NOTES ON GENERALIZATIONS OF HOPFIAN AND CO-HOPFIAN MODULES

ABDERRAHIM EL MOUSSAOUY⁽¹⁾ AND M'HAMMED ZIANE⁽²⁾

ABSTRACT. A module M is called semi co-Hopfian (resp. semi Hopfian) if any injective (resp. surjective) endomorphism of M has a direct summand image (resp. kernel). We show that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly Hopfian module, then $End_R(M)$ is strongly π -regular ring. As a consequence we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module and to semi co-Hopfian module. The semi Hopficity and semi co-Hopficity of modules over truncated polynomial rings are considered.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and modules M are unitary left R-modules. The study of modules by properties of their endomorphisms has long been of interest. In 1986, Hiremath, [9], introduced the notion of Hopfian modules and rings. A bit later, in 1992, Varadarajan, [14], introduced the notion of co-Hopfian modules and rings. In 2001, Haghany and Vedadi, [8], and in 2002, Ghorbani and Haghany, [7], respectively, introduced and investigated the weakly co-Hopfian (respectively generalized Hopfian) modules (i.e., every injective endomorphism has an essential image) (respectively every surjective endomorphism has a small kernel). In 2007, Hmaimou, Kaidi and Sánchez Campos, [10], introduced and investigated the Generalized Fitting modules. In 2008, Aydogdu and Ozcan, [3], introduced the semi co-Hopfian and semi Hopfian modules. A module M is called

²⁰¹⁰ Mathematics Subject Classification. 16P40, 16D10, 16D40.

Key words and phrases. Semi Hopfian modules, Semi co-Hopfian modules, Dedekind finite modules.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: July 2, 2020 Accepted: Nov. 18, 2021.

semi co-Hopfian (resp. semi Hopfian) if any injective (resp. surjective) endomorphism of M has a direct summand image (resp. kernel). Such modules and others generalizations were introduced and studied by many authors, (for more information about this and others related topics, see, for instance, [6], [7], [9], [10], [13], [14], [15]). In Section 2, We show that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly Hopfian module, then $End_R(M)$ is strongly π -regular (Theorem 2.4). As a consequence we obtain that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly Hopfian module, then it is Fitting module (Corollary 2.5). And also we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module and to semi co-Hopfian module i.e., for a semi Hopfian (respectively semi co-Hopfian) module, M, if M is strongly co-Hopfian (respectively strongly Hopfian) then M is strongly Hopfian (respectively strongly co-Hopfian) (Corollary 2.6). It is clear that every Hopfian module is semi Hopfian, but the converse is not true (see Example 2.7). Then we prove that if M is semi Hopfian and co-Hopfian, then M is Hopfian, and if M is semi co-Hopfian and Hopfian, then M is co-Hopfian (Theorem 2.9). Varadarajan [14] showed that the left R-module M is Hopfian if and only if the left R[x]-module M[x] is Hopfian if and only if the left $R[x]/(x^{n+1})$ -module $M[x]/(x^{n+1})$ is Hopfian, where n is a non-negative integer and x is a commuting indeterminate over R. However, for any R-module $M \neq 0$, the R[x]-module M[x] is never co-Hopfian. In fact, the map "multiplication by x" is injective and non surjective. We are motivated to prove that, if $M[x]/(x^{n+1})$ is semi Hopfian (respectively, semi co-Hopfian) $R[x]/(x^{n+1})$ -module then M is semi Hopfian (respectively, semi co-Hopfian) R-module, (Theorem 2.15) and (Theorem 2.16).

Also we prove that if M is semi Hopfian (respectively semi co-Hopfian) module, then Hopfian and generalized Hopfian (respectively co-Hopfian and weakly co-Hopfian) are coincide, (Proposition 2.20) (respectively (Proposition 2.22)). Let R be a ring and M an R-module. We recall the following definitions and facts:

- **Definition 1.1.** (1) M is called Hopfian if every surjective endomorphism of M is an automorphism. [9]
 - (2) M is called co-Hopfian if every injective endomorphism of M is an automorphism. [14]

Definition 1.2. [3] A module M is called semi Hopfian if any surjective endomorphism of M has a direct summand kernel, i.e., any surjective endomorphism of M splits.

