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CONVEX CONTRACTIONS OF ORDER n IN CAT (0) SPACES

İSA YILDIRIM (1), YÜCEL TEKMANLI (2) AND SAFEER HUSSAIN KHAN (3)

Abstract. In this paper, we work on convex contraction of order n. Our first

result in general metric spaces shows that each convex contraction of order n is

a Bessaga mapping. We then turn our attention to CAT (0) spaces. We prove

a demiclosedness principle for such mappings in this setting. Next, we consider

modified Mann iteration process and prove some convergence theorems for fixed

points of such mappings in CAT (0) spaces. Our results are new in CAT (0) setting.

Our results remain true in linear spaces like Hilbert and Banach spaces. Finally,

we give an example in order to support our main results and to demonstrate the

efficiency of modified Mann iteration process.

1. Introduction

Istrãtescu [10], [11] introduced some classes of convex contractions such as convex

contractions of order 2, two-sided convex contractions and convex contractions of or-

der n. He proved that convex contraction of order 2 and two-sided convex contractions

have a single fixed point. These classes of mappings have begun to attract attention

in recent years and Alghamdi et al. [12] carried Banach contraction principle to the

class of convex contractions in cone metric spaces. In 2013, Miandaragh et al. [13]

proved that generalized convex contractions have approximate fixed points in metric

spaces. In 2015, Ramezani [14] gave theorems about the existence and uniqueness

of the fixed points of such mappings in orthogonal metric spaces. Afterwards, Khan

et al. [15] proved some results about existence and uniqueness of fixed points of

two-sided convex contractions in b-metric spaces and 2-metric spaces.
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In this paper, motivated by [10] and [11], we first show that each convex conraction

of order n is a Bessaga mapping. Then we prove a demiclosedness principle for

such mappings. Next, we consider modified Mann iteration process and prove some

convergence theorems for fixed points of such mappings in CAT (0) spaces. Our

results are new in CAT (0) setting. Finally, we give an example in order to support

our main results and to demonstrate the efficiency of the this iteration process.

2. Preliminaries

In this section, we give some definitions and known results from the existing literature.

From here on, we denote the set of all fixed points of a mapping f by F (f).

Definition 1. [10] Let (X, d) be a metric space. A continuous mapping f : X →

X is said to be a convex contraction of order n if there exist positive constants

a0, a1, a2, ..., an−1 ∈ (0, 1) such that the following conditions hold:

(i) a0 + a1 + a2 + ...+ an−1 < 1

(ii) for all x, y ∈ X,

(2.1)

d (fn (x) , fn (y)) ≤ a0d (x, y) + a1d (f (x) , f (y))

+a2d (f
2 (x) , f 2 (y)) + ...

+an−1d (f
n−1 (x) , fn−1 (y)) .

If we take n = 2 in the above definition, we obtain convex contraction of order 2.

Theorem 1. [10] Let X be a complete metric space with the metric d. If f : X → X

is a convex contraction of order n, then f has a unique fixed point p, i.e. F (f) = {p}.

Definition 2. Let X be a nonempty set. A map f : X → X is said to be a Bessaga

mapping if there exists p ∈ X such that F (fn) = {p} for all n ∈ N.

Let (X, d) be a metric space. A geodesic from x to y in X is a map c from a closed

interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all

t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image of c is called a

geodesic segment joining x and y.

A geodesic triangle (x1, x2, x3) in a geodesic metric space (X, d) consists of three

points x1, x2, x3 in X and a geodesic segment between each pair of vertices. A
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comparison triangle for the geodesic triangle △(x1, x2, x3) in (X, d) is a triangle

∆(x1, x2, x3) = ∆(x1, x2, x3) in R
2 such that dR2 (xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}.

Such a triangle always exists [16].

A metric space X is a CAT (0) space if it is geodesically connected and if every

geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean

plane [1]. Fixed point theory in CAT (0) spaces has been first studied by Kirk [2, 3].

He showed that every nonexpansive (single-valued) mapping defined on a bounded

closed convex subset of a complete CAT (0) space always has a fixed point.

Lemma 1. [8] Let X be a CAT (0) space. Then

d ((1− α)x⊕ αy, z) ≤ (1− α) d (x, z) + αd (y, z)

for all x, y, z ∈ X and α ∈ [0, 1] .

