Jordan Journal of Mathematics and Statistics (JJMS), 15(1), 2022, pp 65 - 88
DOI: https://doi.org/10.47013/15.1.6

HOLDER’S INEQUALITIES FOR A CLASS OF ANALYTIC
FUNCTIONS CONNECTED WITH ¢g— CONFLUENT
HYPERGEOMETRIC DISTRIBUTION

SHEZA M. EL-DEEB () AND G. MURUGUSUNDARAMOORTHY 2

ABSTRACT. In this paper, we introduce new a class of analytic functions connected
with g—confluent hypergeometric distribution. The results on modified Hadamard
product, Holder’s inequalities some interesting convolution properties, closure prop-
erties under integral transforms, integral means and partial sums, are considered

for functions belonging to these classes.

1. INTRODUCTION

In [30] Srivastava presented and motivated about brief expository overview of the
classical g-analysis versus the so-called (p, ¢)-analysis with an obviously redundant
additional parameter p. We also briefly consider several other families of such ex-
tensively and widely-investigated linear convolution operators as (for example) the
Dziok—Srivastava, Srivastava—Wright and Srivastava—Attiya linear convolution oper-
ators, together with their extended and generalized versions. The theory of (p,q)-
analysis has important role in many areas of mathematics and physics. Our usages
here of the g-calculus and the fractional g—calculus in geometric function theory
of complex analysis are believed to encourage and motivate significant further de-
velopments on these and other related topics (see Srivastava and Karlsson [31, pp.

350-351], also [1, 9, 10, 11, 33, 12, 28, 29]).
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Let A denote the class of functions of the form
(1.1) f(2) :z—l—Zakzk,
k=2

which are analytic in the open unit disc A = {z : |z| < 1}. Further, by & we
shall denote the class of all functions in A which are univalent and normalized by
f(0) =0= f'(0) — 1. We denote by §*(4) and C(9) the subclasses of S consisting
of all functions which are, respectively, starlike and convex of order § (0 <6 < 1).

Thus,

(1.2) S*(é)z{f@S:?R(zf,(Z))>5 (0§5<1;zeA)},

f(2)
and
(1.3) C(5):{f6 szm(uzﬂg))m (O§5<1;26A)}.

The classes $*(0) and C (6) were introduced by Robertson [22]. From (1.2) and (1.3)
it follows that

(1.4) f(2) €C0) & 2f'(2) € S*(6).

We note that:

S*(0) = S*, €(0) =C.

Definition 1.1. For f, g € A, we say that f is subordinate to g, written f(z) < g(2),
if there exists a Schwar’z function w, which is analytic in A, with w(0) = 0 and
lw(z)] < 1 for all z € A, such that f(z) = g(w(z)), z € A. Furthermore, if the

function g is univalent in A, then we have the following equivalence (see [3, 15]):
f(2) < g(z) & f(0) = g(0) and f(A) C g(A).
Also denote by T the subclass of S consisting of functions of the form
(1.5) f(z2) :z—iakzk, ag > 0; z €A
k=2

Recently, Nishiwaki et al. [18] have studied some results of Holder-type inequalities

for a subclass of uniformly starlike functions. Now, we recall the generalization of
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the convolution due to Choi et al. [4]. For functions f;(z) € A are given by

(1.6) fi(z) =2 — iakﬂ-zk (ag; >0; 1 =1,2,...,n),
k=2
we define
(1.7) Gn(2) =2 — Z (H ak,i) 2~
k=2 \i=1
and
(1.8) Ho(z)=2-) <H(ak,i)pi> 2 (pi > 0),
k=2 \i=1

where G, (z) denotes the modified Hadamard product of f;(z) (i = 1,2,...,n) are
given by (1.6). Therefore, H,,(2) are the generalization modified Hadamard product.
We note that:

(i) For n = 2, then Gy(z) = (f1 * f2)(2);

(i) For p; = 1, we have H,(z) = G,(2).

Further for functions fi(z) (¢ = 1,2,...,n) are given by (1.6), the familiar Holder
16, 17, 34))

—

inequality assumes the following form (see

o )0 (5]

=1

I

i

1
pi>1i=1,2...n Y —

The confluent hypergeometric function of the first kind is given by the power series

b b (b+1)2?
Flbyc;2) = 14 2ot o0t )=
(b ¢; 2) +cz+c(c+1)2!

_ Z%zk, (beC, ceC\{0,-1,-2,...}),

k=0

where (b), is the Pochhammer symbol defined in terms of the Gamma function by

(0) CIb+k) )L it k=0,
fOT() b(b+1)..(b+k—1), if ke N={1,2,..}.
is convergent for all finite values of z (see [21]). It can be written otherwise

F(b;c;m) Z mk, (beC, ce C\{0,-1,-2,...}),

k;:0

is convergent for b, ¢, m > 0.
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Very recently, Porwal and Kumar [20] introduced the confluent hypergeometric dis-
tribution (CHD) whose probability mass function is (see [7, 5])

(b),
(0), KIE(b;cim)

P(k) = m*, (b,e,m >0, k=0,1,2,...).

