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APPROXIMATION OF GENERALIZED SZÁSZ-MIRAKJAN

OPERATORS DEPENDING ON CERTAIN PARAMETERS

M. QASIM (1), M. MURSALEEN (2), A. KHAN (3) AND Z. ABBAS (4)

Abstract. Motivated by certain generalizations, in this paper we consider a new

analogue of generalized Szász-Mirakjan operators whose construction depends on

τ, with extra parameters µ and λ. Depending on the selection of µ and λ, these

operators are more flexible than the generalized Szász-Mirakjan operators. We in-

vestigate approximation properties. Also, we study local and global approximation,

Voronovskaya type theorem. Finally, quantitative estimates for the local approxi-

mation are discussed.

1. Introduction

The well-known Weierstrass Approximation Theorem, proved by Karl Weierstrass in

1885, states that for any continuous function g defined in interval [a, b] and ǫ > 0,

there exists a polynomial P such that |g(y) − P (y)| < ǫ. Since the proof of the

theorem is lengthy and complicated, many researchers studied to find simple and

effective proof. In 1912, S.N. Bernstein [4] proposed the famous polynomial, which is

constructed by probabilistic method to give the simple, short and most elegant proof

of Weierstrass theorem [22] as follows:

(1.1) Bm(g; y) =

m∑

j=0

bm,j(y)g

(
j

m

)
,

where y ∈ [0, 1], m = 1, 2, 3, ...., and the basis of Bernstein functions bm,j are defined

as follows:
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(1.2) bm,j(y) =

(
m

j

)
yj(1− y)m−j.

In order to obtain more flexibility, Stancu [20] applied another technique for choosing

nodes. He observed that the distance between two successive nodes and between 0

and first node and similarly between last and 1 goes to zero when m → ∞. After

these observation Stancu introduced the following positive linear operators

(1.3) Sµ,λ
m (g; y) =

m∑

k=0

(
m

k

)
yk(1− y)m−kf

(
k + µ

m+ λ

)

converge to continuous function g(y) uniformly in [0,1] for each real µ, λ such that

0 ≤ µ ≤ λ. For various generalization of stancu type operators one can see [3, 10,

12, 13, 14, 15, 16, 17, 18, 19].

To presents a better degree of approximation, a new generalization of Bernstein type

operators was given by Cárdenas et al. [5] which depends on τ .

For m ≥ 1, y ≥ 0, and suitable functions g defined on [0,∞). A similar modification

of Szász-Mirakyan type operators was introduced by Aral et al. [2] which depends

on τ as follows:

(1.4) Sτ
m(g; y) = e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j

m

)
.

Where, τ having following properties

(τ1) τ be a continuously differentiable function on [0,∞),

(τ2) τ(0) = 0 and inf
y∈[0,∞)

τ
′

(y) ≥ 1.

If we put τ(y) = y then (1.4) reduces to the Szász-Mirakyan operators defined in [21]

as

(1.5) Sm(g; y) = e−my

∞∑

j=0

(my)j

j!
g

(
j

m

)
,
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Motivated by various Stancu type generalizations and by the above mentioned work,

we introduce Stancu variant of operators (1.4) which depend on a suitable function

τ as follows:

Definition 1.1. For m ≥ 1, y ≥ 0, and suitable functions g defined on [0,∞) with

0 ≤ µ ≤ λ. We define Stancu variant of generalized Szász-Mirakjan operators as

(1.6) S∗µ,λ
m,τ (g; y) = e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j + µ

m+ λ

)
, y ≥ 0

The new constructed operators (1.6) are positive and linear. For µ = λ = 0, the

operators (1.6) turn out to be generalized Szász-Mirakyan operators defined in (1.4).

Next, we prove some Lemma’s for (1.6) which play an important role to prove our

main results.

