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SOME REFINEMENTS OF NUMERICAL RADIUS INEQUALITIES

FOR HILBERT SPACE OPERATORS

EBRAHIM ALIZADEH (1)AND ALI FAROKHINIA (2)

Abstract. The main goal of this paper is to obtain some refinements of numerical

radius inequalities for Hilbert space operators.

1. Introduction and Preliminaries

Let B (H) denote the C∗ -algebra of all bounded linear operators on a complex

Hilbert space H with inner product 〈·, ·〉. For T ∈ B (H), let ω (T ) and ‖T‖ de-

note the numerical radius and the usual operator norm of T , respectively. Recall

that ω (T ) = sup
‖x‖=1

| 〈Tx, x〉 |. It is well-known that ω (·) defines a norm on B (H),

which is equivalent to the operator norm ‖·‖. In fact, for every T ∈ B (H),

(1.1)
1

2
‖T‖ ≤ ω (T ) ≤ ‖T‖ .

Also, it is a basic fact that ω (·) satisfies the power inequality

ω (T n) ≤ ωn (T )

for all n = 1, 2, . . ..

In [4], Kittaneh gave the following estimate of the numerical radius which refines the

second inequality in (1.1):

For every T ∈ B (H),

(1.2) ω (T ) ≤ 1

2
‖T‖+ 1

2

∥

∥T 2
∥

∥

1

2 .
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The following estimate of the numerical radius has been given in [6]:

(1.3) ω2 (T ) ≤ 1

2
‖T ∗T + TT ∗‖ .

The inequality (1.3) also refines the inequality (1.1). This can be seen by using the

fact that

‖T ∗T + TT ∗‖ ≤ ‖T‖2 +
∥

∥T 2
∥

∥ .

For other properties of the numerical radius and related inequalities, the reader may

consult [8, 9, 10, 11, 13]. In this article, we give several refinements of numerical

radius inequalities. Our results mainly extend and improve the inequalities in [4, 12].

2. Main Results

In the sequel the following lemmas will be needed.

Lemma 2.1. [5] Let A be an operator in B (H) and x, y ∈ H be any vectors.

(a) If 0 ≤ α ≤ 1, then |〈Tx, y〉|2 ≤
〈

|T |2αx, x
〉

〈

|T ∗|2(1−α)
y, y
〉

.

(b) If f, g are non-negative continuous functions on [0,∞) satisfying f (t) g (t) =

t, (t ≥ 0), then |〈Tx, y〉| ≤ ‖f (|T |) x‖ ‖g (|T ∗|) y‖.

Lemma 2.2. [5] Let A be a positive operator in B (H) and let x ∈ H be any unit

vector. Then

(a) 〈Arx, x〉 ≤ 〈Ax, x〉r for 0 < r < 1.

(b) 〈Ax, x〉r ≤ 〈Arx, x〉 for r ≥ 1.

Lemma 2.3. For a, b ≥ 0, 0 ≤ α ≤ 1, r ≥ 1 and p, q > 1 such that 1
p
+ 1

q
= 1, we

have ab ≤ ap

p
+ bq

q
≤
(

apr

p
+ bqr

q

)
1

r

.

Minculete, in [7, Theorem 2.1], obtained an improvement of the Young inequality as

follows:

Lemma 2.4. Let a, b > 0 and ν ∈ (0, 1). Then

(2.1) aνb1−ν

(

a+ b

2
√
ab

)2µ

≤ νa+ (1− ν) b

where µ = min {ν, 1− ν}.
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Notice that, if 0 < m ≤ a, b ≤ M , then m+M√
mM

≤ a+b√
ab
. Based on this fact, from the

inequality (2.1) we have

(2.2) aνb1−ν

(

m+M

2
√
mM

)2µ

≤ νa + (1− ν) b

where µ = min {ν, 1− ν}.

We recall the following refinement of the inequality (1.1) obtained by Dragomir in

[3]:

(2.3) ω2 (A) ≤ 1

2

(

‖A‖2 + ω
(

A2
))

.