Lemma 2. [8] Let X be a CAT (0) space. Then

d2 ((1− α) x⊕ αy, z) ≤ (1− α) d2 (x, z) + αd2 (y, z)− α (1− α) d2 (x, y)

for all x, y, z ∈ X and α ∈ [0, 1] .

Let {xn} be a bounded sequence in a CAT (0) space X. For x ∈ X, we set

r (x, {xn}) = lim sup
n→∞

d (x, xn) .

The asymptotic radius r ({xn}) of {xn} is given by

r ({xn}) = inf {r (x, {xn}) : x ∈ X}

and the asymptotic center A ({xn}) of {xn} is the set

A ({xn}) = {x ∈ X : r (x, {xn}) = r ({xn})} .

It is known from Proposition 7 of [5] that A ({xn}) consist of exactly one point in

CAT (0) spaces.

Lemma 3. [9] If K is a closed convex subset of a complete CAT (0) space and if

{xn} is a bounded sequence in K, then the asymptotic center of {xn} is in K.
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Definition 3. [6] A sequence {xn} in X is said to ∆-converge to x ∈ X if x is the

unique asymptotic center of {un} for every subsequence {un} of {xn}. In this case,

we write ∆− limn→∞ xn = x and call x the ∆-limit of {xn}.

Lemma 4. [7] Let {xn} be sequence in X such that {xn} ∆-converges to x and let

y ∈ X with y 6= x. Then lim sup
n→∞

d (xn, x) < lim sup
n→∞

d (xn, y) .

This condition is known as the Opial’s property in Banach spaces.

Lemma 5. [16] Every bounded sequence in a complete CAT (0) space always has a

∆-convergent subsequence.

Lemma 6. Let p, x, y be points of a CAT (0) space X and let α ∈ [0, 1]. Then

d ((1− α) p⊕ αx, (1− α) p⊕ αy) ≤ αd (x, y)

If x, y1, y2 are points in a CAT (0) space and if y0 = 1

2
y1 +

1

2
y2; then the CAT (0)

inequality implies

d (x, y0)
2 ≤

1

2
d (x, y1)

2 +
1

2
d (x, y2)

2 −
1

4
d (y1, y2)

2
.

This is the (CN) inequality of Bruhat and Tits [8].

In the next section of this paper, we use the following modified Mann iteration process

for convergence results.

(2.2) {.x1 ∈ Kxn+1 = (1− αn)xn ⊕ αnf
n (xn) , n ≥ 1

where f is a convex contraction of order n on a closed convex subset K of a CAT (0)

space X. This iteration process is a CAT (0) version of the one given by Schu [4].

3. Main results

Our first result in this section shows a relation between convex contractions of order

n and Bessaga mappings.

Theorem 2. Let (X, d) be a metric space. If f : X → X is a convex contraction of

order n, then f is a Bessaga mapping.
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Proof. From Theorem 1, f has a unique fixed point p. Since F (f) ⊂ F (fn) , p is the

fixed point of the mapping fn, too. We then need to show that fn has a unique fixed

point. Suppose that q is the another fixed point of the mapping fn. From (2.1),

d (p, q) = d (fn (p) , fn (q)) ≤ a0d (p, q) + a1d (f (p) , f (q))

+a2d
(

f 2 (p) , f 2 (q)
)

+ · · ·+ an−1d
(

fn−1 (p) , fn−1 (q)
)

≤ a0d (p, q) + a1a0d (p, q) + a2 (a0d (p, q) + a1a0d (p, q))

+a3





a0d (p, q) + a1a0d (p, q)

+a2 (a0d (p, q) + a1a0d (p, q))



+ . . .

+an−1

















a0d (p, q) + a1a0d (p, q)

+a2 (a0d (p, q) + a1a0d (p, q))

+a3





a0d (p, q) + a1a0d (p, q)+

a2 (a0d (p, q) + a1a0d (p, q))



+ . . .

















= d (p, q)

















a0 + a1a0 + a2 (a0 + a1a0) +

a3 (a0 + a1a0 + a2 (a0 + a1a0)) + . . .

+an−1





a0 + a1a0 + a2 (a0 + a1a0)+

a3 (a0 + a1a0 + a2 (a0 + a1a0)) + . . .





