Lemma 1.1. For the operators S∗µ,λ
m,τ be given by (1.6), we have

(i) S∗µ,λ
m,τ (1; y) = 1,

(ii) S∗µ,λ
m,τ (τ ; y) =

m
m+λ

τ(y) + µ

m+λ
,

(iii) S∗µ,λ
m,τ (τ

2; y) = m2

(m+λ)2
τ 2(y) + m+2µm

(m+λ)2
τ(y) + µ2

(m+λ)2
,

(iv) S∗µ,λ
m,τ (τ

3; y) = m3

(m+λ)3
τ 3(y) + 3m2+6µm2

(m+λ)3
τ 2(y) + m+6µm+3µ2

(m+λ)3
τ(y) + µ3

(m+λ)3
,

(v) S∗µ,λ
m,τ (τ

4; y) = m4

(m+λ)4
τ 4(y) + 6m3+4µm3

(m+λ)4
τ 3(y) + 7m2+6µ2m2+8µm2

(m+λ)4
τ 2(y)

+ m+6µ2m+4µm+4m2µ

(m+λ)4
τ(y) + µ4

(m+λ)4
.

Proof.

(i)

S∗µ,λ
m,τ (1; y) = e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)
= 1

(ii)

S∗µ,λ
m,τ (τ ; y) = e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j + µ

m+ λ

)

= e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j

m+ λ

)

+ e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( µ

m+ λ

)

=
m

m+ λ
τ(y) +

µ

m+ λ
.
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(iii)

S∗µ,λ
m,τ (τ

2; y) = e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j + µ

m+ λ

)2

= e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j

m+ λ

)2

+ e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( µ

m+ λ

)2

+ e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 2µj

(m+ λ)2

=
m2

(m+ λ)2
τ 2(y) +

m+ 2µm

(m+ λ)2
τ(y) +

µ2

(m+ λ)2
.

(iv)

S∗µ,λ
m,τ (τ

3; y) = e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j + µ

m+ λ

)3

= e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j

m+ λ

)3

+ e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( µ

m+ λ

)3

+ e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 2j2µ

(m+ λ)3

+ e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 2µ2j

(m+ λ)3

=
m3

(m+ λ)3
τ 3(y) +

3m2 + 6µm2

(m+ λ)3
τ 2(y)

+
m+ 6µm+ 3µ2

(m+ λ)3
τ(y) +

µ3

(m+ λ)3
.

(v) Finally,

S∗µ,λ
m,τ (τ

4; y) = e−mτ(y)

∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j + µ

m+ λ

)4

= e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( j

m+ λ

)4
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+ e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

)( µ

m+ λ

)4

+ e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 6j2µ2

(m+ λ)4

+ e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 4µ2j3

(m+ λ)4

+ e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

(
goτ−1

) 4µ3j

(m+ λ)4

=
m4

(m+ λ)4
τ 4(y) +

6m3 + 4µm3

(m+ λ)4
τ 3(y) +

7m2 + 6µ2m2 + 8µm2

(m+ λ)4
τ 2(y)

+
m+ 6µ2m+ 4µm+ 4m2µ

(m+ λ)4
τ(y) +

µ4

(m+ λ)4
.

�

Corollary 1.1. By using the linearity of operators S∗µ,λ
m,τ and by Lemma 1.1,we can

acquire the central moments as

(i) S∗µ,λ
m,τ (τ(ξ)− τ(y); y) =

(
m

m+λ
− 1

)
τ(y) + µ

m+λ
,

(ii) S∗µ,λ
m,τ ((τ(ξ)− τ(y))2; y) =

(
m2

(m+λ)2
− 2m

m+λ
+ 1

)
τ 2(y) +

(
m+2µm
(m+λ)2

− 2µ
m+λ

)
τ(y)

+ µ2

(m+λ)2
,

(iii) S∗µ,λ
m,τ ((τ(ξ)− τ(y))3; y) =

(
m3

(m+λ)3
− 3m2

(m+λ)2
+ 3m

m+λ
− 1

)
τ 3(y)

