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NOTES ON GENERALIZATIONS OF HOPFIAN AND
CO-HOPFIAN MODULES

ABDERRAHIM EL MOUSSAOUY® AND M’'HAMMED ZIANE®)

ABSTRACT. A module M is called semi co-Hopfian (resp. semi Hopfian) if any
injective (resp. surjective) endomorphism of M has a direct summand image (resp.
kernel). We show that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian
strongly Hopfian module, then Endr(M) is strongly m-regular ring. As a conse-
quence we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian
module and to semi co-Hopfian module. The semi Hopficity and semi co-Hopficity

of modules over truncated polynomial rings are considered.

1. INTRODUCTION

Throughout this paper, R denotes an associative ring with identity and modules M
are unitary left R-modules. The study of modules by properties of their endomor-
phisms has long been of interest. In 1986, Hiremath, [9], introduced the notion of
Hopfian modules and rings. A bit later, in 1992, Varadarajan, [14], introduced the
notion of co-Hopfian modules and rings. In 2001, Haghany and Vedadi, [§], and
in 2002, Ghorbani and Haghany, [7], respectively, introduced and investigated the
weakly co-Hopfian (respectively generalized Hopfian) modules (i.e., every injective
endomorphism has an essential image) (respectively every surjective endomorphism
has a small kernel). In 2007, Hmaimou, Kaidi and Sanchez Campos, [10], introduced
and investigated the Generalized Fitting modules. In 2008, Aydogdu and Ozcan, [3],

introduced the semi co-Hopfian and semi Hopfian modules. A module M is called
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semi co-Hopfian (resp. semi Hopfian) if any injective (resp. surjective) endomorphism
of M has a direct summand image (resp. kernel). Such modules and others generaliza-
tions were introduced and studied by many authors, (for more information about this
and others related topics, see, for instance, [6], [7], [9], [L0], [13], [14], [15]).In Section
2, We show that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly
Hopfian module, then Endgr(M) is strongly m-regular (Theorem [2.4]). As a conse-
quence we obtain that if M is semi Hopfian strongly co-Hopfian or semi co-Hopfian
strongly Hopfian module, then it is Fitting module (Corollary 25]). And also we
obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module and to
semi co-Hopfian module i.e., for a semi Hopfian (respectively semi co-Hopfian) mod-
ule, M, if M is strongly co-Hopfian (respectively strongly Hopfian) then M is strongly
Hopfian (respectively strongly co-Hopfian) (Corollary 2.6]). It is clear that every Hop-
fian module is semi Hopfian, but the converse is not true (see Example 27). Then
we prove that if M is semi Hopfian and co-Hopfian, then M is Hopfian, and if M is
semi co-Hopfian and Hopfian, then M is co-Hopfian (Theorem 2.9). Varadarajan [14]
showed that the left R-module M is Hopfian if and only if the left R[x]-module M[x]
is Hopfian if and only if the left R[x]/(z"™)-module M|x]/(z"') is Hopfian, where
n is a non-negative integer and x is a commuting indeterminate over R. However, for
any R-module M # 0, the R[z]-module M[z] is never co-Hopfian. In fact, the map
"multiplication by z” is injective and non surjective. We are motivated to prove that,
if M[z]/(x™"") is semi Hopfian (respectively, semi co-Hopfian) R[x]/(z"™)-module
then M is semi Hopfian (respectively, semi co-Hopfian) R-module, (Theorem 2.T5])
and (Theorem 2.10)).

Also we prove that if M is semi Hopfian (respectively semi co-Hopfian) module, then
Hopfian and generalized Hopfian (respectively co-Hopfian and weakly co-Hopfian) are
coincide, (Proposition 2.20) (respectively (Proposition 2.22))). Let R be a ring and
M an R-module. We recall the following definitions and facts:

Definition 1.1. (1) M is called Hopfian if every surjective endomorphism of M
is an automorphism. [9
(2) M is called co-Hopfian if every injective endomorphism of M is an automor-

phism. [14]
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Definition 1.2. [3] A module M is called semi Hopfian if any surjective endomor-
phism of M has a direct summand kernel, i.e., any surjective endomorphism of M

splits.