Porwal [19] introduced a series Z(b;c;m;z) whose coefficients are probabilities of

confluent hypergeometric distribution

> (D)1 mh!
(1.10) I(bemiz) =z+) (s (;f_ 1)!F(b; c;m)

k=2

2* (b,e,m > 0),

and defined a linear operator Q(b;c;m)f : A — A as follows:

Q;e;m) f(z) = Z(bie;m;z) * f(z)

- (b) B K
= Z—l—z( — (kk_ 1)'F(bcm)ak2 , (bye,m >0).

Srivastava [30] (see also [32], [33, 12]) made use of various operators of g-calculus
and fractional g-calculus and recalling the definition and notations. The g¢-shifted

factorial is defined for \,¢ € C and n € Ny = NU {0} as follows

if k=0,

Nk = (1= M) (1=A\g)... (1 o )\qk—l) if keN.

By using the ¢-gamma function I';(2), we get

<1—@kiax+m ey,

((]/\§Q)k = P /\) )

q

where

m@>=u—qf25%%&, (la < 1)

for details (see [8]). Also, we note that

and, the g-gamma function I';(2) is known

Po(z+1) = [2], Tq(2),
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where [k], denotes the basic g-number g € (0,1) defined as follows
1—g* :
17qq if keC,

k—1
1+> ¢, if keN
=1

J

(1.11) (K], =
Using the definition formula (1.11) we have the next two products:

(i) For any non negative integer k, the g-shifted factorial is given by

1, if k=0,
k]! = k

[, if keN.
n=1

69

(ii) For any positive number r, the g-generalized Pochhammer symbol is defined by

| it k=0,
[r] =< r+k-1
ak 1 [, if keN.

It is known in terms of the classical (Euler’s) gamma function I' (2), that

Ly(z) =>T(2) as ¢ — 17.

e
qu— { (1-— q)k} = M-

For 0 < ¢ < 1, the g-derivative operator [10] for Z(b; ¢;m; z) is defined by

Q(b; c;m) f(z) — Q(b; ¢;m) f(g2)
2(1—q)

- . (b)), m"! -

- 1+;[k]q(c)k_1 = DFGem™®

Also, we observe that

D, (Qb;e;m)f(2) @ =

where b,c,m >0, z € A and

1— k k—1 ‘
(1.12) Ky = = _‘2 =1+Y ¢, [0,q]:=0 and [2,=q+1.
j=1

For A > —1 and 0 < ¢ < 1, we defined the linear operator Z*(b;c;m)f : A — A by

IM(b;c;m) f(z) « NP5 1 (2) = 204 (b ;m) f(2)), 2 € A,
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where the function A, is given by

m — [)‘_'_ 1] k—1
aas1(2) =2+ Z [k_if]'zk, z €A
k=2 T
A simple computation shows that
(1.13) T (b;e;m) f(2) = 2 + Z U ag 27 (2 € A),
k=2

where
1.14 - By [H b 0, \>—1, 0 1
( . ) wk = ©r_1 G—DIFGem) A 1gr 1’ ( ,c,m > U, >—1,0<qg< )

From the definition relation (1.13), we can easily verify that the next relations hold
for all f € A:

(1.15)

() [+ 1y TN ¢ m) £(2) = TN m) f(2) + ¢ = D (T e m) £(2))

(1.16)

. - - k] (D) ym !

(i) NN(b; ¢ m) f(2) = lim M(byc;m) f Z a2,
z € A.

Remark 1. Putting b = c in the operator Z™(b;c;m), we obtain the q-analogue of
Poisson operator Ié\’m defined by El-Deeb et al. [6] as follows

o0

- K,
1.17 P g mo K kAl
1 e =et PR

By using the operator T9(b; c;m), we defined a subclass Hg\,ﬁ;ﬁ(ﬁ,a,n,A, B) of the

class T as follows:

Definition 1.2. For0<p<1,0<a<1,0<p8<1, -1<B<A<1,0<n<1,
be,m >0, A > —1, 0 < ¢ < 1, we let the class Hbqp(ﬁ,(x n, A, B) denote the

subclass of T consisting of functions of the form (1.5) and satisfying the condition:

(1.18) biem
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where
(1.19)
Foihi(z) =

b,c,m

29,(ZM(b; c;m) f(2) + p2PDy[Dy(TM(b; c;m) f(2))]
(1 —p)ZMi(b;c;m) f(2) + pzD 4 (TM(b; c;m) f(2))

;o (0<p<).

