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ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS
ADMITTING =-RICCI SOLITONS

ABDUL HASEEB (), H. HARISH (®) AND D. G. PRAKASHA &)

ABSTRACT. The object of the present paper is to characterize 3-dimensional trans-
Sasakian manifolds admitting *-Ricci solitons. First, 3-dimensional trans-Sasakian
manifolds admitting #-Ricci solitons satisfying the conditions R(E,.) - S, S(&,.) -
R =0 and @ - R = 0 are studied. Further, 3-dimensional manifolds admitting
*-Ricci solitons satisfying certain conditions on the projective curvature tensor are
considered and obtained several interesting results. Finally, the existence of *-Ricci
solitons in a 3-dimensional trans-Sasakian manifold has been proved by a concrete

example.

1. INTRODUCTION

In the Gray-Hervella classification of almost Hermitian manifolds [7], there appears
a class, W, of Hermitian manifolds which are closely related to locally conformal
Kaehler manifolds. An almost contact metric structure on a manifold M is called
a trans-Sasakian structure [14] if the product manifold M x R belongs to the class
Wy. The class Cg @ C5 [13] coincides with the class of trans-Sasakian structures of
type (a, 3). We note that trans-Sasakian structures of type (0,0), (0,/) and («,0)
are cosymplectic [1], f-Kenmotsu [10] and a-Sasakian [10], respectively. Therefore,
trans-Sasakian manifolds generalize a large class of almost contact manifolds.

In 1982, Hamilton [9] introduced the notion of Ricci flow to find a canonical metric

on a smooth manifold. The Ricci flow is an evolution equation for metrics on a
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Riemannian manifold defined as follows:

0

5 Ju(t) = =21,

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A solution
to the Ricci flow is called Ricci soliton if it moves only by a one parameter group

of diffeomorphism and scaling. A Ricci soliton (g, V,A) on a Riemannian manifold

(M, g) is a generalization of an Einstein metric such that
(1.1) Lyg+25+2Ag =0,

where S is the Ricci tensor, £y is the Lie derivative operator along the vector field
V on M and A is a real number. The Ricci soliton is said to be shrinking, steady or
expanding according to A being negative, zero or positive, respectively.

The notion of *-Ricci tensor on almost Hermitian manifolds was introduced by
Tachibana [17]. Later, Hamada [8] studied #-Ricci flat real hypersurfaces of com-
plex space forms and Blair [2] defined *-Ricci tensor in contact metric manifolds

given by
(1:2) S'(X,Y) = g(Q"X,Y) = Trace {$0 R(X, 0))

for any vector fields X,Y on M, where Q* is the (1,1) *-Ricci operator and S* is a
tensor field of type (0, 2).

A Riemannian metric g on M is called a *-Ricci soliton, if
(1.3) (Lvg)(X,Y)+25(X,Y)+ 2\ (X,Y) =0

for all vector fields X,Y on M and A\ is a constant. If a trans-Sasakian manifold
satisfies (1.3), then we say that the manifold admits a *-Ricci soliton. Recently, the
x-Ricci solitons have been studied by various authors in several ways to a different

extent such as [6, 12, 15, 18], and many others.

2. Preliminaries

Let M be an almost contact metric manifold [1] with an almost contact metric struc-

ture (¢,&,n,¢), that is, ¢ is a (1, 1) tensor field, £ is a vector field, n is a 1-form and
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g is a compatible Riemannian metric such that

(2.1) P*°X =X +n(X)E, ) =1, ¢ =0, n(¢X) =0,
(2.2) 9(6X,9Y) = g(X,Y) = n(X)n(Y),
(2.3) 9(X,0Y) = —g(¢X,Y), g(X,&) = n(X)

for all vector fields X,Y € x(M), where x(M) is the Lie algebra of vector fields on
M. The fundamental 2-form ® of the manifold is defined by

(2.4) B(X.Y) = g(X,6Y)

for any X,Y € x(M).