+
(

3m2+6µm2

(m+λ)3
− 6µm+3m

(m+λ)2
+ 3µ

(m+λ)

)
τ 2(y) +

(
m+6µm+3µ2

(m+λ)3
− 3µ2

(m+λ)2

)
τ(y) + µ3

(m+λ)3
,

(iv) S∗µ,λ
m,τ ((τ(ξ)− τ(y))4; y) =

(
m4

(m+λ)4
− 4m3

(m+λ)3
+ 6m2

(m+λ)2
− 4m

(m+λ)
+ 1

)
τ 4(y)

+
(

6m3+6m3µ

(m+λ)4
− 24m2µ+12m2

(m+λ)3
+ 12mµ+6m

(m+λ)2
− 4µ

(m+λ)

)
τ 3(y)

+
(

7m2+6m2µ2+8m2µ

(m+λ)4
− 24mµm+4m+12µ2

(m+λ)3
+ 6µ2

(m+λ)2

)
τ 2(y)

+
(

m+6mµ2+4m2µ+4mµ

(m+λ)4
+ µ3

(m+λ)3

)
τ(y) + µ4

(m+λ)4
.

2. Weighted approximation

In this section, by using weighted space we discuss some convergence properties of

new constructed operators S∗µ,λ
m,τ .

Let Ψ(y) = 1 + τ 2(y) be a weight function and BΨ[0,∞) be the weighted spaces

defined as:

BΨ[0,∞) = {g : [0,∞) → R
∣∣|g(y)| ≤ MgΨ(y), y ≥ 0},
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where Mg is a constant. BΨ[0,∞) is a normed linear space equipped with the norm

‖ g ‖Ψ= sup
y∈[0,∞)

|g(y)|
Ψ(y)

.

Also, the subspaces CΨ[0,∞), UΨ[0,∞) and UΨ[0,∞) of BΨ[0,∞) are defined as

CΨ[0,∞) = {g ∈ BΨ[0,∞) : g is continuous on [0,∞)},

C∗
Ψ[0,∞) =

{
g ∈ CΨ[0,∞) : lim

y→∞

g(y)

Ψ(y)
= Mg = Constant

}
,

UΨ[0,∞) = {g ∈ CΨ[0,∞) :
g(y)

Ψ(y)
is uniformly continuous on [0,∞)}.

It is Obvious that C∗
Ψ[0,∞) ⊂ UΨ[0,∞) ⊂ CΨ[0,∞) ⊂ BΨ[0,∞).

In [7], the weighted Korovkin type theorems are proved by Gadjiev.

Lemma 2.1. [7] For m ≥ 1, Qm : BΨ[0,∞) → BΨ[0,∞) if and only if the inequality

|Qm(Ψ; y)| ≤ MmΨ(y), y ≥ 0,

holds, where Mm > 0 is a constant.

Theorem 2.1. [7] For m ≥ 1, Qm : BΨ[0,∞) → BΨ[0,∞) and satisfying

lim
m→∞

‖ Qmτ
i − τ i ‖Ψ= 0, i = 0, 1, 2.

Then for any function g ∈ C∗
Ψ[0,∞) we have

lim
m→∞

‖ Qm(g)− g ‖Ψ= 0.

Therefore, we can prove the following results.

Theorem 2.2. For each function g ∈ C∗
Ψ[0,∞) with 0 ≤ µ ≤ λ. We have

lim
m→∞

‖ S∗µ,λ
m,τ (g)− g ‖Ψ= 0.

Proof. It is clear from Lemma 1.1 that

‖ S∗µ,λ
m,τ (1; y)− 1 ‖Ψ= 0.
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‖ S∗µ,λ
m,τ (τ ; y)− τ ‖Ψ=

(
m

m+ λ
− 1

)
sup

y∈[0,∞)

τ(y)

1 + τ 2(y)
+

µ

m+ λ
≤ µ− λ

m+ λ
.