In addition to this, we have the following related inequality:

Theorem 2.1. Let A ∈ B (H) and f, g be non-negative continuous functions on

[0,∞) satisfying f (t) g (t) = t, (t ≥ 0), and

r
√
m ≤ f 2 (|A2|) ≤ r

√
M, r

√
m ≤ g2

(∣

∣(A2)
∗∣
∣

)

≤ r
√
M.

Then

(2.4) ωr
(

A2
)

≤
(

m+M

2
√
mM

)−1
∥

∥

∥

∥

∥

f 2r (|A2|) + g2r
(∣

∣(A2)
∗∣
∣

)

2

∥

∥

∥

∥

∥

.

Proof. Let x ∈ H be a unit vector and r ≥ 1. We have

∣

∣

〈

A2x, x
〉∣

∣

r

≤
〈

f 2
(∣

∣A2
∣

∣

)

x, x
〉

r

2

〈

g2
(∣

∣

(

A2
)∗∣
∣

)

x, x
〉

r

2

(by Lemma 2.1 (b))

≤
(

m+M

2
√
mM

)−1
(

〈f 2 (|A2|)x, x〉r +
〈

g2
(∣

∣(A2)
∗∣
∣

)

x, x
〉r

2

)

(by (2.2))

≤
(

m+M

2
√
mM

)−1
(

〈f 2r (|A2|)x, x〉 +
〈

g2r
(∣

∣(A2)
∗∣
∣

)

x, x
〉

2

)

(by Lemma 2.2 (b))

=

(

m+M

2
√
mM

)−1
〈(

f 2r (|A2|) + g2r
(∣

∣(A2)
∗∣
∣

)

2

)

x, x

〉

.
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Taking the supremum over x ∈ H with ‖x‖ = 1, we deduce the desired result (2.4).

�

Remark 1. If we take f (t) = t1−α, g (t) = tα, 0 ≤ α ≤ 1, in Theorem 2.1, we get

ωr
(

A2
)

≤
(

m+M

2
√
mM

)−1 ∥
∥

∥

∣

∣A2
∣

∣

2r(1−α)
+
∣

∣

(

A2
)∗∣
∣

2rα
∥

∥

∥

whenever

r
√
m ≤

∣

∣A2
∣

∣

2(1−α) ≤ r
√
M, r

√
m ≤

∣

∣

(

A2
)∗∣
∣

2α ≤ r
√
M.

Remark 2. It follows from [12, Proposition 2.5] that

(2.5) ω
(

A2
)

≤ 1

2

(

‖A‖2 +
∥

∥

∥

∥

∥

f 2 (|A2|) + g2
(∣

∣(A2)
∗∣
∣

)

2

∥

∥

∥

∥

∥

)

.

Letting r = 1 in (2.4). Therefore, from the inequality (2.3),

ω2 (A) ≤ 1

2

(

‖A‖2 +
(

m+M

2
√
mM

)−1
∥

∥

∥

∥

∥

f 2 (|A2|) + g2
(∣

∣(A2)
∗∣
∣

)

2

∥

∥

∥

∥

∥

)

.

It is worth to mention that the above inequality is sharper than the inequality (2.5),

since
(

m+M

2
√
mM

)−1

≤ 1.

The following result for several operators holds:

Theorem 2.2. Let A,B,X ∈ B (H) be such that A,B are positive, and

m ≤ Ar ≤ M, m ≤ Br ≤ M.

Then

(2.6) ωr
(

AαXB1−α
)

≤
(

m+M

2
√
mM

)−2µ

‖X‖r ‖αAr + (1− α)Br‖

for all 0 ≤ α ≤ 1, r ≥ 2 and µ = min {α, 1− α}.
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Proof. Let x ∈ H be a unit vector. We have

(2.7)

∣

∣

〈

AαXB1−αx, x
〉∣

∣

r
=
∣

∣

〈

XB1−αx,Aαx
〉∣

∣

r

≤ ‖X‖r
∥

∥B1−αx
∥

∥

r‖Aαx‖r

= ‖X‖r
〈

B2(1−α)x, x
〉

r

2

〈

A2αx, x
〉

r

2

≤ ‖X‖r〈Arx, x〉α〈Brx, x〉1−α

(by Lemma 2.2 (a))