Remark 2. Taking different particular cases for the coefficients b, ¢ and q, we obtain
the next special cases for the class Hb (B, a,n, A, B):
(i) Putting ¢ — 17, we obtain that hm H)‘qp(ﬁ,a n, A, B) = R;cpm(ﬁ,a,n,A, B),

where Rbcpm(ﬁ,a,n,A, B) represents the functions f € A that satisfies (1.5) for
TN (b; ¢;m) replaced with N(b; c; m);
(ii) Putting b = ¢, we obtain the class W (B3, a,n, A, B), that represents the func-

tions f € A satisfies (1.5) for ZV9(b; c;m) replaced with P)}™.

Inspired by the recent works in [6, 7, 5, 11, 30, 28, 31], in this paper based on con-
volution, we discuss some interesting properties of functions f € HTP (B,a,m, A, B)

b,c,m

.Further we discuss certain closure properties under integral transformation.

2. COEFFICIENT ESTIMATES

Unless otherwise mentioned, we shall assume in the reminder of this paper that 0 <
pn<1;,0<p<1bem>0, A>-1;0<g<l;0<a<l -1<A<B<I1
and z € A, the powers are understood as principle values. In the following theorem
we obtain necessary and sufficient conditions for functions f € H;\ﬁ’rfl(ﬁ ,a, 1, A, B).

Theorem 2.1. Let the function f be defined by (1.5). Then f € Ha’c‘{;’;(ﬁ,a,n,A, B)
if and only if

(2.1) = DI(1 = Ba) ([Kly = 1) + (B — A) na ([l — B)[¢wan

|M8

S (B—A)n(l=p),

where Yy is given by (1.14) and we let
(2.2)
O(k, 5, a,n, A, B) = [1 + p([k]g — DI[(1 = Ba) ([k]; = 1) + (B — A) na ([kl; — 5)]¢s-
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Proof. Assume that the inequality (2.2) holds true, we find from (1.5) and (1.18) that

Fose(z) 1| = aln B - 4) (Fagae) - 8) - B (Fasa) — 1)

b,ce,m b,c,m

= Z(l + [Klap — p) ([Kly — 1) rar2”

k=2

—|a(B=A)n(1-p)=z

+Y_all+p([kl, = D] (B = A) (k = 8) = B([K], — V)] arz*

k=2
3" a1+ [y — p) In (B = A) (K, — B) — B (K, — 1] dagr
k=2
< S+ Mo — p)I(1 — Ba) (K, — 1) + (B — A) Inl o (K], — B)lenas

—a(B—=A)n|(1-p5)<0 (z€A).

Hence, by the maximum modulus theorem, we have f(z) € Hy” (8, a,n, A, B).

b,e,m

Conversely, Let

7 (B - A) (fsf,z (2) 6) B (fl?f,z( )-1)
i’f 1+ p((kly — 1)] (K], — 1) 2
(B—A)yn(1—p8)z— i (1+ [klap — ) [0 (B — A) (K], — B) — B (kg — 1)] daz2?

<a, (z€A).

Now since R {z} < |z| for all z, we have

> [1+p([klg=D)](k—1)ihy 2
(23) % ) =2 < Q.
(B*A)n(1fﬁ)sz§2[1+p([k}q*1)][W(B*A)([k]q*ﬁ)*B([k}q*1)]wkakz’“
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Choose values of z on the real axis so that f/(z) is real. Then upon clearing the

denominator in (2.3) and letting z — 1~ through real values, we have

> oreoll + p([kly = DI[(1 = Ba) ([k]y — 1) + (B — A) na ([k], — 8)|rax
a(B—-A)n(1-p).

This completes the proof of Theorem 2.1. O

Taking b = ¢ in Theorem 2.1, we get the following corollary.

Corollary 2.1. Let the function f be defined by (1.5). Then f € Wh%*(3,a,n, A, B)
if and only if

S0+ pl([kly — DI — Ba) ([k], — 1)+ (B — A)na ([k, — B)] gl =g,

<a(B-A)nl-p).
Taking p = 0 in Theorem 2.1, we get the following example.

Example 2.1. Let the function f be defined by (1.5). Then f € Ha’gfl(ﬂ,a,n,A, B)
if and only if

S0 = Ba) (kg — 1) + (B — A)a (K], — Alvsar < a (B - A)n(1— ).
k=2
Taking p = 1 in Theorem 2.1, we get the following example.