Again by Lemma 1.1 (iii), we have

‖ S∗µ,λ
m,τ (τ

2; y)− τ 2 ‖Ψ =

(
m2

(m+ λ)2
− 1

)
sup

y∈[0,∞)

τ 2(y)

1 + τ 2(y)

+
2µm+ 2m

(m+ λ)2
sup

y∈[0,∞)

τ(y)

1 + τ 2(y)
+

µ2

(m+ λ)2

≤ µ2 − λ2 − 2mλ+ 2mµ+m

(m+ λ)2
.(2.1)

Then from Lemma 1.1 and (2.1) we get lim
m→∞

‖ S∗µ,λ
m,τ (τ

i)− τ i ‖Ψ= 0, i = 0, 1, 2. �

3. Rate of convergence

In this section, by using weighted modulus of continuity ωτ (f ; δ) we determine the

rate of convergence for S∗µ,λ
m,τ which was recently considered by Holhoş [9] as follows:

(3.1) ωτ (g; δ) = sup
y,ξ∈[0,∞),|τ(ξ)−τ(y)|≤λ

|g(ξ)− g(y)|
Ψ(ξ) + Ψ(y)

, λ > 0,

where g ∈ CΨ[0,∞), having following properties:

(i) ωτ (g; 0) = 0,

(ii) ωτ (g;λ) ≥ 0, λ ≥ 0 for g ∈ CΨ[0,∞),

(ii) limλ→0 ωτ (g;λ) = 0, for each g ∈ UΨ[0,∞).
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Theorem 3.1. [9] Let Qm : CΨ[0,∞) → BΨ[0,∞) be a sequence of positive linear

operators with

‖ Qm(τ
0)− τ 0 ‖Ψ0 = am,(3.2)

‖ Qm(τ)− τ ‖
Ψ

1
2

= bm,(3.3)

‖ Qm(τ
2)− τ 2 ‖Ψ = cm,(3.4)

‖ Qm(τ
3)− τ 3 ‖

Ψ
3
2

= dm,(3.5)

where the sequences am, bm, cm and dm converge to zero as m → ∞. Then

(3.6) ‖ Qm(g)− g ‖
Ψ

3
2
≤ (7 + 4am + 2cm)ωτ (g;λm)+ ‖ g ‖Ψ am,

for all g ∈ CΨ[0,∞), where

λm = 2
√

(am + 2bm + cm)(1 + am) + am + 3bm + 3cm + dm.

Theorem 3.2. Let for each g ∈ CΨ[0,∞) with 0 ≤ µ ≤ λ. Then we have

‖ S∗µ,λ
m,τ (g)− g ‖

Ψ
3
2
≤

(
7 +

2µ2 − 2λ2 − 4mλ+ 4mµ+ 2m

(m+ λ)2

)
ωτ (g; δm),

where

δm = 2

√
2µ− 2λ

m+ λ
+

µ2 − λ2 − 2mλ + 2mµ+ 2m

(m+ λ)2

+
3µ− 3λ

m+ λ
+

3µ2 − 3λ2 − 6mλ+ 6mµ+ 3m

(m+ λ)2

+
3m2 + 6µm2 +m+ 6µm+ 3µ2m+ µ3 − λ3 − 3m2λ− 3mλ2

(m+ λ)3
.

Proof. If we calculate the sequences (am), (bm), (cm) and (dm), then by using Lemma

1.1, clearly we have

‖ S∗µ,λ
m,τ (τ

0)− τ 0 ‖Ψ0= 0 = am,

‖ S∗µ,λ
m,τ (τ)− τ ‖

Ψ
1
2
≤ µ− λ

m+ λ
= bm,

and

‖ S∗µ,λ
m,τ (τ

2)− τ 2 ‖Ψ≤
µ2 − λ2 − 2mλ+ 2mµ+m

(m+ λ)2
= cm.
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Finally,

‖ S∗µ,λ
m,τ (τ

3)− τ 3 ‖
Ψ

3
2

≤ 3m2 + 6µm2 +m+ 6µm+ 3µ2m+ µ3 − λ3 − 3m2λ− 3mλ2

(m+ λ)3

= dm.