Definition 1.3. [3] A module M is called semi co-Hopfian if any injective endomorphism of M has a direct summand image, i.e., any injective endomorphism of M splits.

Definition 1.4. [2] An R-module M is said to be Fitting module if for any endomorphism f of M, there exists a positive integer $n \ge 1$ such: $M = Kerf^n \oplus Imf^n$.

Definition 1.5. A ring R is called Dedekind finite ring if ba = 1 whenever ab = 1. Equivalently, R is Dedekind finite ring if whenever a is left or right invertible, then a is invertible.

Clearly ab = 1 implies that ba is non-zero idempotent, so R is a Dedekind finite ring if and only if R is not isomorphic to any proper left or right ideal direct summand.

Definition 1.6. Let R be any unital ring and M be a unital R-module. M is called Dedekind finite module if its ring of endomorphisms $End_R(M)$ is a Dedekind finite ring.

Consequently, M is Dedekind finite module if and only if M is not isomorphic to any proper direct summand of itself.

Remark 1.7. The following facts are well known:

- (1) Every Noetherian R-module M (i.e., M has ACC on submodules), is Hopfian [1].
- (2) Every Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian)
 [1].
- (3) The additive group \mathbb{Q} of rational numbers is a non-Noetherian non-Artinian \mathbb{Z} -module, which is Hopfian and co-Hopfian [10].
- (4) A ring R is left Hopfian if and only if R is Dedekind finite, if and only if R is right Hopfian.
- (5) Every commutative ring is Hopfian.

- (6) Every Artinian and Noetherian R-module is Fitting. [1]
- (7) Every Fitting R-module is Hopfian and co-Hopfian. [1]
- (8) If R is a commutative ring, then every finitely generated R-module is Hopfian [15, Proposition 1.2].

2. Main Results

Definition 2.1. [10] Let M be an R-module.

- (1) M is called strongly Hopfian if for every endomorphism f of M the ascending chain $Kerf \subseteq Kerf^2 \subseteq ... \subseteq Kerf^n \subseteq ...$ stabilizes.
- (2) M is called strongly co-Hopfian if for every endomorphism f of M the descending chain $Imf \supseteq Imf^2 \supseteq ... \supseteq Imf^n \supseteq ...$ stabilizes.
- Remark 2.2. The left and right strongly π -regular rings have been introduced by Kaplansky [11], Azumaya proved in 1954 that a ring R is strongly π -regular if for every $a \in R$ there exist $m \in \mathbb{N}$ and $c \in R$ satisfying ac = ca and $a^m = ca^{m+1}$ [4]. Dischinger proved in 1976 that the strongly π -regularity is left-right symmetric [5].
- **Example 2.3.** By [10, Remark 2.16(3)], the ring $R = \prod_{n\geq 1} \mathbb{Z}/\not\vDash^{\kappa}\mathbb{Z}$ is Hopfian (every commutative ring is Hopfian) but not strongly Hopfian. Since every Hopfian ring is semi Hopfian, the ring $\prod_{n\geq 1} \mathbb{Z}/\not\vDash^{\kappa}\mathbb{Z}$ is semi Hopfian but not strongly Hopfian.

Theorem 2.4. Let M be an R-module. Then we have:

- (1) If M is semi Hopfian strongly co-Hopfian, then $End_R(M)$ is strongly π regular.
- (2) If M is semi co-Hopfian strongly Hopfian, then $End_R(M)$ is strongly π regular.
- Proof. (1) Assume that M is a strongly co-Hopfian and semi Hopfian module and let f be an endomorphism of M. By [10, Proposition 2.6], there exists an integer $n \ge 1$ such that $Imf^n = Imf^{n+1}$.
- Let $g: M \to Imf^n = Imf^{n+1}$, $g(x) = f^{n+1}(x)$, and $h: M \to Imf^n = Imf^{n+1}$, $h(x) = f^n(x)$, for every $x \in M$.
- Since $g(x) = f^{n+1}(x)$ and $h(x) = f^n(x)$ are surjective, there exists $\alpha, \beta \in End_R(M)$, such that: $f^{n+1}\alpha = 1$ and $f^n\beta = 1$, by the definition of semi Hopfian module. Then

 β is an injective endomorphism and $f^{n+1}\alpha = f^n\beta$. Now as M is strongly co-Hopfian then it is co-Hopfian, so β is an automorphism and $f^{n+1}\alpha\beta^{-1} = f^n$. Therefore $f^{n+1}\gamma = f^n$ where $\gamma = \alpha\beta^{-1} \in End_R(M)$.