Definition 1.3. [3] A module M is called semi co-Hopfian if any injective endomor-
phism of M has a direct summand image, i.e., any injective endomorphism of M

splits.

Definition 1.4. [2] An R-module M is said to be Fitting module if for any endo-
morphism f of M, there exists a positive integer n > 1 such: M = Kerf™ ® Imf".

Definition 1.5. A ring R is called Dedekind finite ring if ba = 1 whenever ab = 1.
Equivalently, R is Dedekind finite ring if whenever a is left or right invertible, then

a 1s invertible.

Clearly ab = 1 implies that ba is non-zero idempotent, so R is a Dedekind finite ring

if and only if R is not isomorphic to any proper left or right ideal direct summand.

Definition 1.6. Let R be any unital ring and M be a unital R-module. M is called
Dedekind finite module if its ring of endomorphisms Endg(M) is a Dedekind finite

ring.

Consequently, M is Dedekind finite module if and only if M is not isomorphic to any

proper direct summand of itself.

Remark 1.7. The following facts are well known:

(1) Every Noetherian R-module M (i.e., M has ACC on submodules), is Hopfian
.

(2) Every Artinian R-module M (i.e., M has DCC on submodules), is co-Hopfian)
.

(8) The additive group Q of rational numbers is a non-Noetherian non-Artinian
Z-module, which is Hopfian and co-Hopfian [10].

(4) A ring R is left Hopfian if and only if R is Dedekind finite, if and only if R
s right Hopfian.

(5) Every commutative ring is Hopfian.
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(6) Every Artinian and Noetherian R-module is Fitting. [1]

(7) Every Fitting R-module is Hopfian and co-Hopfian. [1]

(8) If R is a commutative ring, then every finitely generated R-module is Hopfian
[15, Proposition 1.2].

2. MAIN RESULTS

Definition 2.1. [10] Let M be an R-module.

(1) M is called strongly Hopfian if for every endomorphism f of M the ascending
chain Kerf C Kerf? C ... C Kerf™ C ... stabilizes.
(2) M is called strongly co-Hopfian if for every endomorphism f of M the de-

scending chain Imf D Imf? D ... D Imf™ D ... stabilizes.

Remark 2.2. The left and right strongly w-regular rings have been introduced by
Kaplansky [11], Azumaya proved in 1954 that a ring R is strongly m-regular if for
every a € R there exist m € N and ¢ € R satisfying ac = ca and a™ = ca™" [4].

Dischinger proved in 1976 that the strongly m-regularity is left-right symmetric [5).

Example 2.3. By [10, Remark 2.16(3)], the ring R = [],,», Z/¥"Z is Hopfian (every
commutative ring is Hopfian) but not strongly Hopfian. Since every Hopfian ring is

semi Hopfian, the ring Hn21 ZJE"Z is semi Hopfian but not strongly Hopfian.

Theorem 2.4. Let M be an R-module. Then we have:
(1) If M is semi Hopfian strongly co-Hopfian, then Endg(M) is strongly -
reqular.
(2) If M is semi co-Hopfian strongly Hopfian, then Endg(M) is strongly -

reqular.

Proof. (1) Assume that M is a strongly co-Hopfian and semi Hopfian module and let
f be an endomorphism of M. By [10, Proposition 2.6|, there exists an integer n > 1
such that Imf" = Imft1.

Let g : M — Imf" = Imf, g(x) = f"(x), and h : M — Imf"™ = Imfr,
h(z) = f™(z), for every x € M.

Since g(x) = f"Y(x) and h(x) = f*(x) are surjective, there exists v, 3 € Endp(M),
such that: " ta =1 and "B = 1, by the definition of semi Hopfian module. Then
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B is an injective endomorphism and f" o= f"B. Now as M is strongly co-Hopfian
then it is co-Hopfian, so 8 is an automorphism and f*TaB=' = f". Therefore
[ty = f* where v = af~t € Endr(M).

And finally by Dischinger theorem, [0, Remark 2.2(7)], Endgr(M) is strongly -
reqular.