An almost contact metric structure (¢, &, 7, g) on M is called a trans-Sasakian struc-
ture [14], if (M x R, J, G) belongs to the class Wy [7], where J is the almost complex
structure on M x R defined by J(X, f4) = (¢X — f&,n(X)<) for all vector fields X

on M and a smooth functions f on M x R. This may be expressed by the condition

(2.5) (Vx9)Y = a(g9(X,Y)§ —n(Y)X) + B(g(¢X,Y)§ — n(Y)pX)

for some smooth functions o and 5 on M, and we say that the trans-Sasakian struc-

ture is of type (a, ). From Eq.(2.5) it follows that

(2.6) Vx€ = —agpX + B(X —n(X)E),

(2.7) (Vxn)Y = —ag(¢X,Y) + Bg(oX, ¢Y),

where V is the Levi Civita connection of g. In a 3-dimensional trans-Sasakian mani-

fold, we have [5]
(2.8) RX)Y)§ = (o= B*)(n(Y)X —n(X)Y)

+2aB((n(Y)oX —n(X)oY)

+(Ya)pX — (Xa)pY

+HYB)P*X — (XB)¢*Y,
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(2.9) R(EX)Y = (o’ =) (9(X,Y)E—n(Y)X)
+2ap(g(pX,Y)§ —n(Y)9X)
+(Y )9 X + g(0Y, X)(grada)

+(YB)(X —n(X)E) — g(¢X, ¢Y)(gradp),
(2.10) 206 + €8 =0,

(2.11) S(X,€) = (2(a” = %) = E8)n(X) — XB — (¢X)a,

where R is the curvature tensor, S is the Ricci tensor and r is the scalar curvature of

the manifold M. From [5] we know that for a 3-dimensional trans-Sasakian manifold
(2.12) o(grada) = (n — 1)gradp.

Using Eq.(2.10) and Eq.(2.12),for constants o and 3, we have

(2.13) REX)Y = (o= B)(9(X, V)€ —n(Y)X),
(2.14) R, X)E = (o = B7)(n(X)§ — X),

(2.15) RX.Y)E = (o = B*)(n(Y)X — n(X)Y),
(2.16) N(R(X,Y)Z) = (a® = %) (g(Y. Z)n(X) — g(X, Z)n(Y)),
(2.17) S(X,€) = 2(a” — B*)n(X),

(2.18) (£eg)(X,Y) = 28(9(X,Y) = n(X)n(Y))

for all X|Y,Z € x(M). Throughout in the paper, we are using the fact that
a = [ =constant. We define endomorphisms R(X,Y) and X A4 Y of x(M) by

(2.19) R(X,Y)Z =VxVyZ —VyVxZ - VixyZ,

(2.20) (XM Y)Z =AY, 2)X — A(X, 2)Y,

respectively, where A is the symmetric (0, 2)—tensor.
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Definition 2.1. A 3-dimensional trans-Sasakian manifold is said to be an n-Einstein

manifold if the Ricci tensor S is of the form [1]
S(X,Y) = ag(X,Y) + bn(X)n(Y),

where a and b are smooth functions on the manifold. If b = 0, then the manifold is

sald to be an Einstein manifold.

Lemma 2.1. In a 3-dimensional trans-Sasakian manifold, the following identity

holds:

(221) R(X,Y,0Z,¢W) = R(X,Y,Z W)
+(a® = B7)g(X, 2)g(Y, W) — g(Y, Z)g(X, W)
—B(X, Z)D(Y, W) + (Y, Z)B(X, W)]
+2aB[g(Y, Z2)2(X, W) — g(X, Z2)2(Y, W)
(X, W)B(Y, Z) — g(YV,W)D(X, Z)

—O(Y, Z)n(X)n(W) + ®(X, Z)n(Y)n(W)]
for any X, Y, Z,W on M, where R(X,Y,Z,W) = g(R(X,Y)Z,W).
Proof. By virtue of Eq.(2.19), we can write