Thus the conditions (3.1)-(3.5) are satisfied. Now by Theorem 3.1, the proof is

competed. �

Remark 1. For lim
λ→0

ωτ (g;λ) = 0 in Theorem 3.2, we get

lim
m→∞

‖ S∗µ,λ
m,τ (g)− g ‖

Ψ
3
2
= 0, for g ∈ UΨ[0,∞).

4. Voronovskaya type theorem

In this section, we establish Voronovskaya-type result for S∗µ,λ
m,τ .

Theorem 4.1. Let g ∈ CΨ[0,∞), y ∈ [0,∞) with 0 ≤ µ ≤ λ. and suppose that

(goτ−1)
′
and (goτ−1)

′′
exist at τ(y). If (goτ−1)

′′
is bounded on [0,∞), then we have

lim
m→∞

m
[
S∗µ,λ

m,τ (g; y)− g(y)
]
= τ(y)

(
goτ−1

)′
µ+ τ(y)

(
goτ−1

)′′
τ(y)

Proof. Let g ∈ CΨ[0,∞) and τ(y) ∈ [0,∞). By Taylor expansion of (goτ−1) we may

write

g(ξ) =
(
goτ−1

)
(τ(ξ)) =

(
goτ−1

)
(τ(y)) +

(
goτ−1

)′
(τ(y)) (τ(ξ)− τ(y))(4.1)

+
(goτ−1)

′′
(τ(y)) (τ(ξ)− τ(y))2

2
+ λy(ξ) (τ(ξ)− τ(y))2 ,

where

(4.2) λy(ξ) =
(goτ−1)

′′
(τ(ξ))− (goτ−1)

′′
(τ(y))

2
.

Therefore, lim
ξ→y

λy(ξ) = 0. Applying S∗µ,λ
m,τ to (4.1), we obtain

[
S∗µ,λ

m,τ (g; y)− g(y)
]

=
(
goτ−1

)′
(τ(y))S∗µ,λ

m,τ ((τ(ξ)− τ(y)); y)

+
(goτ−1)

′′
(τ(y))S∗µ,λ

m,τ ((τ(ξ)− τ(y))2; y)

2
(4.3)

+ S∗µ,λ
m,τ

(
λy(ξ) ((τ(ξ)− τ(y))2 ; y)

)
.
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From Lemma 1.1 and Corollary 1.1, we obtain

(4.4) lim
m→∞

mS∗µ,λ
m,τ ((τ(ξ)− τ(y)); y) ≤ µ,

and

lim
m→∞

mS∗µ,λ
m,τ

(
(τ(ξ)− τ(y))2; y

)
≤ 2τ(y)(4.5)

Since from (4.2), for every ǫ > 0, lim
ξ→y

λy(ξ) = 0. Let δ > 0 such that |λy(ξ)| < ǫ for

every ξ ≥ 0. From Cauchy-Schwartz inequality, we get immediately

lim
m→∞

mS∗µ,λ
m,τ

(
|λy(ξ)| (τ(ξ)− τ(y))2 ; y

)
≤ ǫ lim

m→∞
mS∗µ,λ

m,τ

(
(τ(ξ)− τ(y))2; y

)

+
K
δ2

lim
m→∞

S∗µ,λ
m,τ

(
(τ(ξ)− τ(y))4; y

)
.

Since

(4.6) lim
m→∞

mS∗µ,λ
m,τ

(
(τ(ξ)− τ(y))4; y

)
= 0,

we obtain

(4.7) lim
m→∞

mS∗µ,λ
m,τ

(
|λy(ξ)| (τ(ξ)− τ(y))2 ; y

)
= 0.