(2) Assume that M is a strongly Hopfian and semi co-Hopfian module and let f be
an endomorphism of M. By [10, Proposition 2.5], there exists an integer n > 1 such
that Ker f* = Ker fntt,

Let g : Imf™ — M, g(f*(x)) = f**Y(x), and h : Imf™ — M, the natural inclusion,
h(f™(z)) = f™(z), for every x € M. If f*(x) =0, we have z € Ker f"™' = Ker "
then f™(z) =0, so g is injective.

Since g(f*(x)) = f*Hxz) and h(f*(x)) = f*(z) are injective, there exists o, (3
€ Endg(M), such that: af™™ = 1 and Bf" = 1, by the definition of semi co-
Hopfian module. Then B is a surjective endomorphism and o f™** = Sf*. Now as M
is strongly Hopfian then it is Hopfian, so 3 is an automorphism and B~ taf"l = fn.
Therefore v = f* where v = 87 a € Endr(M).

And finally by Dischinger theorem, [5, Remark 2.2(7)], Endgr(M) is strongly -

reqular. O

Corollary 2.5. Every semi Hopfian strongly co-Hopfian or semi co-Hopfian strongly
Hopfian module is a Fitting module.

Proof. This follows from Theorem[2.4] and |2, Proposition 2.3]. O

Now we obtain a version of Hopkins-Levitzki Theorem extend to semi Hopfian module

and to semi co-Hopfian module

Corollary 2.6. Let M be an R-module. Then we have:

(1) If M is semi Hopfian strongly co-Hopfian, then M is strongly Hopfian.
(2) If M is semi co-Hopfian strongly Hopfian, then M is strongly co-Hopfian.

Proof. (1) By Theorem[2, End(M) is strongly w-reqular. Then M is a Fitting mod-
ule by [2], and finally M is strongly Hopfian by [10, Proposition 2.7(2)].



48 ABDERRAHIM EL MOUSSAOUY AND M'HAMMED ZIANE

(2) By Theorem[2.4, End(M) is strongly w-regular. Then M is a Fitting module by
[2], and finally M is strongly co-Hopfian by [10, Proposition 2.7(2)]. O

It is clear that every Hopfian module is semi Hopfian, but the converse is not true.

Example 2.7. By [9 Theorem 16(ii)], a vector space V' over a field F' is Hopfian if
and only if it is finite dimensional. Thus an infinite-dimensional vector space over a

field is semi Hopfian, but it is not Hopfian.

Proposition 2.8. Let M be a semi Hopfian R-module. If M is indecomposable, then
it 1s Hopfian.

Proof. Let f : M — M be a surjective endomorphism. Since M is semi Hopfian,
Kerf is a direct summand of M. Now as M is an indecomposable, then M can not
be written as direct sum of its nonzero submodules. Therefore Kerf = 0. This shows

that f is an automorphism, and hence M becomes Hopfian. O

Theorem 2.9. (1) Let M be a semi Hopfian R-module. If M is co-Hopfian, then
it is Hopfian.
(2) Let M be a semi co-Hopfian R-module. If M is Hopfian, then it is co-Hopfian.

Proof. (1) Let f : M — M be a surjective endomorphism. Since M is a semi Hopfian
R-module, f splits, and hence there exists an endomorphism g : M — M, such that
fg = 1. This implies that g is an injective endomorphism. Now since M is co-
Hopfian, g is an automorphism. Therefore f is an automorphism and M becomes a
Hopfian R-module.

(2) Let f : M — M be an injective endomorphism. Since M is a semi co-Hopfian
R-module, f splits, and hence there exists an endomorphism g : M — M, such that
gf = 1. This implies that g is a surjective endomorphism. Now since M is Hopfian,
g is an automorphism. Therefore f is an automorphism and M becomes a co-Hopfian

R-module. O

Definition 2.10. A module M is called quasi principally projective if every endo-
morphism f of M and every homomorphism ¢ from M to f(M), there exists an
endomorphism h of M such that fh =g.
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M

Hence every quasi principally projective module is semi Hopfian, by [12, Proposition

3.2]. So we have the following corollary.