R(X,Y,¢Z,oW) = g(VxVy¢Z,¢W) — g(VyVxpZ, W)

(2.22) — 9(Vixy19Z, oW).
By making use of Eq.(2.1) and Eq.(2.5), Eq.(2.22) takes the form

R(X,Y,¢Z,0W) = aglg(Y,Z)Vx§ — (Vxn)(Z2)Y —n(VxZ)Y
—n(Z)VxY, W]+ Bglg(¢Y, Z)Vx€ — (Vxn)(Z)pY
—(VxZ)oY —n(Z)(Vx¢)Y —n(Z)o(VxY), oW ]
—aglg(X, Z)Vy§ — (Vyn)(2)X —n(VyZ)X

(2.23) —n(Z)Vy X, W] = Bglg(6X, Z)Vy§ = (Vyn)(Z2)pX
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—n(VyZ2)pX —n(Z)(Vy$)X —n(Z)p(Vy X), oW ]
+9lan(Vx2)Y + Bn(VxZ)¢Y — an(Vy Z)X
—Bn(Vy Z)pX + ¢VxVyZ — $VyVx Z, W]
—9l(Vixn9)Z + ¢Vix 1 Z, oW .
In view of Eq.(2.1)-Eq.(2.3) and Eq.(2.5)-Eq.(2.6), Eq.(2.23) turns to
R(X,Y,0Z,¢W) = g(VxVyZ —VyVxZ = Vxy|Z,W)
—(a® = B)[g(eY, 2)g(X, oW) — g(¢ X, Z)g(Y, oW)
—9(X, Z)g(Y, W)+ g(Y, Z)g(X, W)
+9(X, Z)n(Y)n(W) = g(Y, Z)n(X)n(W)]
+2apg(Y, Z)g(X, oW) — g(X, Z)g(Y, W)
—9(X, W)g(Y, Z) + g(Y,W)g(¢X, Z)
+9(0Y, Z)n(X)n(W) — g(¢X, Z)n(Y )n(W)]

—U(VXVyZ — VyVXZ — V[ny}Z)ﬁ(W)

which by using Eq.(2.4) , Eq.(2.16) and Eq.(2.19), Eq.(2.21) follows. This completes

the proof.

Lemma 2.2. In a 3-dimensional trans-Sasakian manifold the x-Ricci tensor is given

by
(2.24) SV, Z2)=5(Y,Z) — (o = *)g(Y, Z) — (&® = B*)n(Y)n(Z)

for any Y, Z on M.

Proof. Let {e;},i=1,2,3 be an orthonormal basis of the tangent space at each point

of the manifold. Thus from the equations Eq.(1.2) and Eq.(2.21), we have

3
S*(Y7 Z) = Z R(eia Ya (bZa ¢€z)
i=1
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+9(gei, 2)g(Y, ¢e:) — g(@Y, Z)g(e:, pe;)]
+2a i[g(Y, Z)g(ei, dei) — glei, Z)g(Y, pei) — g(ei, e:)g(dY, Z)
+9(Y, Z)lg(¢ez-, Z) + g(oY, Z)n(ei)n(e:) — g(ei, Z)n(Y)n(es)].
By contracting the above equation we can easily find
S'(Y,Z2) = S(Y.Z)—(a® = B*)[g(Y, Z) + n(Y)n(Z)]
+2aBg(ei, 9Z)g(ei, E)n(Z)
from which Eq.(2.24) follows. O

3. *-Riccli solitons on 3—dimensional trans-Sasakian manifolds

Let M be a 3—dimensional trans-Sasakian manifold admitting x—Ricci solitons. Then

Eq.(1.3) holds and thus we have

(3.1) (£c9)(Y, Z) +25°(Y, Z) + 2Xg(Y, Z) = 0.
By using Eq.(2.18), we have

(3:2) S, Z) = —(B+Ng(Y,Z) + Bn(Y)n(Z).