Example 2.2. Let the function f be defined by (1.5). Then f € Ha’f”;(ﬁ,a,n,A, B)
of and only if

(e o]

D IK[(1 = Ba) (K], = 1) + (B = A)na([k], — B)ldwar < a (B = A)n(1-f).

k=2

3. CONVOLUTION PROPERTIES FOR FUNCTIONS IN THE CLASS HA’q’”(ﬁ,a,n,A, B)

b,c,m

In this section, using the techniques of Schild and Silverman [23], we obtain some

convolution properties for functions f(z) € ;\quf;(ﬁ, a,n, A, B).
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Theorem 3.1. Let f; be given by (1.6) and f, € Hbqp(ﬁl,a n, A, B) and the

function fy be given by (1.6) and fy € Hb P (Bayaym, A, B). If the sequence {C),} is
non-decreasing then fi x fo € Hbcm(ﬁ* a,n, A, B), where

(3.1) f*r=1-— an(B—A)(1—B1)(1—B2)[1 - Batna(B-A)]
(1+P)\/T2 (51704777A,B)\/T2(52,a,n,A,B)dJQ7(an(BfA))2(1,51)(17ﬁ2) )

where

(3.2)  Tay(Br,a,m A, B) = [(1 = Ba)g+ (B —A)na(g+1-p5),

(3.3)  Ta(Ba,c,m, A, B) =[(1 — Ba)g+ (B —A)na(qg+1— 5],

and 1 is given by (1.14) for k = 2.

Proof. In view of Theorem 3.1, it’s enough to show that

oo [1+p([k]q—1)][(1—Ba)(k—1)+(B—A)na(k— an 1a
(3.4) Zkzg[ p([Fla—DII ())l(n(B)A()(1 ﬁ)r)z (k=B)Yr_ak,1ak,2 <1

where §* is defined by (3.1). Since f; € Hbcm(ﬁl,a n, A, B), we have

o0

[1 + p([k]q - 1)]Tk(ﬁ17047777147 B)wk a1 <1
p an(B—A) (1 - p) -

and fy € Hbcm(ﬂg,oz n, A, B), we have

(3.5)

(]

- [1 + p([k]q B 1)]Tk(ﬁ27 «, 1], Aa B>wkak,2
8 IRy [ T
such that
Ti(Br,a.m, A, B) = [(1—Ba)([k]y = 1)+ (B — A)na(lkl, — )] and

Tk(62>aana"4> B) = [(1 - BOé) ([k]q - 1) + (B - A) no ([k]q - 62)]

On the other hand, under the hypothesis and by the Cauchy’s-Schwarz inequality

that

(3.7) i1+ﬂ ¢ = DIV Ti(Br, a,n, A, B)y/Ti(Ba, ., A, B)
= an (B —A) /(1= B) (1 B)

from (3.5) and (3.6), it follows that

Yrr/agar2 <1,

(3.9) i [+ p([Kly = DI Ye(Br, ., A, B) T, 0, A, B) dRaaans _
st [an (B — A)* (1= B1) (1 = B2) N
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Now, we have to find largest 5* such that
i [1+ p([k]y = DIA = Ba) (k= 1) + (B — A)nor (k — 57)]4x arak2

on(B— A) (1 5)
[1+ p([k]lg — D]/ Tr(Br,a,n, A, B)\/Ti(Ba, 0,1, A, B) —
< ; on (B — A) \/(1—51)(1—52) Yr/Ck, 10k 2,

then, we have

T B\ Yr(Bi,a,n, A, B)\/Ti(B2, ,n, A, B)
m_\/l_ﬁl ) (1= Bo)[(1 — Ba)q+ (B — A)na([k], — B*)]

From (3.7), it is sufficient to find largest §* such that
aU(B—A) \/(1 —51)(1 —ﬁz)

\/Tk; ﬁlaaanaAaB \/Tk: 52704’7]"’47 B)
V(- 51) (1 — B2)[(1 = Ba) ((Ky = 1) + (B = A) na (K], — 57)]

we have

B <1— an(B—A)(1=B1) (1=B2)([k]q—1)[1—Ba+na(B—A)] .
- [1+p(k]g= D]/ Tk (B1 01,4, B)\/ T 1o (B2,0m,A, B )y, — (an( B—A)) 2 (1—B1 ) (1—B2)

Let

( ) an(B—A)(1—p1)(1—B2)([k]l¢q—1)[1—Batna(B-A)]
[1+p(klg— 1]/ Tk (Br,cm,A,B) /T (B2,0n, A, B) by —(an( B—A))? (1—1 ) (1—B2)

Since W(k) is non decreasing function of k (k > 2), then we have 5* < 1 — W(k).
That is,

B <1 ng(B=A)(1=B1) (1=Ba)[1~Ba-tna( B-A)] .
- (1+qp)\/T2(61=04:U=A:B)\/T2 (62=0<:77aA:B)¢2_(an(B_A))Q(l_Bl)(l_ﬂﬂ

This completes the proof of Theorem 3.1.

Taking b = ¢ in Theorem 3.1, we get the following corollary.