Corollary 2.11. Let M be a quasi principally projective R-module. If M is co-
Hopfian, then it is Hopfian.

Definition 2.12. A module M is called quasi principally injective if every endo-
morphism f of M and every homomorphism ¢ from f(M) to M, there exists an

endomorphism h of M such that hf = g.

Hence any quasi principally injective module is semi co-Hopfian, by [12, Proposition

3.1]. So we have the following corollary.

Corollary 2.13. Let M be a quasi principally injective R-module. If M is Hopfian,
then it is co-Hopfian.

Now we see an analogue to Hilbert’s basis Theorem for semi Hopfian and for semi
co-Hopfian Module.

Let M be an R-module. We will briefly recall the definitions of the modules M|z]
and M[z]/(z"™!) from [13]. The elements of M|x] are formal sums of the form
ao+a1x+...+a,x® with k an integer greater than or equal to 0 and a; € M. We denote
this sum by S°F | a;2% (apz® is to be understood as the element ag € M). Addition is

defined by adding the corresponding coefficients. The R[x]-module structure is given

by
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k i z i k+z
(Ximo Niw )'(Zj:O a;x’) = Z,;o cut,
where ¢, = ) Aia;, for any \; € R, a; € M.

Any nonzero element 3 of M[z] can be written uniquely as (3.._, mz?) with [ > k >

+j=p

0, m; € M, my, # 0 and m; # 0. In this case, we refer to k as the order of 3, [ as the
degree of 3, my as the initial coefficient of 3, and m; as the leading coefficient of 5.
Let n be any non-negative integer and

Iy ={0}U{B;0+# 5 € R[z], order of § > n + 1}.
Then 1,11 is a two-sided ideal of R[z]. The quotient ring R[x]/I,.; will be called the
truncated polynomial ring, truncated at degree n+1. Since R has an identity element,

"+l Even when R does not have an identity element,

1,11 is the ideal generated by =
we will ”symbolically” denote the ring R[z]/I,4+1 by R[z]/(z"*1). Any element of
R[z]/(z"*1) can be uniquely written as (3., \z") with A; € R.

Let

Dy ={0}U{B;0# B € Mz], order of B > n + 1}.

Then D, 4, is an R[x]-submodule of M|z|. Since I,,;1M[x] C D,41, we see that
R[z]/(z") acts on M|z]/D,+1. We denote the module M[x]/D,,+1 by M|x]/(z" ).
Any nonzero element § of M|z|/D,1 can be written uniquely as (3., m;z") with

n>k>0 m; €M, my #0. In this case, we refer to k as the order of 3, m; as the
initial coefficient of 3. The action of R[z]/(x"*!) on M[z]/(z"™!) is given by

(> im0 AW)-(Z?:O a;z’) = Zzzo cu X,
where ¢, = Zi+j=“ Aiaj, for any \; € R, a; € M.
The R[zy, ..., ) /(a7 ., 2% )-module My, ..., 2] /(X7 ., 2751 is defined

similarly.

Lemma 2.14. Let M be an R-module and N be a submodule of M. If N[z]/(z"*!)

n+1)

is a direct summand of M[xz]/(x"™"), then N is a direct summand of M.

Proof. Assume that N(x]/(z") is a direct summand of M|x]/(x™Y), then M[z]/(2™*1) =
Nlx]/(z"™) @ L, for some submodule L of M[z]/(x"™). Let L be the submodule of
M which is generated by the constant polynomials of L. Let m € M. Then m €
M(z]/(z") and so m = g(x) + h(x) where g(x) € N[z]/(x"*) and h(x) € L. Since
m is a constant polynomial in M[x]/(z"), we have m = g(0)+ h(0) where g(0) € N
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and h(0) € L'. Hence M = N+ L'. Ifx € NN L' then x € N[z]/(z"™) N L = {0},
and finally M = N & L. O

Theorem 2.15. Let M be an R-module. If M|[x]/(z"*') is semi Hopfian R[x]/(z"')-
module, then M is semi Hopfian R-module.