Therefore, from Eq.(2.24) and Eq.(3.2), we obtain

(3.3) S(Y,Z) = (a® = B = B = Ng(Y. Z) + (a® = 5 + B)n(Y)n(Z).
It yields
(3.4) QY = (0 = 2 = B = NY + (o® = 52+ B)n(Y)E.

Taking Z = £ in Eq.(3.3), we find

(3.5) S(Y,€) = [2(a — 82) — N (Y).
From the equations Eq.(2.17) and Eq.(3.5), it follows that
(3.6) A=0.

Thus we have the following:
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Theorem 3.1. Let M be a 3—dimensional trans-Sasakian manifold. If the manifold
admits x-Ricci soliton, then M is an n-Einstein manifold and the x-Ricci soliton is

steady.

Now, let (g,V,A) be a *-Ricci soliton on a 3-dimensional trans-Sasakian manifold
such that V' is pointwise collinear with &, i.e., V = h&, where h is a function. Then

Eq.(1.3) holds and thus we have
(3.7) (£reg)(X,Y) +25%(X,Y) + 2)g(X,Y) = 0.

Applying the property of the Lie derivative and Levi-Civita connection in Eq.(3.7),

we have

hg(VxEY) + (XR)(Y) + hg(X, Vy€) + (YR)(X)
1255(X,Y) + 20g(X,Y) = 0

which by using Eq.(2.24) takes the form

(3.8) hg(Vx&Y) + (Xh)n(Y) + hg(X, Vy§) + (Yh)n(X)
FOS(X,Y) + 2\ — (0 — B)]g(X,Y) — 2(a? — (X )n(Y) = 0.

By using Eq.(2.6), Eq.(3.8) turns to

(3.9) 2hBlg(X,Y) = n(X)n(Y)] + (Xh)n(Y) + (Yh)n(X)
L2S(X,Y) + 20\ — (02 — B)g(X, V) — 2(a® — BJy(X)n(Y) = 0.

Taking Y = ¢ and using Eq.(2.1), Eq.(2.3) and Eq.(3.5), Eq.(3.9) reduces to

(3.10) (Xh)+ (Eh) = 0.

Putting X = ¢ in Eq.(3.10) and using Eq.(2.1), we get

(3.11) (€h) = 0.

Combining the equations Eq.(3.10) and Eq.(3.11), we get X (h) = 0, that is, h is

constant. Thus from (3.9) we obtain
(3.12) S(XY) = — 4B — (0 — B)g(X,Y)

+(a® = B2+ hB)n(X)n(Y).
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Now putting ¥ = £ in Eq.(3.12) and using Eq.(2.17), we get A = 0. Thus Eq.(3.12)

reduces to

SXY) = —[hf—(a® = B*)]g(X.Y) + (o = 5% + hB)n(X)n(Y).
Therefore we have the following theorem:

Theorem 3.2. If (g,V,\) is a x-Ricci soliton in a 3-dimensional trans-Sasakian
manifold such that V is pointwise collinear with &, then V' is a constant multiple of

& and the manifold is an n-FEinstein manifold, Moreover, the Ricci soliton is steady.
4. x-Ricci solitons on 3—dimensional trans-Sasakian manifolds satisfying

Let M be a 3-dimensional trans-Sasakian manifold admitting *-Ricci solitons satisfies

R(¢,X)- S =0. Therefore we have
(4.1) S(R(&, X)Y, Z) + S(Y, R(¢, X)Z) = 0.
By using Eq.(2.13) in Eq.(4.1), we find

S(X,Zn(Y) = S(§, 2)9(X,Y) + S(Y, X)n(Z) = S(Y,£)g(X, Z) = 0
where a? — 82 # 0, which in view of Eq.(3.5) takes the form
(4.2) S(X, Z)n(Y) — [2(a® = B) = Ng(X,Y)n(Z)

—[2(a” = 8%) = Ng(X, Z)n(Y) + S(X,Y)n(Z) = 0.