Corollary 3.1. Let the function f, be given by (1.6) and fi € W% (B, a,n, A, B) ,
fo  defined by (1.6)and fo € WN(By,a,m, A, B). If the sequence {C,}is non-
decreasing then fi * fa € WhP(5** a,n, A, B), where

ﬁ** —1_ an(B—A)(1—31)(1—B2)[1—Ba+na(B—A)]
(1+p)[2]g!me—™

e /T (Bram A, B)y/ T2 (Bz.a:m,A,B) —(an(B—A))(1-B1)(1-B2)

where To(f1,a,m, A, B) and Yo(Bs, a,n, A, B) are given by (3.2) and (3.3).
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Theorem 3.2. Let the function f; (i = 1,2) defined by (1.6) be in the class

qu
bcm

(B,a,m, A, B). If the sequence {C,} is non-decreasing then the function

(3.9) = Z aj + aj o) 2

k=2

[e.o]

belongs to the class Hb (¢, o, A, B), where

2na (B —A)(1—B)*[1 — Ba+na (B — A)]
(14 p)[1 = Ba+na(B —A) (2= B)]P¢ — 2[na (B - A) (1 - B)]*
and 1y 1s given by (1.14).

(3.10) ¢(=1—

Proof. From Theorem 2.1, it is sufficient prove that

oo

[1+ p((Flq = DII(1 = Ba) (kg = 1) + (B = A)na ([Ky = Ol
Z a(B—A)n(1-{) © (o +ag) <1
Since the functions f; (i = 1,2) be in the class Hb e (8,a,n, A, B), we have
o~ [ 2k BanAB) |7 [ 2k BanAB)
(3.1) ;{&(B—A)n(l—ﬁ)} EED3 {a<B—A>n<1 —ﬁ)‘““} =t
and
2 ®(k,B,0,m, A, B) \* = ( ®(k,B,a,n,A,B) 2
312) ;{&(B—A)n(l—ﬁ)} e <2 {a<B—A>n<1 —m““} =t

where ®(k, 3, a,n, A, B) is as assumed in (2.2). It follows from (3.11) and (3.12) that

2
[14p([k]g—D][(1—Ba) ([k]g—1)+(B—A)na([klg—B)]¥
1 Zk 2{ p([klq=DII( (g[ ]Aq)n()l (B) Jne([klq—B)] k} (G%J —l—a%,Q) <1

Therefore, we need to find the largest ¢, such that

2
[14p((klg= DI~ Ba) (Klg— ) +(B—Ama(Klg—Old — 1 [ S(kBi0mAB)
o P i E—— {WM} (k>2)

that is

(=1- 2na(B—A)(1-B)*([Flq—D)[1-Batna(B—A)]
[1+p([k]q = D][(1=Ba)([klq—1)+(B—A)na([k]q—B)|2vx, —2na( B—A) (1)}

Let

U(k) = 2na(B—A)(1-B)*([Klq—1)[1-Batna(B—A)]
[1+p([Klq—D)][(1~Ba) ([klq—1)+na( B—A) ([k]g—B)]2 by, —2[na( B—A) (1)}
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Since ¥(k) is non decreasing function of k (k > 2), then we have ( <1 — ¥(k). That
is,

2qne (B — A) (1= §)2[1 - Ba+na (B — A)
(1+ap)[(1 = Ba)g+na (B = A) (1 +q— B)*¢; —2[na (B = A) (1 - B)]*
This completes the proof of Theorem 3.2.

(<1-

g

Taking b = ¢ in Theorem 3.2, we get the following corollary.

Corollary 3.2. Let f; (i = 1,2) be given by (1.6) and fi € Wh* (B, a,n, A, B). If
the sequence {C,} is non-decreasing then the function h(z) defined by (3.9) belongs
to the class Wh%*(5,a,n, A, B), where

2qna (B — A) (1 — 8)*[1 — Ba+na (B — A)]

- WlBne () Bag tpa (B — A) (1+q — B)]2 — 2o (B — A) (1 - 5)*

0=1

4. HOLDER’S INEQUALITY

Theorem 4.1. Let the functions f; (i = 1,2,...,n) defined by (1.6) be in the class
HYP (B c,m, A, B). Then Ho(z) are in the class Hy* (¢, o, n, A, B) such that

b,e,m b,c,m
ma(B—A))"~1[1-Ba+na(B-A)] [1(1—4)
C S ]- - n = n 9
[(pal ™ [0 Bata(B- )-8 ~lna(B-A) H0-01%]
where

n

= 1 1
r= pi > 1 pi > —; —>1, ¢>1;1=1,2...n),
=3 Lyl |

i=1 tog=1 1

and where 1) is given by (1.14).