≤
(

m+M

2
√
mM

)−2µ

‖X‖r 〈(αAr + (1− α)Br)x, x〉

(by (2.2))

where µ = min {α, 1− α}.
Now taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality produces

(2.6). �

As a consequence of the above theorem, we have:

Corollary 2.1. Suppose that the assumptions of Theorem 2.2 are satisfied. Then

(2.8) ωr
(

A
1

2XB
1

2

)

≤
(

m+M

2
√
mM

)−1

‖X‖r
∥

∥

∥

∥

Ar +Br

2

∥

∥

∥

∥

.

The following result may be stated as well.

Theorem 2.3. Let all the assumptions of Theorem 2.2 be valid. Then

ωr

(

AαXB1−α + A1−αXBα

2

)

≤
(

m+M

2
√
mM

)−2µ

‖X‖r
∥

∥

∥

∥

Ar +Br

2

∥

∥

∥

∥

.

Proof. By the inequality (2.7), we have

∣

∣

〈

AαXB1−αx, x
〉∣

∣

r ≤
(

m+M

2
√
mM

)−2µ

‖X‖r 〈(α|A|r + (1− α) |B|r)x, x〉

for all 0 ≤ α ≤ 1, r ≥ 2 and µ = min {α, 1− α}. Hence
∣

∣

∣

〈

AαXB1−α+A1−αXBα

2
x, x
〉∣

∣

∣

r

(2.9)

≤
(

|〈AαXB1−αx,x〉|+|〈A1−αXBαx,x〉|
2

)r

(2.10)

≤ |〈AαXB1−αx,x〉|r+|〈A1−αXBαx,x〉|r
2

(2.11)

(2.12)
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≤
(

m+M

2
√
mM

)−2µ ‖X‖r
2

× (〈(αAr + (1− α)Br)x, x〉 + 〈((1− α)Ar + αBr) x, x〉)

=
(

m+M

2
√
mM

)−2µ

‖X‖r
〈(

Ar+Br

2

)

x, x
〉

.

Therefore,

ωr

(

AαXB1−α + A1−αXBα

2

)

≤
(

m+M

2
√
mM

)−2µ

‖X‖r
∥

∥

∥

∥

Ar +Br

2

∥

∥

∥

∥

.

This completes the proof. �

The following result concerning the sums of two operators may be stated as well:

Theorem 2.4. Let A,B ∈ B (H). Then

(2.13) ωr (A+B) ≤
√

∥

∥

∥

∥

1

p
|A+B|2prα +

1

q
|(A +B)∗|2qr(1−α)

∥

∥

∥

∥

for 0 ≤ α ≤ 1, r ≥ 1 with 1
p
+ 1

q
= 1.

Proof. For any unit vector x ∈ H we have

|〈(A +B)x, x〉|2r

≤
〈

|A +B|2αx, x
〉r
〈

|(A +B)∗|2(1−α)
x, x
〉r

(by Lemma 2.1 (a))

≤
〈

|A +B|2rαx, x
〉

〈

|(A+B)∗|2r(1−α)
x, x
〉

(by Lemma 2.2 (b))

≤ 1

p

〈

|A +B|2rαx, x
〉p

+
1

q

〈

|(A+B)∗|2r(1−α)
x, x
〉q

(by Lemma 2.3)

≤ 1

p

〈

|A+B|2prαx, x
〉

+
1

q

〈

|(A+B)∗|2qr(1−α)
x, x
〉

(by Lemma 2.2 (b))

=

〈

1

p
|A +B|2prα +

1

q
|(A+B)∗|2qr(1−α)

x, x

〉

.