Putting Z = ¢ in Eq.(4.2) and using Eq.(2.1),Eq.(3.5), we get
(4.3) S(X, Z) = [2(a® — B2) — Ng(X, 2).

Now putting Z = £ in Eq.(4.3) and using Eq.(2.17), we get A = 0. Thus Eq.(4.3)
reduces to

S(X,7) =2(a* - BHg(X, 2).

Therefore we have the following theorem:

Theorem 4.1. If a 3-dimensional trans-Sasakian manifold admitting x-Ricci solitons
satisfies R(§,X) - S = 0, then the manifold is an FEinstein manifold and the Ricci

soliton s steady.
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5. x-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying
S-R=0

Let M be a 3-dimensional trans-Sasakian manifold admitting *-Ricci solitons satisfies

(S(X,Y) - R)(U,V)W = 0. This implies that
(5.1) (XAsY)R(U, V)W + R((XAsY)U, V)W
+R(U, (XAsY)V)W + R(U,V)(XAsY)W = 0.
By virtue of Eq.(2.20), Eq.(5.1) takes the form
(5.2) S(Y, R(U,V)W)X — S(X, R(U,V)W)Y + S(Y,U)R(X, V)W
—S(X, U)R(Y, V)W + S(Y,V)R(U, X)W — S(X, V)R(U,Y)W
+S(Y,W)R(U, V)X — S(X,W)R(U, V)Y = 0.
Taking the inner product of Eq.(5.2) with &, we have
S(Y, R(U, VYW)n(X) = S(X, R(U, VYW)n(Y) + S(Y, U)n(R(X, V)W)
—S(X, U)n(R(Y, V)W) + S(Y, V)n(R(U, X)W) — S(X, V)n(R(U,Y)W)
+S(Y, W)n(R(U,V)X) — S(X, W)n(R(U,V)Y) = 0

which by putting U = W = ¢ and using Eq.(2.13)-Eq.(2.15) and Eq.(3.5) takes the

form
(5.3) SY,V)n(X) = S(X, V)n(Y) = [2(a® = B°%) = Mg(X, V)n(Y)
+2(a? = B%) = Ng(Y, V)n(X) = 0.
Now replacing X by ¢ and using Eq.(2.1), Eq.(2.3) and Eq.(3.5), Eq.(5.3) turns to
(5.4) S(Y,V) = —[2(a” = %) = Ng(Y, V) +2[2(a” = 5%) = Aln(Y)n(V).

Now putting V' = ¢ in Eq.(5.4) and using Eq.(2.17), we get A = 0. Thus Eq.(5.4)
reduces to

S(Y,V) = =2(a” = %)g(Y, V) +4(a” = B7)n(Y)n(V).

Therefore we have the following theorem:
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Theorem 5.1. If a 3-dimensional trans-Sasakian manifold admitting x— Ricci soli-
tons satisfies S - R = 0, then the manifold is an n-FEinstein and the Ricci soliton is

steady.
6. *-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying
QR-R=0

Let M be a 3-dimensional trans-Sasakian manifold admitting *-Ricci solitons satisfies

Q- R = 0. Then we have
(6.1) Q(R(X,Y)Z) — R(QX,Y)Z — R(X,QY)Z — R(X,Y)QZ =0
for all X, Y, Z € x(M). By virtue of Eq.(3.4), Eq.(6.1) takes the form
2+ B — (o2 = B)R(X,Y)Z + (a® = 82+ B)n(R(X,Y)Z)§ = n(X)R(,Y)Z

—n(Y)R(X,8)Z —n(Z)R(X,Y)&] =0

which by taking the inner product with £ and using Eq.(2.13), Eq.(2.14) and Eq.(2.16)

reduces to

(6.2) A+ 8= (o = B7)](a® = B)(g(Y, Z)n(X) — g(X, Z)n(Y)) = 0.