Proof. Let fi(z) € Hy* (B;,a,m, A, B), we have

b,c,m

— [1+ p([kl, = D1 = Be) (K], = 1) + na (B = A) ([, — B
(4.1) Z na (B —A) (1-5)

ar; <1,
k—2

which implies

(4.2)
(i [1+ p([], = DII(L = Ba) (K, — 1) +ne (B = A) ([H, = )14 ) " _

na (B —A)(1—-0)

k=2
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Withqi>1and2521.
i=1 "

From (4.2), we have

na(B—A) (1 6)

i=1

Applying Hoélder’s inequality (1.9), we find that

17 (L (Kl = DI = Ba) (k] = 1) + ne (B — A) (kg — 8:) v
> |f1( e )
Thus, we have to determine the largest ¢ such that

[e.9]

na (B—A) (1- ()

that is, that

ki [1+ p([k], — D][(1 = Ba) ([k], — 1) +na (B = A) ([K], — Ol (H

. no (B —A) (1= ()

$ [L+ ([t = DI = Bo) (K, = 1) + 0 (B = 4) (o = Ol (ﬁ )

" [+ p([k], = DI = Ba) ([k], — 1) + na (B = A) (K], - 6,
= Z[H( 7o (B— A) (1- 5)

Therefore, we need to find the largest ¢ such that

k=2

[1+ p([k], — D][(1 = Ba) (k] — 1) +na (B = A) ([K], — Ol (H i

no(B —A)(1-()

=1

n 1L+ p(kly — DI = Ba) (K], — 1) + na (B — A) (K, — Bl
= H( a(B—A)n(l—5)

for (k > 2), Since

no (B —A)(1-()

i=1

we see that,

n 1

Pi— 1
Hak,z’ "< n 1
el <[1+P([k]q*1)][(1*30‘)([k}q*1)+WQ(B*A)([k]q*5i)}¢k )pl_ %

L na(B—A)(1-5)

=1

([l + (K], = DI — Ba) (K, = 1) + (B = A) na (K], — pri% Z

1
a;
)

1 (i [1-+ p({Hy = DI = Ba) ({Ky = 1)+ o (B = A4) (], Bﬂwkak,i) T
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This implies that

[+ p((kly = DI = Ba) ([Ky = 1) + no (B = A) ([Klg = O
no (B —A)(1-()

An [1+ p([k]g = D] (1 = Ba) ([klg = 1) +ne (B = A) ([k]g — 8i) el
<= 0 :
g[ﬁa (B—A) (1= )
which is equivalent to
C <1- ([k]¢g—1)©; [1—Baina(B—A)]

(8- FL[1+0(Hg~ Dl [(1-Ba) (Hlg~1+ra(B-A) (817 01

where ©; = ﬁ[na (B—A)(1— ;). Let

i=1

(I)(]{]) <1-— ([k]lq—1)©; [1-Ba+na(B—A)]
T e HL (- DI (1 Ba) (Klg-1) (B A) (-8 -6

which is an increasing function in k, hence we have

<o) 1 dlna(B=A) 1= Ba+na(B-A)] [T (-5
- [0y H0-Ba)tna(B-A)1+a-A0 (-4 F(0-50 |

=1 i=1

This completes the proof of Theorem 4.1. O

Taking b = ¢ in Theorem 4.1, we get the following corollary.

Corollary 4.1. Let the functions f; (i = 1,2,...,n) defined by (1.6) be in the class
Wrer(B; a,m, A, B). Then H,(z) are in the class WA (v*, a,n, A, B) with

|

- 1 1
(r= pi =1 p = —; —>1,¢>1i=1,2...,n).
> Lyl

i=1 vog=1

alna(B-A))" (1~ Batna(B-A)] [1(1-5)"

7*§1_ " )

—m]r1 n
(el 17 ] (1-Ba)4na(B-)(La—80)—na(B-A))" [T (0-50)
i=1 i=1

Taking p; = 1 in Theorem 4.1, we obtain of the following corollary:

Example 4.1. Let the functions f; (i = 1,2,...,m) defined by (1.6) be in the class
HY (i, a,m, A, B). Then G (2) are in the class Ha’q’p (v, a,m, A, B) whith

b,e,m c,m

alna(B—A)"~1[1-Ba+na(B-A) {1 (1-8)
C‘ S 1 _ i=1

[[(1+qp>w21m*1 1 1(1-B)-+na(B—4) (1+a-50))~lne(B-A) " ﬁlu—m)} '
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5. CLOSURE PROPERTIES UNDER INTEGRAL TRANSFORMS

Murugusundaramoorthy et al. [17] defined the integral transform

(5.1) T,(/)(z) = / o(t)

Where p is a real valued and non-negative weight function normalized such that

f p(t)dt = 1, for which Z, is known as Bernardi operator [2] and

() = (MF+(01))“

which gives the Komatu operator [13].