Now taking the supremum over x ∈ H with ‖x‖ = 1 in the above inequality produces

(2.13). �
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Remark 3. If we take B = A, p = q = 2, r = 1, and α = 1
2
in Theorem 2.4, we get

ω (A) ≤ 1

2

√

∥

∥2
(

|A|2 + |A∗|2
)∥

∥,

which is equivalent to the following inequality

ω2 (A) ≤ 1

2

∥

∥|A|2 + |A∗|2
∥

∥ .

In fact, our inequality (2.13), can be considered as an extension of the inequality

(1.3).

Remark 4. Let A,B ∈ B (H), such that

r
√
m ≤ |A+B|2α ≤ r

√
M, r

√
m ≤ |(A+B)∗|(2(1−α)) ≤ r

√
M.

Then by using the inequality (2.2), we deduce

ωr (A+B) ≤
(

m+M

2
√
mM

)−1
∥

∥

∥

∥

∥

|A +B|2rα + |(A+B)∗|2r(1−α)

2

∥

∥

∥

∥

∥

.

In particular,

ωr (A+B) ≤
(

m+M

2
√
mM

)−1 ∥
∥

∥

∥

|A+B|r + |(A +B)∗|r

2

∥

∥

∥

∥

.

The following result is of interest in itself.

Theorem 2.5. Let A ∈ B (H). Then for any r ≥ 1,

w2r (A) ≤ 1

4
(‖A∗A+ AA∗‖r + ‖A∗A− AA∗‖r) + 1

2
wr
(

A2
)

.

Proof. The celebrated Boas–Bellman inequality asserts that

n
∑

i=1

|〈a, bi〉|2 ≤ ‖a‖2


max
1≤i≤n

‖bi‖2 +
(

∑

1≤i 6=j≤n

|〈bi, bj〉|2
)

1

2





for any a ∈ H (see [1, 2]).

Evidently, the case n = 2 in the above reduces to

|〈z, x〉|2 + |〈z, y〉|2 ≤ ‖z‖2
(

max
(

‖x‖2, ‖y‖2
)

+ |〈x, y〉|
)

.
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Choosing x = Ax, y = A∗x, and z = x with ‖x‖ = 1, we infer that

(2.14)

|〈x,Ax〉|2 + |〈x,A∗x〉|2

≤ max
(

‖Ax‖2, ‖A∗x‖2
)

+ |〈Ax,A∗x〉|

=
1

2
(|〈A∗A+ AA∗x, x〉|+ |〈A∗A−AA∗x, x〉|) +

∣

∣

〈

A2x, x
〉∣

∣ ,

due to max (a, b) = |a+b|+|a−b|
2

.

Applying the arithmetic–geometric mean inequality to the left hand side of the above

inequality, to get

|〈A∗x, x〉| |〈Ax, x〉|

≤ 1

4
(|〈A∗A + AA∗x, x〉|+ |〈A∗A−AA∗x, x〉|) + 1

2

∣

∣

〈

A2x, x
〉∣

∣ .

It follows from the classical Jensen inequality that

|〈A∗x, x〉| |〈Ax, x〉|

≤
[

1

2

( |〈A∗A+ AA∗x, x〉|+ |〈A∗A− AA∗x, x〉|
2

)r

+
1

2

∣

∣

〈

A2x, x
〉∣

∣

r

]
1

r

for any r ≥ 1.

Therefore,

|〈A∗x, x〉|r|〈Ax, x〉|r

≤ 1

2

( |〈A∗A+ AA∗x, x〉|+ |〈A∗A−AA∗x, x〉|
2

)r

+
1

2

∣

∣

〈

A2x, x
〉∣

∣

r

≤ 1

4
(|〈A∗A + AA∗x, x〉|r + |〈A∗A−AA∗x, x〉|r) + 1

2

∣

∣

〈

A2x, x
〉∣

∣

r
.

Now, by taking the supremum over x ∈ H with ‖x‖ = 1, the desired inequality is

obtained. �

Corollary 2.2. Let A ∈ B (H). Then

w2 (A)− 1

2
w
(

A2
)

≤ 1

4

(∥

∥|A|2 + |A∗|2
∥

∥+
∥

∥|A|2 − |A∗|2
∥

∥

)

.
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