 2],

here κ̄ = 1, κ = 0, ζ =
3

2
, ρ = 1.

Set

p = (p1, p2, . . . , pn, . . .), Ψ = (Ψ1,Ψ2, . . . ,Ψn, . . .)

Ψ(ϑ, pϑ, qϑ,1c D
3

2

0+
p(ϑ),1c D

3

2

0+
q(ϑ))

=
sin(ϑ)(‖pϑ‖C([−1,1]) + ‖qϑ‖C([−1,1]))

8(ϑ + 1)

(
1 + ‖pϑ‖C([−1,1]) + ‖qϑ‖C([−1,1]) + ‖3cD

3

2

0+
p‖Ξ + ‖3cD

3

2

2+
q‖Ξ

) .

and

g(ϑ, pϑ, qϑ,1c D
3

2

0+
p(ϑ),1c D

3

2

0+
q(ϑ))
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=
cos(ϑ)(‖pϑ‖C([−1,1]) + ‖qϑ‖C([−1,1]))

8(ϑ2 + 1)

(
1 + ‖pϑ‖C([−1,1]) + ‖qϑ‖C([−1,1]) + ‖1cD

3

2

0+
p‖Ξ + ‖1cD

3

2

0+
q‖Ξ

) .

For each y ∈ Ξ and ϑ ∈ [0, 1], we have

‖Ψ(ϑ, pϑ, qϑ,1c D
3

2

0+
p(ϑ),1c D

3

2

0+
q(ϑ))‖Ξ ≤

sin(ϑ)

8(ϑ + 1)

and

‖g(ϑ, pϑ, qϑ,1c D
3

2

0+
p(ϑ),1c D

3

2

0+
q(ϑ))‖Ξ ≤

cos(ϑ)

8(ϑ2 + 1)
.

Hence (H2) is satisfied with P ∗
j = q∗j = 1

8 , j = 1, 2 .

For each ϑ ∈ Θ we have

∫ κ̄

a

|G(ϑ, ̺)|d̺ ≤
1

Γ(ζ)

(
ϑρ − κρ

κ̄ρ − κρ

)∫ κ̄

a

∣∣∣∣∣

(
κ̄ρ − ̺ρ

ρ

)ζ−1

̺ρ−1

∣∣∣∣∣ d̺

+
1

Γ(ζ)

∫ ϑ

a

∣∣∣∣∣

(
ϑρ − ̺ρ

ρ

)ζ−1

̺ρ−1

∣∣∣∣∣ d̺

≤
2

Γ(ζ + 1)

(
κ̄ρ − κρ

ρ

)ζ

.

Therefore

G̃ ≤
2

Γ(ζ + 1)

(
κ̄ρ − κρ

ρ

)ζ

.

Condition (3.7) holds, indeed,

G̃(p∗1 + q∗1 + p∗2 + q∗2) ≤
1

Γ(32 + 1)

≈ 0.7522527778

< 1.

as all the assumptions of Theorem 3.1 are met. Then, problem (4.1) has at least one

solution.

Conclusion

We have provided some sufficient conditions guaranteeing the existence of weak solutions

for some coupled systems of fractional differential equations. Mönch’s fixed point theorem

associated with the technique of measure of weak noncompactness were used. An example
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is included to show the applicability of our outcomes. It is interesting, in a forthcoming

paper, to consider the set-valued analogue problem.
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