Putting X = ¢ in Eq.(6.2), we get

A+ 8= (o = B%))(a® — B*)g(¢Y, 6Z) = 0

from which it follows that

(6.3) A= (a® = 5% -5,
where g(¢Y, ¢Z) # 0. Thus we can state the following:

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold admitting x-Ricci solitons
satisfies Q- R = 0, then either the the Ricci solitons is expanding or shrinking accord-
ing as (&> —B*) =B >0 or (a*—p*)—B < 0. Also fora==0(ora=0, =-1)
the Ricci soliton is steady and in this case the manifold reduces to a cosymplectic (or

B—Kenmotsu) manifold.
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7. x-Ricci solitons on 3-dimensional trans-Sasakian manifolds satisfying

Definition 7.1. The projective curvature tensor P in a 3-dimensional trans-Sasakian

manifold is defined by [1]
(7.1) P(X,Y)Z = R(X,Y)Z — %[S(Y, 7)X — 5(X, 2)Y],
where X, Y, Z € y(M).
From Eq.(7.1), we find the following results to use later

P(X, )Y = 4n(Y)X — (a® = B*)g(X,Y)E + 3S(X, Y)E,
(7.2) P(X,Y)§ = 5(n(Y)X - n(X)Y),

P(X, )¢ = 3(X —n(X)8).

In this section, we consider 3-dimensional trans-Sasakian manifolds admitting *-Ricci

solitons which satisfies the condition R(X,¢)- P — P(X,€) - R = 0, then we have
(7.3) R(X,&)P(U, V)W — P(R(X, &)U, V)W
—P(U, R(X,&)V)W — P(U,V)R(X, &)W
—P(X,&)R(U, V)W + R(P(X, &)U, V)W
+R(U, P(X,&)V)W + R(U,V)P(X, &)W = 0.
Putting U = W = £ in Eq.(7.3), we have
(7.4) R(X,§)P(E,V)E — P(R(X,£)E,V)E
—P(&§ R(X,§)V)E — P(§,V)R(X, §)E.
—P(X,§R(E V)E+ R(P(X,£)E,V)E
+R(E, P(X,V)E+ R(E,V)P(X,§)E = 0.
By using the equations Eq.(2.13)-Eq.(2.15), Eq.(3.5) and Eq.(7.2), Eq.(7.4) turns to
ARg(V, X)& = 2n(X)n(V)E + n(X)V +n(V)X]

—4(a” = %)g(V, X)§ +25(V, X)§ =0, (a” — %) #0
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which by taking the inner product with ¢ and using (2.1) gives
(7.5) S(V, X) = [2(a® = 8%) = Ng(V, X).

Now putting X = ¢ in Eq.(7.5) and using Eq.(2.17), we get A = 0. Thus Eq.(7.5)

reduces to
S(V,X) =2(c® - 5*)g(V, X).

Therefore we have the following theorem:

Theorem 7.1. If a 3-dimensional trans-Sasakian manifold admitting x-Ricci solitons
satisfies R(X,€)-P— P(X,&)- R =0, then the manifold is an Finstein manifold and

the Ricci soliton is steady.

8. ¢-projectively semisymmetric 3-dimensional trans-Sasakian manifolds
admitting *-Ricci solitons

Definition 8.1. A 3-dimensional trans-Sasakian manifold admitting *-Ricci solitons

is said to be ¢-projectively semisymmetric if [3, 16]
PX,Y) ¢=0
for all X,Y € x(M).

Let M be a 3-dimensional ¢-projectively semisymmetric trans-Sasakian manifold ad-

mitting *-Ricci solitons. Therefore P(X,Y) - ¢ = 0 turns into
(8.1) (P(X,Y)-$)Z = P(X,Y)¢Z — 6P(X,Y)Z = 0.
Taking X = ¢ in Eq.(8.1), we have

(8.2) (P(&,Y)-0)Z = P(&,Y)pZ — oP(§,Y)Z = 0.
From Eq.(7.1), we find

P(§,Y)¢Z = (o® — B)g(Y,02)¢ — 35S (Y, 0Z)¢,
OP(E,Y)Z = —4n(Z)eY.