And finally by Dischinger theorem, [5, Remark 2.2(7)], $End_R(M)$ is strongly π regular.

(2) Assume that M is a strongly Hopfian and semi co-Hopfian module and let f be an endomorphism of M. By [10, Proposition 2.5], there exists an integer $n \ge 1$ such that $Ker f^n = Ker f^{n+1}$.

Let $g: Imf^n \to M$, $g(f^n(x)) = f^{n+1}(x)$, and $h: Imf^n \to M$, the natural inclusion, $h(f^n(x)) = f^n(x)$, for every $x \in M$. If $f^{n+1}(x) = 0$, we have $x \in Kerf^{n+1} = Kerf^n$ then $f^n(x) = 0$, so g is injective.

Since $g(f^n(x)) = f^{n+1}(x)$ and $h(f^n(x)) = f^n(x)$ are injective, there exists α , $\beta \in End_R(M)$, such that: $\alpha f^{n+1} = 1$ and $\beta f^n = 1$, by the definition of semi co-Hopfian module. Then β is a surjective endomorphism and $\alpha f^{n+1} = \beta f^n$. Now as M is strongly Hopfian then it is Hopfian, so β is an automorphism and $\beta^{-1}\alpha f^{n+1} = f^n$. Therefore $\gamma f^{n+1} = f^n$ where $\gamma = \beta^{-1}\alpha \in End_R(M)$.

And finally by Dischinger theorem, [5, Remark 2.2(7)], $End_R(M)$ is strongly π -regular.

Corollary 2.5. Every semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly Hopfian module is a Fitting module.

Proof. This follows from Theorem 2.4 and [2, Proposition 2.3]. \Box

Now we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module and to semi co-Hopfian module

Corollary 2.6. Let M be an R-module. Then we have:

- (1) If M is semi Hopfian strongly co-Hopfian, then M is strongly Hopfian.
- (2) If M is semi co-Hopfian strongly Hopfian, then M is strongly co-Hopfian.

Proof. (1) By Theorem 2.4, End(M) is strongly π -regular. Then M is a Fitting module by [2], and finally M is strongly Hopfian by [10, Proposition 2.7(2)].

(2) By Theorem 2.4, End(M) is strongly π -regular. Then M is a Fitting module by [2], and finally M is strongly co-Hopfian by [10, Proposition 2.7(2)].

It is clear that every Hopfian module is semi Hopfian, but the converse is not true.

Example 2.7. By [9, Theorem 16(ii)], a vector space V over a field F is Hopfian if and only if it is finite dimensional. Thus an infinite-dimensional vector space over a field is semi Hopfian, but it is not Hopfian.

Proposition 2.8. Let M be a semi Hopfian R-module. If M is indecomposable, then it is Hopfian.

Proof. Let $f: M \to M$ be a surjective endomorphism. Since M is semi Hopfian, Kerf is a direct summand of M. Now as M is an indecomposable, then M can not be written as direct sum of its nonzero submodules. Therefore Kerf = 0. This shows that f is an automorphism, and hence M becomes Hopfian.

- **Theorem 2.9.** (1) Let M be a semi Hopfian R-module. If M is co-Hopfian, then it is Hopfian.
 - (2) Let M be a semi co-Hopfian R-module. If M is Hopfian, then it is co-Hopfian.

Proof. (1) Let $f: M \to M$ be a surjective endomorphism. Since M is a semi Hopfian R-module, f splits, and hence there exists an endomorphism $g: M \to M$, such that fg = 1. This implies that g is an injective endomorphism. Now since M is co-Hopfian, g is an automorphism. Therefore f is an automorphism and M becomes a Hopfian R-module.

(2) Let $f: M \to M$ be an injective endomorphism. Since M is a semi co-Hopfian R-module, f splits, and hence there exists an endomorphism $g: M \to M$, such that gf = 1. This implies that g is a surjective endomorphism. Now since M is Hopfian, g is an automorphism. Therefore f is an automorphism and M becomes a co-Hopfian R-module.