1 o—1
(5.2) t (log ;) , u>—1, 0>0,

Theorem 5.1. Let the function f be defined by (1.5) belongs to Hb (B, 0,m, A, B).
Then ZE(f) is in the class Hy"? (8, o, n, A, B).

b,e,m

Proof. From (5.1) and (5.2), we have

Ig(f)(Z) _ (_1)0;(21;4—1)0/ (lOgt <Z—Zak2’ktk 1)

(BN
5.3 = z— — | apz”.
5.3 > (i) @
We need to prove that Z¥(f) € If‘fr’z(ﬁ, a,n, A, B), it’s enough to show that
- q) B,oz n,A B) (u—i—l)a
5.4 a, <1

where ®(k, 3, a,n, A, B) is as assumed in (2.2). In view of Theorem 2.1. Since
fe H’\’q’p(ﬁ, a,n, A, B) if and only if

b,c,m

O (k ﬁan,AB)

(5:5)  a(B—An(— D)

akgl

ngk:

Hence l’j—:[; < 1, then (5.4) holds and this completes the proof of Theorem 5.1.

Taking b = ¢ in Theorem 5.1, we get the following corollary.
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Corollary 5.1. Let the function f be defined by (1.5) belongs to WX%*(B;, a,n, A, B).
Then TF(f) is in the class WhT*(Bi, o, m, A, B).

Theorem 5.2. Let the function f be defined by (1.5)and f € Hy2 (8, 0,n, A, B).

b,ce,m
Then TH(f) is starlike of ordern (0 <n < 1) in |z| < Ry, where

1
5.6 R; = inf ,
>0 =a{ () s wa

where ®(k, B, a,m, A, B) is given by (2.2).

Proof. Tt’s sufficient to prove

20, (157 (f)(2))
Z7(f)(2)

where R; is given by (5.6), such that

—1‘<1—77 for |z| < Ry,

> ((#,— 1) (£5) e

DI | &
Io'(f)(Z) 1_];2<5—111§>00,k|2|k1
Therefore
20,y (17 (f)(2))
e R
if
S [k]g — pA+1\° k—1
(5.7) 2 ( - > (,u—I—k‘) ag 2|7 < 1.
Since f € Hg\,ﬁ;ﬁ(ﬂ,a,n,A, B), then from (5.5) and (5.7), we have
([k]q —77) (u+ 1)" it < Ok Biain A, B)
l—n ) \u+k Ta(B-A)n(1-p)
Thus

pu+k\" (1—n) @k, B,a,n A B) e
A<{(55) s )

This completes the proof of Theorem 5.2.

Taking b = ¢ in Theorem 5.2, we get the following corollary.
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Corollary 5.2. Let the function f be defined by (1.5) belongs to WX%*(B;, a,n, A, B).
Then TH(f) is starlike of order n* (0 < n* < 1) in |z| < R}, where

1
R} = inf { <u_+k>" (L=n)[1+p([k]g = D][k]g!m*~ e~ [(1— Ba) (kg —1) +(B=A)na([kl;—B)] } R
L= (e a(Klq—m) (B=An(—-A) (k— 1Ak '

Theorem 5.3. Let the function [ be defined by (1.5) belongs to Hj;q’p (8,a,n, A, B).

c,m

Then TH(f) is convex of ordern (0 <n < 1) in |z| < Ry, where

1
_ etk 7 (1=n) [1+p([k]g—D][(1—Ba) ([klg—1)+(B—A)na((klg—B)lvy | F—T
(5.8) R2—12f{(u+1) k(g ) (B-A)(1—5) } )

where Yy is given by (1.14).

Proof. The proof is similar to the proof of theorem 5.2, so it omitted.

Taking b = ¢ in Theorem 5.3, we get the following corollary.

Corollary 5.3. Let the function f be defined by (1.5) belongs to Wx%*(B;, a,n, A, B).

Then TH(f) is convex of order n* (0 < n* < 1) in |z| < RS, where

1
R; = inf { <w> 7 Q=) [Lp(Hg—p)][Klgtm*~Le= (1 Ba) (], =) +(B=A)na([kg—5)] } R
2 7 Vet ok ([Kg=m) (B=A)n(1=B)(h— D)1 1 :

6. INTEGRAL MEANS AND PARTIAL SUMS

In [24], Silverman found that the function fy(2) = z — % is often extremal over the
family 7. He applied this function to resolve his integral means inequality, conjectured

in [26] and settled in [24], that

2

7}f(7"6"9)}ﬂd9§ / | folre®)|” do,

forall f € 7,9 >0and 0 < r < 1. In [24], he also proved his conjecture for the
subclasses 7*(y) and C(y) of T.

Now, we prove the Silverman’s conjecture for the functions in the family TP B,a,n, A, B).
p J b,c,m

Lemma 6.1. [14] If the functions f and g are analytic in A with g < f, then for

9>0,and0<r<l1,

(6.1) /}g(rew)]ﬂdeg/}f(rew)]ﬁde.
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Applying Lemma 6.1, Theorem 2.1 ; we prove the following result.