(8.3)
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Therefore, by using Eq.(8.3) in Eq.(8.2), we obtain S(Y, ¢2)¢ = 2(a?—5%)g(Y, ¢ Z)E+
An(Z)pY which by taking the inner product with £ reduces to

(8.4) S(Y.9Z) = 2(a® - B*)g(Y, ¢Z).
By replacing Z by ¢Z in Eq.(8.4) and using Eq.(2.1), we get
(85) S(Y,Z) = 2(a” = 8%)g(Y, Z) — \n(Y)n(Z).

Now putting Z = £ in Eq.(8.5) and using Eq.(2.16), we get A = 0. Thus we have the

following theorem:

Theorem 8.1. A 3-dimensional ¢-projectively semisymmetric trans-Sasakian mani-

fold admitting *-Ricci solitons is an Finstein manifold and the Ricci soliton is steady.

Example [4]: We consider the three dimensional manifold M = [(z,y,2) € R® | 2 #
0], where (z,y, z) are the standard coordinates in R3. Let ey, e; and e3 be the vector
fields on M given by

0 0 0

€l =2+, Q=2+, €3 =2Z—,
0z

ox oy

which are linearly independent at each point of M. Let g be the Riemannian metric

defined by

9(61, 62) = 9(62, 63) = 9(63761) =0, 9(61, 61) = 9(627 62) = 9(63763) =1,

Let 1 be the 1-form on M defined by n(X) = g(X, e3) for all X € x(M). Let ¢ be
the (1, 1)-tensor field on M defined by

p(e1) = —ea, ¢(e2) = e, p(e3) = 0.
Then using the linearity property of ¢ and g, we have
¢*X = =X +n(X)es, n(ez) =1 and g(pX, ¢Y) = g(X,Y) — n(X)n(Y)

for any vector fields X,Y € x(M). Thus for eg = &, the structure (¢, £, n,g) defines
an almost contact metric structure on M. Let V be the Levi-Civita connection with

respect to the metric g. Then we have

[e1,e2] = 0, [ea, €3] = —ea, [e1, €3] = —er.
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The Riemannian connection V with respect to the metric g is given by
29(VxY,Z)=Xg(Y,2)+Yg(Z,X) - Zg(X,Y) + g([X,Y], Z)

—g([Y, Z]’X) +g([Z>X]>Y)'

From above equation which is known as Koszul’s formula, we can easily calculate

Velel = €3, v61€2 = O, v€1€3 = —€1,
Vegel - Oa v6262 = €3, vege?) = —€,
ve3€1 = 0, ve3€2 = O, ve3€3 = 0.

It can be easily shown that M is a trans-Sasakian manifold of type (0,—1). It is

known that
R(X, Y)Z =VxVyZ -VyVxZ — V[ny}Z.

By using the above results, one can easily obtain the components of the curvature

tensors as follows:
R(e1,ea)er = ea, R(er,es)es = —ey, R(eq,e2)es =0,

R(es,e3)er =0, R(eg, e3)es = e3, R(eq, e3)es = —ey

R(el, 63)61 = €3, R(@l, 63)62 = O, R(el, 63)63 = —€1.
From these curvature tensors, we calculate the components of Ricci tensor as follows:
(86) 5(61, 61) = 5(62, 62) = 5(63, 63) = —2.

From Eq.(3.3), we have S(es,e3) = 2(a® — %) — A\. By equating both the values of
S(es, e3), we obtain 2(a? — %) — A = —2, which for a = 0 and 8 = —1 gives A = 0.

Thus a *-Ricci soliton (g, &, \) on a 3-dimensional trans-Sasakian manifold is steady.
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