Definition 2.10. A module M is called quasi principally projective if every endomorphism f of M and every homomorphism g from M to f(M), there exists an endomorphism h of M such that fh = g.

Hence every quasi principally projective module is semi Hopfian, by [12, Proposition 3.2]. So we have the following corollary.

Corollary 2.11. Let M be a quasi principally projective R-module. If M is co-Hopfian, then it is Hopfian.

Definition 2.12. A module M is called quasi principally injective if every endomorphism f of M and every homomorphism g from f(M) to M, there exists an endomorphism h of M such that hf = g.

Hence any quasi principally injective module is semi co-Hopfian, by [12, Proposition 3.1]. So we have the following corollary.

Corollary 2.13. Let M be a quasi principally injective R-module. If M is Hopfian, then it is co-Hopfian.

Now we see an analogue to Hilbert's basis Theorem for semi Hopfian and for semi co-Hopfian Module.

Let M be an R-module. We will briefly recall the definitions of the modules M[x] and $M[x]/(x^{n+1})$ from [13]. The elements of M[x] are formal sums of the form $a_0+a_1x+...+a_kx^k$ with k an integer greater than or equal to 0 and $a_i \in M$. We denote this sum by $\sum_{i=1}^k a_i x^i$ ($a_0 x^0$ is to be understood as the element $a_0 \in M$). Addition is defined by adding the corresponding coefficients. The R[x]-module structure is given by

$$(\sum_{i=0}^{k} \lambda_i x^i).(\sum_{j=0}^{z} a_j x^j) = \sum_{\mu=0}^{k+z} c_\mu x^\mu,$$

where $c_{\mu} = \sum_{i+j=\mu} \lambda_i a_j$, for any $\lambda_i \in R$, $a_j \in M$.

Any nonzero element β of M[x] can be written uniquely as $(\sum_{i=k}^{l} m_i x^i)$ with $l \geq k \geq 0$, $m_i \in M$, $m_k \neq 0$ and $m_l \neq 0$. In this case, we refer to k as the order of β , l as the degree of β , m_k as the initial coefficient of β , and m_l as the leading coefficient of β . Let n be any non-negative integer and

$$I_{n+1} = \{0\} \cup \{\beta; 0 \neq \beta \in R[x], \text{ order of } \beta \ge n+1\}.$$

Then I_{n+1} is a two-sided ideal of R[x]. The quotient ring $R[x]/I_{n+1}$ will be called the truncated polynomial ring, truncated at degree n+1. Since R has an identity element, I_{n+1} is the ideal generated by x^{n+1} . Even when R does not have an identity element, we will "symbolically" denote the ring $R[x]/I_{n+1}$ by $R[x]/(x^{n+1})$. Any element of $R[x]/(x^{n+1})$ can be uniquely written as $(\sum_{i=0}^{n} \lambda_i x^i)$ with $\lambda_i \in R$. Let

$$D_{n+1} = \{0\} \cup \{\beta; 0 \neq \beta \in M[x], \text{ order of } \beta \ge n+1\}.$$

Then D_{n+1} is an R[x]-submodule of M[x]. Since $I_{n+1}M[x] \subset D_{n+1}$, we see that $R[x]/(x^{n+1})$ acts on $M[x]/D_{n+1}$. We denote the module $M[x]/D_{n+1}$ by $M[x]/(x^{n+1})$. Any nonzero element β of $M[x]/D_{n+1}$ can be written uniquely as $(\sum_{i=k}^n m_i x^i)$ with $n \geq k \geq 0$, $m_i \in M$, $m_k \neq 0$. In this case, we refer to k as the order of β , m_k as the initial coefficient of β . The action of $R[x]/(x^{n+1})$ on $M[x]/(x^{n+1})$ is given by

$$(\sum_{i=0}^{n} \lambda_i x^i).(\sum_{j=0}^{n} a_j x^j) = \sum_{\mu=0}^{n} c_{\mu} X^{\mu},$$

where $c_{\mu} = \sum_{i+j=\mu} \lambda_i a_j$, for any $\lambda_i \in R$, $a_j \in M$.

The $R[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1})$ -module $M[x_1,...,x_k]/(X_1^{n_1+1},...,x_k^{n_k+1})$ is defined similarly.