Thus, by taking into account the equations (4.4),(4.5) and (4.7) to equation (4.3) the

proof is completed. �

5. Local Approximation

Let CB[0,∞), be the space of real-valued continuous and bounded functions g with

the norm ‖ · ‖ is given by

‖ g ‖= sup
0≤y<∞

| g(y) | .

We begin by considering the K-functional as:

K2(g, δ) = inf
s∈W 2

{‖ g − s ‖ +δ ‖ g
′′ ‖},

where δ > 0 and W 2 = {s ∈ CB[0,∞) : s
′

, s
′′ ∈ CB[0,∞)}.

Then, in view of known result [6], there exists an absolute constant C > 0 such that

(5.1) K(g, δ) ≤ Cω2(g,
√
δ),
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where

ω2(g,
√
δ) = sup

0<h≤
√
δ

sup
u∈[0,∞)

| g(y + 2h)− 2g(y + h) + g(y) |

is second order modulus of smoothness of g ∈ CB[0,∞).

Also,

ω(g, δ) = sup
0<h≤δ

sup
y∈[0,∞)

| g(y + h)− g(y) |

is the usual modulus of continuity of g ∈ CB[0,∞)

Theorem 5.1. There exists an absolute constant C > 0 such that

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣≤ CK (g, δm(y)) ,

where g ∈ CB [0,∞), 0 ≤ µ ≤ λ and

δm(y) =

{(
m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
τ 2(y)+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
τ(y)+

µ2

(m+ λ)2

}

Proof. By using Taylor’s formula and for s ∈ W 2 also y, ξ ∈ [0,∞). We have

(5.2) s(ξ) = s(y) +
(
soτ−1

)′
(τ(y))(τ(ξ)− τ(y)) +

∫ τ(ξ)

τ(y)

(τ(ξ)− v)
(
soτ−1

)′′
(v)dv.

By using the equality

(5.3)
(
soτ−1

)′′
(τ(y)) =

s′′(y)

(τ ′(y))2
− s′′(y)

τ ′′(y)

(τ ′(y))3
.

Now, in the last term of equality (5.2) put v = τ(y) , we obtain

∫ τ(ξ)

τ(y)

(τ(ξ)− v)
(
soτ−1

)′′
(v)dv =

∫ ξ

y

(τ(ξ)− τ(y))

[
s′′(y)τ ′(y)− s′(y)τ ′′(v)

(τ ′(y))2

]
dy

=

∫ τ(ξ)

τ(y)

(τ(ξ)− v)
s′′(τ−1(v))

(τ ′(τ−1(v))2
dv(5.4)

−
∫ τ(ξ)

τ(y)

(τ(ξ)− v)
s′(τ−1(v))τ ′′(τ−1(v))

(τ ′(τ−1(v))3
dv.
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By applying S∗µ,λ
m,τ to (5.2) and also by using Lemma 1.1 and (5.4) and we deduce

S∗µ,λ
m,τ (s; y) = s(y) + S∗µ,λ

m,τ

(∫ τ(ξ)

τ(y)

(τ(ξ)− v)
s′′(τ−1(v))

(τ ′(τ−1(v))2
dv; u

)

− S∗µ,λ
m,τ

(∫ τ(ξ)

τ(y)

(τ(ξ)− v)
s′(τ−1(v))τ ′′(τ−1(v))

(τ ′(τ−1(v))3
dv; y

)
.

By using the conditions (τ1) and (τ2) given above we get

∣∣S∗µ,λ
m,τ (s; y)− s(y)

∣∣≤ Mτ
m,2(y)

(
‖s′′‖+ ‖s′‖‖τ ′′‖

)
,

where

Mτ
m,2(y) = S∗µ,λ

m,τ ((τ(ξ)− τ(y))2; y).