Proof. Let f : M — M be any surjective endomorphism in R-module. Then « :
Mlaz]/(a"*h) — Mlx]/(z"*1) defined by o(3_q aix’) = 32, f(ai)a® is a surjective
endomorphism in R[z]/(x™"1)-module. Since M|x]/(z") is semi Hopfian R[x]/(z"*')-
module, Ker(a) = (Kerf)[z]/(z"™) is a direct summand of M[z]/(z™™). Then by
Lemma[2.14), Kerf is a direct summand of M, and finally M is semi Hopfian. O

Theorem 2.16. Let M be an R-module. If M|x]/(z™*1) is semi co-Hopfian R[x]/(z™11)-

module, then M is semi co-Hopfian R-module.

Proof. Let f : M — M be any injective endomorphism in R-module. Then « :
Mlz]/(x™th) — Mz]/(2") defined by a(Y i yax’) = doi fla)x" is an injec-
tive endomorphism in R[x]/(z"™')-module. Since M[z]/(x™*1) is semi co-Hopfian
R[z]/(z™)-module, Im(a)) = (Imf)[z]/ (") is a direct summand of M|[z]/(z"T").
Then by Lemma Imf is a direct summand of M, and finally M is semi co-
Hopfian. U

Theorem 2.17. Let M be an R-module. If M(zy, ..., zx]/(x ™, . 2% ) is semi
Hopfian (respectively, semi co-Hopfian) Ry, ..., xx] /(7 ...,xzkﬂ)—module, then

M is semi Hopfian (respectively, semi co-Hopfian) R-module.

Proof. Use induction and the

(Rlxy, oy wpa] /(@MY 2 ) ]/ (@) -module isomorphism,

(M[zy, ..., xp_q] /(T xZﬁlH))[xk]/(xZ”l) ~ Mlxy, ..., z3] /(2L xzkﬂ)
and ring isomorphism

(Rlwrs oy ] /(@ ) ] /(@) = R, e ] /(@) O

A submodule K of an R-module M is said to be small in M, written K < M, if for
every submodule L C M with K + L = M implies L = M.

Definition 2.18. [7] A module M is called generalized Hopfian if every surjective

endomorphism of M has a small kernel.
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It is clear that every Hopfian module is generalized Hopfian by [7, corollary 1.4], but

the converse is not true.

Example 2.19. (see [T, example 1.7]). Let G = Z. Since in G every proper
subgroup is small, we see that G is a generalized Hopfian Abelian group. However G
is not Hopfian since the multiplication by p induces an epimorphism of G which is

not an isomorphism.

Proposition 2.20. Let M be a semi Hopfian module. Then the following conditions
are equivalent:

(1) M is Hopfian.

(2) M is generalized Hopfian

Proof. (1) = (2) Evident.

(2)= (1) Let f : M — M be a surjective endomorphism. Since M is semi Hopfian, f
splits, and hence there exists g : M — M such that fg = 1. Now as M s a generalized
Hopfian, then by [7, Corollary 1.4], M is Dedekind finite and hence gf = 1. Therefore
f s an injective endomorphism. This shows that f is an automorphism, and hence

M becomes Hopfian. O

A submodule K of an R-module M is said to be essential in M, written K <¢ M, if
for every submodule L C M with K N L = 0 implies L = 0.

Definition 2.21. [§] A module M is called weakly co-Hopfian if every injective

endomorphism of M has an essential image.

Proposition 2.22. Let M be a semi co-Hopfian module. Then the following condi-
tions are equivalent:

(1) M s co-Hopfian.

(2) M is weakly co-Hopfian

Proof. (1) = (2) Evident.

(2) = (1) Let f : M — M be an injective endomorphism. Since M is semi co-
Hopfian, f splits, and hence there exists g : M — M such that gf = 1. Now as
M is a weakly co-Hopfian, then by [8, Proposition 1.4], M is Dedekind finite and
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hence fg = 1. Therefore f is a surjective endomorphism. This shows that f is an

automorphism, and hence M becomes co-Hopfian. O
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