= a0d (p, q)











1 + a1 + a2 (1 + a1) + +a3 (1 + a1 + a2 (1 + a1))

+ · · ·+ an−1





1 + a1 + a2 (1 + a1)

+a3 (1 + a1 + a2 (1 + a1)) + . . .















That is,

d (p, q) ≤ a0 (1 + a1) d (p, q)





1 + a2 + a3 (1 + a2) + . . .

+an−1 (1 + a2 + a3 (1 + a2) + . . . )





= a0 (1 + a1) (1 + a2) d (p, q) (1 + a3 + · · ·+ an−1 (1 + a3 + . . . ))

= a0 (1 + a1) (1 + a2) (1 + a3) . . . (1 + an−1) d (p, q) .
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Since a0, a1, a2, ..., an−1 ∈ (0, 1) and a0 + a1 + a2 + a3 + · · ·+ an−1 < 1, therefore

(3.1) A = a0 (1 + a1) (1 + a2) (1 + a3) . . . (1 + an−1) < 1.

Hence

d (p, q) ≤ Ad (p, q) =⇒ (1− A) d (p, q) ≤ 0 =⇒ d (p, q) = 0 =⇒ p = q.

Thus, the mapping fn has a unique fixed point. That is, f is a Bessaga mapping. �

We next prove a demiclosedness principle for convex contraction of order n in CAT (0)

spaces as follows. It is well-known that demiclosedness principle plays a key role in

studying the asymptotic and ergodic behavior of mappings.

Lemma 7. Let K be a closed convex subset of a complete CAT (0) space X and let

T : K → K be a convex contraction of order n. If a sequence {xn} ∆-converges to x

and d (xn, f (xn)) → 0, then x ∈ K and f (x) = x.

Proof. From the definition of convex contraction of order n and the inequality (3.1),

we get that

lim sup
n→∞

d (fn (x) , xn) ≤ lim sup
n→∞

d (fn (x) , fn (xn)) + lim sup
n→∞

d (fn (xn) , xn)

≤ lim sup
n→∞

a0 (1 + a1) (1 + a2) (1 + a3) . . .

(1 + an−1) d (x, xn) + lim sup
n→∞

d (fn (xn) , xn)(3.2)

≤ Alim sup
n→∞

d (x, xn) + lim sup
n→∞

d (fn (xn) , xn)

≤ lim sup
n→∞

d (x, xn)(3.3)

= r (x, xn) .

In here, since lim
n→∞

d (xn, f (xn)) = 0, therefore lim
n→∞

d (fn (xn) , xn) = 0. By induction

we prove that

(3.4) lim
n→∞

d (fn (xn) , xn) = 0 for each n ≥ 1.

It is clear that this limit is true for n = 1. We suppose that this limit holds for

n = k ≥ 1, that is lim
n→∞

d
(

fk (xn) , xn

)

= 0. Now we prove that it is also true for
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n = k + 1. Since f is a convex contraction of order n, we have

d
(

xn, f
k+1 (xn)

)

≤ d
(

xn, f
k (xn)

)

+ d
(

fk (xn) , f
k+1 (xn)

)

= d
(

xn, f
k (xn)

)

+ d
(

fk (xn) , f
k (f (xn))

)

≤ d
(

xn, f
k (xn)

)

+a0 (1 + a1) (1 + a2) (1 + a3)

. . . (1 + ak−1) d (xn, f (xn))

→ 0 as n → ∞.

Thus, the existence of the limit (3.4) is proved. From unique of the asymptotic center

and (3.2), we obtain that x ∈ K and fn (x) = x. From Theorem 2, the mapping fn

has a unique fixed point. Therefore f (x) = x. �

We now exploit the iteration process (2.2) to prove our convergence results. But

before that, we have a couple of results as follows.

Lemma 8. Let X be a complete CAT (0) space and let K be a nonempty closed

convex subset of X. Let f : K → K be a convex contraction of order n and let {xn}

defined by the iteration process (2.2). Then limn→∞ d (xn, p) exists for p ∈ F (f) .

Proof. Let p ∈ F (f) . From (2.1) and (2.2), we can write

d (xn+1, p) = d ((1− αn) xn ⊕ αnf
n (xn) , p)(3.5)

= (1− αn) d (xn, p) + αnd (f
n (xn) , p)

= (1− αn) d (xn, p) + αnd (f
n (xn) , f

n (p))

≤ (1− αn) d (xn, p)

+αn











a0d (xn, p) + a1d (f (xn) , f (p))

+a2d (f
2 (xn) , f

2 (p)) + . . .