For g ∈ CB[0,∞), we have

∣∣S∗µ,λ
m,τ (s; y)

∣∣ ≤ ‖goτ−1‖e−mτ(y)
∞∑

j=0

(mτ(y))j

j!

≤ ‖g‖S∗µ,λ
m,τ (1; y) = ‖g‖.(5.5)

Hence we have

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣ ≤
∣∣S∗µ,λ

m,τ (g − s; y)
∣∣+

∣∣S∗µ,λ
m,τ (s; y)− s(y)

∣∣+
∣∣s(y)− g(y)

∣∣

≤ 2‖g − s‖+
{(

m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
τ 2(y)

+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
τ(y) +

µ2

(m+ λ)2

}(
‖s′′‖+ ‖s′‖‖τ ′′‖

)
,

if we choose C= max{2, ‖τ ′′‖},then

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣ ≤ C
(
2‖g − s‖+

{(
m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
τ 2(y)

+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
τ(u) +

µ2

(m+ λ)2

}
‖s′′‖W 2

)
.

Taking the infimum on right hand side over all s ∈ W 2, we obtain

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣≤ CK (g, δm(y)) .

�
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Let 0 < α ≤ 1, τ be a function with conditions (τ1), (τ2) and LipM(τ(y);α), M ≥ 0

satisfying
∣∣g(ξ)− g(y)

∣∣≤ M
∣∣τ(ξ)− τ(y)

∣∣α, y, ξ ≥ 0.

Moreover, E ⊂ [0,∞) be a bounded subset and the function g ∈ LipM(τ(y);α),

0 < α ≤ 1 on E if

∣∣g(ξ)− g(y)
∣∣≤ Mα,g

∣∣τ(ξ)− τ(y)
∣∣α, u ∈ E and ξ ≥ 0,

where Mα,g is a constant depending on α and g.

Theorem 5.2. Let 0 < α ≤ 1 and for every g ∈ LipM(ρ(y);α), with 0 ≤ µ ≤ λ.

Then for every y ∈ (0,∞), m ∈ N, we have

∣∣S∗µ,λ
m,ρ(g; y)− g(y)

∣∣≤ M (δm(y))
α

2 ,(5.6)

where

δm(y) =

{(
m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
ρ2(y)+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
ρ(y)+

µ2

(m+ λ)2

}

Proof. Assume that α = 1. Then, for g ∈ LipM(α; 1) and y ∈ (0,∞), we have

|S∗µ,λ
m,ρ(g; y)− g(y)| ≤ S∗µ,λ

m,ρ(|g(ξ)− g(y)|; y)

≤ MS∗µ,λ
m,ρ(|ρ(ξ)− g(y)|; y).

By Cauchy Schwartz inequality, we obtain

|S∗µ,λ
m,ρ(g; y)− g(y)| ≤ M

[
S∗µ,λ

m,ρ((ρ(ξ)− ρ(y))2; y)
] 1

2

≤ M
√
δm(y).

Let us assume that α ∈ (0, 1). Then, for g ∈ LipM(α; 1) and y ∈ (0,∞), we have

|S∗µ,λ
m,ρ(g; y)− g(y)| ≤ S∗µ,λ

m,ρ(|g(ξ)− g(y)|; y)

≤ MS∗µ,λ
m,ρ(|ρ(ξ)− g(y)|α; y).

For g ∈ LipM(ρ(y);α) and by Hölder’s inequality with p = 1
α
and q = 1

1−α
, we have

|S∗µ,λ
m,ρ(g; y)− g(y)| ≤ M

[
S∗µ,λ

m,ρ(|(ρ(ξ)− ρ(y)|; y)
]α
.
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Finally from Cauchy-Schwartz inequality, we get

∣∣S∗µ,λ
m,ρ(g; y)− g(y)

∣∣≤ M (δm(y))
α

2 .