Lemma 2.14. Let M be an R-module and N be a submodule of M. If $N[x]/(x^{n+1})$ is a direct summand of $M[x]/(x^{n+1})$, then N is a direct summand of M.

Proof. Assume that $N[x]/(x^{n+1})$ is a direct summand of $M[x]/(x^{n+1})$, then $M[x]/(x^{n+1}) = N[x]/(x^{n+1}) \oplus L$, for some submodule L of $M[x]/(x^{n+1})$. Let L' be the submodule of M which is generated by the constant polynomials of L. Let $m \in M$. Then $m \in M[x]/(x^{n+1})$ and so m = g(x) + h(x) where $g(x) \in N[x]/(x^{n+1})$ and $h(x) \in L$. Since m is a constant polynomial in $M[x]/(x^{n+1})$, we have m = g(0) + h(0) where $g(0) \in N$

and $h(0) \in L'$. Hence M = N + L'. If $x \in N \cap L'$ then $x \in N[x]/(x^{n+1}) \cap L = \{0\}$, and finally $M = N \oplus L'$.

Theorem 2.15. Let M be an R-module. If $M[x]/(x^{n+1})$ is semi-Hopfian $R[x]/(x^{n+1})$ -module, then M is semi-Hopfian R-module.

Proof. Let $f: M \to M$ be any surjective endomorphism in R-module. Then $\alpha: M[x]/(x^{n+1}) \to M[x]/(x^{n+1})$ defined by $\alpha(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n f(a_i) x^i$ is a surjective endomorphism in $R[x]/(x^{n+1})$ -module. Since $M[x]/(x^{n+1})$ is semi Hopfian $R[x]/(x^{n+1})$ -module, $Ker(\alpha) = (Kerf)[x]/(x^{n+1})$ is a direct summand of $M[x]/(x^{n+1})$. Then by Lemma 2.14, Kerf is a direct summand of M, and finally M is semi Hopfian. \square

Theorem 2.16. Let M be an R-module. If $M[x]/(x^{n+1})$ is semi co-Hopfian $R[x]/(x^{n+1})$ -module, then M is semi co-Hopfian R-module.

Proof. Let $f: M \to M$ be any injective endomorphism in R-module. Then $\alpha: M[x]/(x^{n+1}) \to M[x]/(x^{n+1})$ defined by $\alpha(\sum_{i=0}^n a_i x^i) = \sum_{i=0}^n f(a_i) x^i$ is an injective endomorphism in $R[x]/(x^{n+1})$ -module. Since $M[x]/(x^{n+1})$ is semi co-Hopfian $R[x]/(x^{n+1})$ -module, $Im(\alpha) = (Imf)[x]/(x^{n+1})$ is a direct summand of $M[x]/(x^{n+1})$. Then by Lemma 2.14, Imf is a direct summand of M, and finally M is semi co-Hopfian.

Theorem 2.17. Let M be an R-module. If $M[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1})$ is semi Hopfian (respectively, semi co-Hopfian) $R[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1})$ -module, then M is semi Hopfian (respectively, semi co-Hopfian) R-module.

Proof. Use induction and the

$$\begin{split} &(R[x_1,...,x_{k-1}]/(x_1^{n_1+1},...,x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1})\text{-}module\ isomorphism}\\ &(M[x_1,...,x_{k-1}]/(x_1^{n_1+1},...,x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \simeq M[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1})\\ &and\ ring\ isomorphism \end{split}$$

$$(R[x_1,...,x_{k-1}]/(x_1^{n_1+1},...,x_{k-1}^{n_{k-1}+1}))[x_k]/(x_k^{n_k+1}) \simeq R[x_1,...,x_k]/(x_1^{n_1+1},...,x_k^{n_k+1}).$$

A submodule K of an R-module M is said to be small in M, written $K \ll M$, if for every submodule $L \subseteq M$ with K + L = M implies L = M.

Definition 2.18. [7] A module M is called generalized Hopfian if every surjective endomorphism of M has a small kernel.

It is clear that every Hopfian module is generalized Hopfian by [7, corollary 1.4], but the converse is not true.

Example 2.19. (see [7, example 1.7]). Let $G = \mathbb{Z}_{1^{\infty}}$. Since in G every proper subgroup is small, we see that G is a generalized Hopfian Abelian group. However G is not Hopfian since the multiplication by p induces an epimorphism of G which is not an isomorphism.