+an−1d (f
n−1 (xn) , f

n−1 (p))











.

Following the steps as in the above Theorem 2, we have

d (xn+1, p) ≤ d (xn, p)

which obviously implies that {d (xn, p)} is a decreasing sequence and hence

limn→∞ d (xn, p) exists for p ∈ F (f) . �
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Lemma 9. Let X be a complete CAT (0) space, K be a nonempty convex subset

of X and f : K → K be a convex contraction of order n. Let the sequence {xn} be

defined by (2.2) with 0 < b ≤ αn ≤ c < 1. Then limn→∞ d (f (xn) , xn) = 0.

Proof. Let f be a convex contraction of order n and p ∈ F (f) . Using Lemma 3, we

have

d2 (xn+1, p) = d2 ((1− αn) xn ⊕ αnf
n (xn) , p)

≤ (1− αn) d
2 (xn, p) + αnd

2 (fn (xn) , p)

−αn (1− αn) d
2 (fn (xn) , xn)

= (1− αn) d
2 (xn, p) + αnd

2 (fn (xn) , f
n (p))

−αn (1− αn) d
2 (fn (xn) , xn)

≤ (1− αn) d
2 (xn, p)

+αn[a0 (1 + a1) (1 + a2) (1 + a3) . . . (1 + an−1)]
2
d2 (xn, p)

−αn (1− αn) d
2 (fn (xn) , xn)

≤ (1− αn) d
2 (xn, p) + αnd

2 (xn, p)

−αn (1− αn) d
2 (fn (xn) , xn)

= d2 (xn, p)− αn (1− αn) d
2 (fn (xn) , xn) .

That is

(3.6) d2 (xn+1, p) ≤ d2 (xn, p)− αn (1− αn) d
2 (fn (xn) , xn) .

We know that limn→∞ d (xn, p) exists for p ∈ F (f) from Lemma 8. Hence using (3.6)

we have

lim
n→∞

d (fn (xn) , xn) = 0.

From (2.2), we have

d (xn, xn+1) = d (xn, (1− αn)xn ⊕ αnf
n (xn))

≤ (1− αn) d (xn, xn) + αnd (f
n (xn) , xn) .
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Hence d (xn, xn+1) → 0 as n → ∞. Now using triangle inequality and continuity of

f, we have

d (xn, f (xn)) ≤ d (xn, xn+1) + d
(

xn+1, f
n+1 (xn+1)

)

+d
(

fn+1 (xn+1) , f
n+1 (xn)

)

+ d
(

fn+1 (xn) , f (xn)
)

≤ d (xn, xn+1) + d
(

xn+1, f
n+1 (xn+1)

)

+a0 (1 + a1) (1 + a2) (1 + a3) . . . (1 + an) d (xn, xn+1)

+d
(

fn+1 (xn) , f (xn)
)

= [1 + a0 (1 + a1) (1 + a2) (1 + a3) . . . (1 + an)] d (xn, xn+1)

+d
(

xn+1, f
n+1 (xn+1)

)

+ d
(

fn+1 (xn) , f (xn)
)

which implies that

lim
n→∞

d (f (xn) , xn) = 0.

This completes the proof. �

We are now in a position to give our convergence results. Our first result is on

∆-convergence.

Theorem 3. Let X be a CAT (0) space, K be a nonempty convex subset of X and

f : K → K be a convex contraction of order n. Let the sequence {xn} be defined by

(2.2) with 0 < b ≤ αn ≤ c < 1. Then the sequence {xn} , ∆-converges to a fixed point

of f.