�

Theorem 5.3. Let E be a bounded subset of [0,∞) and τ be a function satisfying the

conditions (τ1), (τ2). Then for any g ∈ LipM(τ(y);α), 0 < α ≤ 1 on E α ∈ (0, 1],

we have

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣≤ Mα,g

{
(δm(y))

α

2 + 2[τ ′(y)]αdα(y, E)
}
, y ∈ [0,∞), m ∈ N,

where d(y, E) = inf{‖y − x‖ : x ∈ E} and Mα,g is a constant depending on α and g.

where

δm(y) =

{(
m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
τ 2(y)+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
τ(y)+

µ2

(m+ λ)2

}
.

Proof. Let E be a bounded subset of [0,∞) and E be its closure. Then, there exists

a point y0 ∈ E such that d(y, E) = |y − y0|.
Using the monotonicity of S∗µ,λ

m,τ and the hypothesis of g, we obtain

|S∗µ,λ
m,τ (g; y)− g(y)| ≤ S∗µ,λ

m,τ (|g(ξ)− g(y0)|; y) + S∗µ,λ
m,τ (|g(y)− g(y0)|; y)

≤ Mα,g

{
S∗µ,λ

m,τ (|τ(ξ)− τ(y0)|α; y) + |τ(y)− τ(y0)|α
}

≤ Mα,g

{
S∗µ,λ

m,τ (|τ(ξ)− τ(y)|α; y) + 2|τ(y)− τ(y0)|α
}
.

Let p = 2
α
and q = 2

2−α
and by using the fact |τ(y)− τ(y0)| = τ ′(y)|τ(y)− τ(y0)| in

the last inequality along with Hölder’s inequality we immediately have

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣≤ Mα,g

{[
S∗µ,λ

m,τ ((τ(ξ)− τ(y))2; y)
] 1

2 + 2[τ ′(y)|τ(y)− τ(y0)|]α
}
.

Hence, by Corollary1.1 we get the proof. �

Now, we recall local approximation in terms of α order generalized Lipschitz-type

maximal function given by Lenze [11] for g ∈ CB[0,∞) as

ω̃τ
α(g; y) = sup

ξ 6=y,ξ∈(0,∞)

|g(ξ)− g(y)|
|ξ − y|α , y ∈ [0,∞) and α ∈ (0, 1].(5.7)

Then we get the next result
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Theorem 5.4. Let g ∈ CB[0,∞) and α ∈ (0, 1] with 0 ≤ µ ≤ λ. Then, for all

y ∈ [0,∞), we have

∣∣S∗µ,λ
m,τ (g; y)− g(y)

∣∣≤ ω̃τ
α(g; y) (δm(y))

α

2 .

where

δm(y) =

{(
m2

(m+ λ)2
− 2m

m+ λ
+ 1

)
τ 2(y)+

(
2µm+m

(m+ λ)2
− 2µ

m+ λ

)
τ(y)+

µ2

(m+ λ)2

}
.

Proof. We know that

|S∗µ,λ
m,τ (g; y)− g(y)| ≤ S∗µ,λ

m,τ (|g(t)− g(y)|; y).

From equation (5.7), we have

|S∗µ,λ
m,τ (g; y)− g(y)| ≤ ω̃τ

α(g; y)S∗µ,λ
m,τ (|τ(ξ)− τ(y)|α; y).

From Hölder’s inequality with p = 2
α
and q = 2

2−α
, we have

|S∗µ,λ
m,τ (g; y)− g(y)| ≤ ω̃τ

α(g; y)
[
S∗µ,λ

m,τ ((τ(ξ)− τ(y))2; y)
]α

2

≤ ω̃τ
α(g; y) (δm(y))

α

2 .

which proves the desired result �

.
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[14] S. A. Mohiuddine, F. Özger, Approximation of functions by Stancu variant of Bernstein-

Kantorovich operators based on shape parameter α, Rev. R. Acad. Cienc. Exactas F́ıs. Nat.

Ser. A Math. RACSAM (2020) 114:70.
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