Theorem 6.1. Suppose f € Ha’g;’;(ﬁ,(x,n,A, B),9>0,0<A<1,0<y<1,k>0
and fo(2) is defined by

_a(B-Am0-5) ,
q)(QaﬂaaanaAa B)ij ’

fo(2) =

where

O(k, B, a,n, A, B) = [1+ p([kl; = DI[(1 = Be) ([Klg = 1) + (B = A) nv ([klg — B)]vow

is defined in 2.2. Then for z =re, 0 < r < 1, we have

2 2
©:2) Jiseras [1ne0a
0 0
Proof. For f(z) =z — ]i lax|2*, (6.2) is equivalent to proving that
(ol e [ aB=an0-5) |
a(B — _
O/ 1—;|ak\zk1 d@go/ll— @(Q,ﬁ,(x,:}y,A,B) z| db.

By Lemma 6.1, it suffices to show that

= . aB-An(1-8)
=2 el < A

Setting

= -1 a(B—A)n(1-p)
(6.3) 1= % |ak|2k =1- d(2,8,a,m, A, B) wlz),

and using (2.2), we obtain

o0

Z ﬁaa U’A_Bﬁ))‘ak|zk1
=2
. 6 a n,A B)
||
; (-5
< |zl

This completes the proof . 0
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For a function f € A given by (1.1) Silverman [27] and Silvia [25] investigated the
partial sums f; and f,, defined by

(6.4) fi(z) =z and f.(2) =z + Z ap?®, (1=2,3..)

We consider in this section partial sums of functions in the class 7'[1/;\5/:1(5 ,a,n, A, B),

and obtain sharp lower bounds for the ratios of real part of f to f;(z) and f" to f..

Theorem 6.2. Let a function f of the form (1.1) belong to the class Ha’g;’;(ﬂ, a,n, A, B),
and assume (6.4). Then

f(=) 1
(6.5) Re{fT(z)}Zl— e z€A, TeN
and

fT(Z> dr+1
(66) Re{f(z)}zm’ ZGA,TEN,
where

q)(k’ /67 a’ n’ A) B) .

Proof. From (6.7), it is not difficult to verify that
(68) dk+1>dk>1, ]{3:2,3

Thus by Theorem 2.1 we have
(6.9) S larl +dra Y lar] <Y dilag| < 1.
k=2 k=7+1 k=2

Setting

oo
k—1
dT-i-l Z agz

(6.10) 9(2) = dops {M _ (1 1 >} =t |

driq 1+ Z apzk1
k=2
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Applying (6.9 ), we find that

- doa 5
9= 2=2%" |ag| —dry1 Y2 |ax
k=2 k=r+1
which readily yields the assertion (6.5) of Theorem 6.2. In order to see that
ZTJrl
(6.11) f(z) =2+ . zZ €A,
dTJrl

gives sharp the result, we observe that for z = re’™/7 we have

f(Z) F4 z—1" 1
=1+ — 1 - .
f’T(z) d7'+1 d7'+1

Similarly, if we take

hz) = u+dﬁn{ﬂ@) dr i }

f(Z) a 1 +d'r+1

(L4 dp1) > a2t
k=71+1

- ]_ - [o%) ) z 6 A)
1+ Zakzk”
k=2
and making use of (6.9), we can deduce that
(It dryr) >0 ax]
1 -
ﬁ$%4'§ : s =hoees
: 2-2) fag| = (T =drya) 32 lax|
k=2 k=r+1

85

which leads us immediately to the assertion (6.6) of Theorem 6.2. The bound in (6.6)

is sharp for each 7 € N with the extremal function f given by (6.11), and the proof

is complete.

U

Theorem 6.3. Let a function f of the form (1.1)and f € H;"" (B, o, n, A, B), and

b,c,m

assume (2.2). Then

72) 41
612) RIS
and

f¥(2) dT+1
(0:19) G e

where dy, is defined by (6.7)
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-aaff3- (-5 wes

Proof. By setting

and
f7(2) dr i1 }
h(z)=[(t+1)+d, — — , 2z €A,
@ =l 0+ el {5 -
the proof is analogous to that of Theorem 6.2, and we omit the details. 0

Remark 3. For the function f be defined by (1.5) belongs to WXP(3;, a,m, A, B)
one can easily prove integral means and partial sum results on lines similar to above

theorems.

CONCLUSIONS

In this paper, we used the concept of g—confluent hypergeometric distribution , and

Ag.p
b,e,m

we defined and investigated a new subclass ‘H (6,a,n, A, B) of analytic functions
in the open unit disk A. We also derived several properties and characteristics of
newly defined subclasses of analytic functions such as coefficients estimates,necessary
and sufficient conditions, closure theorems, convolution properties and results on

Holder’s inequalities, integral means and partial sums results. We have highlighted

some consequences of our main results as corollaries.
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