Proof. By Lemmas 8 and 9, lim n→∞d (f (xn) , xn) = 0 and lim n→∞d (xn, p) exists

for p ∈ F (f) . Thus the sequence {xn} is bounded. First, we show that w△(xn) ⊆

F (f). Let u ∈ w△(xn). Then there exists a subsequence {un} of {xn} such that

A({un}) = {u}. By Lemma 5, there exists a subsequence {vn} of {un} such that

△-limn→∞ vn = v for some v ∈ K. From Lemma 7, v ∈ F (T ). Also by Lemma 8,

limn→∞ d(xn, v) exists. Now, we will show that u = v. Suppose that u 6= v. Then, by
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the uniqueness of asymptotic centers, we get that

lim sup
n→∞

d (vn, v) < lim sup
n→∞

d (vn, u)

≤ lim sup
n→∞

d (un, u)

< lim sup
n→∞

d (un, v)

= lim sup
n→∞

d (xn, v)

= lim sup
n→∞

d (vn, v)

which is a contradiction. Thus, u = v ∈ F (f) and hence w△(xn) ⊆ F (f). To show

that the sequence {xn} △-converges to a fixed point of f , we show that w△(xn)

consists of exactly one point. Let {un} be a subsequence of {xn}. By Lemma 5, there

exists a subsequence {vn} of {un} such that △-limn→∞ vn = v for some v ∈ K. Let

A({un}) = {u} and A({xn}) = {x}. Therefore u = v and v ∈ F (f). Finally, we claim

that x = v. If not, then existence of limn→∞ d(xn, v) and uniqueness of asymptotic

centers imply that

lim sup
n→∞

d (vn, v) < lim sup
n→∞

d (vn, x)

≤ lim sup
n→∞

d (xn, x)

< lim sup
n→∞

d (xn, v)

= lim sup
n→∞

d (vn, v)

which is a contradiction and hence x = v ∈ F (f). Therefore, w△(xn) = {x}. �

We now prove a strong convergence theorem.

Theorem 4. Let X be a CAT (0) space, K be a nonempty convex subset of X and f :

K → K be a convex contraction of order n. Let the sequence {xn} be defined by (2.2).

Then {xn} converges strongly to a fixed point of f if and only if lim inf
n→∞

d(xn, F (f)) = 0

where d(x, F (f)) = inf{d(x, p) : p ∈ F (f)}.

Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F (f) = 0. As

proved in Lemma 8, we have d (xn+1, p) ≤ d (xn, p)for p ∈ F (f). This implies that

d (xn+1, F (f)) ≤ d (xn, F (f)) so that limn→∞ d(xn, F (f)) exists. Thus by hypothesis

limn→∞ d(xn, F (f) = 0. Next, we show that {xn} is a Cauchy sequence in K. Let ε >
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0 be arbitrarily chosen. Since limn→∞ d(xn, F (f)) = 0, there exists a positive integer

n0 such that d (xn, F (f)) < ε
4
, ∀n ≥ n0. In particular, inf{d(xn0

, p) : p ∈ F (f)} < ε
4
.

Thus there must exist p∗ ∈ F (f) such that d (xn0
, p∗) < ε

2
. Now, for all m,n ≥ n0,

we have

d (xn+m, xn) ≤ d (xn+m, p) + d (p, xn)

≤ 2d (xn0
, p)

= ε.

Hence, {xn} is a Cauchy sequence in a closed subset K of a complete CAT (0) space

and so it must converge to a point q in K. Now, limn→∞ d(xn, F (f)) = 0 gives that

d(q, F (f)) = 0 and closedness of F (f) forces q to be in F (f). �

In order to support our main results and to demonstrate the efficiency of the iteration

process (2.2), we give the following example.

Example 1. Let f : [0, 1] → [0, 1] be defined by f (x) = 2x2+1

4
. Then f is a convex

contraction of order n. Define {xn} as

xn+1 = (1− αn)xn ⊕ αnf
m (xn) , n = 1, 2, 3, . . .

and let αn = 2n
3n+1

be a sequence in (0, 1) . The following tables demonstrate conver-

gence of our iteration process for different choices of the initial guess x1 and different

values of m.