Proposition 2.20. Let M be a semi Hopfian module. Then the following conditions are equivalent:

- (1) M is Hopfian.
- (2) M is generalized Hopfian

Proof. (1) \Rightarrow (2) Evident.

 $(2)\Rightarrow (1)$ Let $f:M\to M$ be a surjective endomorphism. Since M is semi Hopfian, f splits, and hence there exists $g:M\to M$ such that fg=1. Now as M is a generalized Hopfian, then by [7, Corollary 1.4], M is Dedekind finite and hence gf=1. Therefore f is an injective endomorphism. This shows that f is an automorphism, and hence M becomes Hopfian.

A submodule K of an R-module M is said to be essential in M, written $K \leq^e M$, if for every submodule $L \subseteq M$ with $K \cap L = 0$ implies L = 0.

Definition 2.21. [8] A module M is called weakly co-Hopfian if every injective endomorphism of M has an essential image.

Proposition 2.22. Let M be a semi co-Hopfian module. Then the following conditions are equivalent:

- (1) M is co-Hopfian.
- (2) M is weakly co-Hopfian

Proof. (1) \Rightarrow (2) Evident.

 $(2) \Rightarrow (1)$ Let $f: M \to M$ be an injective endomorphism. Since M is semi co-Hopfian, f splits, and hence there exists $g: M \to M$ such that gf = 1. Now as M is a weakly co-Hopfian, then by [8, Proposition 1.4], M is Dedekind finite and

hence fg = 1. Therefore f is a surjective endomorphism. This shows that f is an automorphism, and hence M becomes co-Hopfian.

Acknowledgement.

The authors would like to express their sincere thanks for the referee for his/her helpful suggestions and comments.

References

- [1] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, *Grad. Texts in Math. Springer-Verlag, New York*, **13** (1992).
- [2] E.P. Armendariz, J.W. Fisher, R.L. Snider, On injective and surjective endomorphisms of finitely generated modules, *Comm. Algebra*, **6(7)** (1978), 659–672.
- [3] P. Aydogdu, A.C. Ozcan, Semi co-Hopfian and Semi Hopfian Modules, East West J. Math., 10(1) (2008), 57–72.
- [4] G. Azumaya, Strongly π-regular rings, J. Fac. Sci. Hokaido Univ, 13 (1954), 34–39.
- [5] F. Dischinger, Sur les anneaux fortement π-rguliers, C. R. Acad. Sci. Paris Ser. A, 283 (1976), 571–573.
- [6] Y. Gang, L. Zhong-kui, On Hopfian and Co-Hopfian Modules, Vietnam Journal of Mathematics, 35(1) (2007), 73–80.
- [7] A. Ghorbani, A. Haghany, Generalized Hopfian modules, J. Algebra, 255(2) (2002), 324–341.
- [8] A. Haghany, M.R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2) (2001), 765–779.
- [9] V.A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl.Math, 17(7) (1986), 895–900.
- [10] A. Hmaimou, A. Kaidi, E. Sanchez Campos, Generalized Fitting modules and rings, J. Algebra, 308 (2007), 199–214.
- [11] I. Kaplansky, Topological representations of algebras, II, Trans. Amer. Math. Soc., 68 (1950), 62–75.
- [12] V. Kumar, A.J. Gupta, B.M. Pandeya, M.K. Patel, M-SP-Projective Modules, International Journal of Algebra, 5(12) (2011), 563–568.
- [13] K. Varadarajan, A generalization of Hilbert's basis theorem, Comm. Algebra, 10(20) (1982), 2191–2204.
- [14] K. Varadarajan, Hopfian and co-Hopfian objects, Publications Matematiques, 36 (1992), 293–317
- [15] W.V. Vasconcelos, On finitely generated flat modules, Transactions of the AMS, 138 (1966), 505–512.

(1) Mathematics Department, Sciences Faculty, Mohammed First University, BP 717, 60000 Oujda, Morocco

 $Email\ address: {\tt a.elmoussaouy@ump.ac.ma}$

(2) Mathematics Department, Sciences Faculty, Mohammed First University, BP 717, 60000 Oujda, Morocco

 $Email\ address: {\tt ziane12001@yahoo.fr}$