Table 3.8 Convergence test for the iteration process (2.2) with

initial value x1 = 1 and m = 1, 2, 3.

x1 = 1 and m = 1 x1 = 1 and m = 2 x1 = 1 and m = 3

x2 = 0.8750000 x2 = 0.7656250 x2 = 0.6955566

x3 = 0.7366071 x3 = 0.5552529 x3 = 0.4802752

x4 = 0.6074199 x4 = 0.4211030 x4 = 0.3722061

x5 = 0.5009950 x5 = 0.3510991 x5 = 0.3248733

x10 = 0.3066557 x10 = 0.2936697 x10 = 0.2931504

x15 = 0.2935451 x15 = 0.2929019 x15 = 0.2928950

x19 = 0.2929479 x19 = 0.2928934 x19 = 0.2928932
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x20 = 0.2929225 x20 = 0.2928933

x21 = 0.2929089 x21 = 0.2928933

x22 = 0.2929016 x22 = 0.2928932

x23 = 0.2928977

x27 = 0.2928936

x28 = 0.2928934

x29 = 0.2928933

Table 3.9 Convergence test for the iteration process (2.2) with

initial value x1 = 1 and m = 10, 50, 100.

x1 = 1 and m = 10 x1 = 1 and m = 50 x1 = 1 and m = 100

x2 = 0.6464581 x2 = 0.6464466 x2 = 0.6464466

x3 = 0.4444233 x3 = 0.4444161 x3 = 0.4444161

x4 = 0.3.535058 x4 = 0.3535024 x4 = 0.3535024

x5 = 0.3162060 x5 = 0.3162044 x5 = 0.3162044

x10 = 0.2930438 x10 = 0.2930438 x10 = 0.2930438

x15 = 0.2928940 x15 = 0.2928940 x15 = 0.2928940

x16 = 0.2928935 x16 = 0.2928935 x16 = 0.2928935

x17 = 0.2928933 x17 = 0.2928933 x17 = 0.2928933

x18 = 0.2928933 x18 = 0.2928933 x18 = 0.2928933

x19 = 0.2928932 x19 = 0.2928932 x19 = 0.2928932

Table 3.10 Convergence test for the iteration process (2.2) with

initial value x1 = 0 and m = 1, 2, 3.

x1 = 0 and m = 1 x1 = 0 and m = 2 x1 = 0 and m = 3

x2 = 0.1250000 x2 = 0.1406250 x2 = 0.1447754

x3 = 0.2008929 x3 = 0.2224226 x3 = 0.2279361

x4 = 0.2424645 x4 = 0.2616130 x4 = 0.2660718

x5 = 0.265190 x5 = 0.2793223 x5 = 0.2821881

x10 = 0.2915342 x10 = 0.2927185 x10 = 0.2928077

x15 = 0.2928300 x15 = 0.2928913 x15 = 0.2928926
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x18 = 0.2928834 x18 = 0.2928931 x18 = 0.2928932

x19 = 0.2928879 x19 = 0.2928932

x20 = 0.2928904

x23 = 0.2928928

Table 3.11 Convergence test for the iteration process (2.2) with

initial value x1 = 0 and m = 10, 50, 100.

x1 = 0 and m = 10 x1 = 0 and m = 50 x1 = 0 and m = 100

x2 = 0.1464463 x2 = 0.1464466 x2 = 0.1464466

x3 = 0.2301300 x3 = 0.2301304 x3 = 0.2301304

x4 = 0.2677878 x4 = 0.2677881 x4 = 0.2677881

x5 = 0.2832372 x5 = 0.2832374 x5 = 0.2832374

x10 = 0.2928308 x10 = 0.2928308 x10 = 0.2928308

x15 = 0.2928929 x15 = 0.2928929 x15 = 0.2928929

x16 = 0.2928931 x16 = 0.2928931 x16 = 0.2928931

x17 = 0.2928932 x17 = 0.2928932 x17 = 0.2928932

Table 3.12 Convergence test for the iteration process (2.2) with

initial value x1 = 0.5 and m = 1, 2, 3.

x1 = 0.5 and m = 1 x1 = 0.5 and m = 2 x1 = 0.5 and m = 3

x2 = 0.4375000 x2 = 0.4101563 x2 = 0.4006500

x3 = 0.3850446 x3 = 0.3505333 x3 = 0.3410620

x4 = 0.3484957 x4 = 0.3193112 x4 = 0.3129734

x5 = 0.3252519 x5 = 0.3045316 x5 = 0.3009418

x10 = 0.2946006 x10 = 0.2930449 x10 = 0.2929577

x15 = 0.2929729 x15 = 0.2928949 x15 = 0.2928937

x18 = 0.2929056 x18 = 0.2928933 x18 = 0.2928932

x19 = 0.2928999 x19 = 0.2928933

x20 = 0.2928968 x20 = 0.2928932

x21 = 0.2928951

x28 = 0.2928932
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