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METRIC DIMENSION OF INDU-BALA PRODUCT OF GRAPHS
SHEHNAZ AKHTER(") AND RASHID FAROOQ ?

ABSTRACT. In a simple connected graph A, a set of vertices A’ resolves A if every
vertex of A is uniquely represented by its vector of distances to the vertices in A’.
A resolving set containing the smallest number of vertices is known as basis for A
and its cardinality is called metric dimension of A. The Indu-Bala product A; VA,
of graphs A; and A, is obtained from two disjoint copies of A1 + A5 by joining the
corresponding vertices in the two copies of As. In this paper, we derive the metric

dimension of Indu-Bala product of some families of graphs.

1. INTRODUCTION

Throughout the article, all examined graphs are connected and simple. For a graph
A, the vertex and edge sets are denoted as V(A) and £(A), respectively. For a;,as €
V(A), the distance among two vertices is represented by da(as, as) and defined as the
length of the shortest path in A from a; to as. The graphs P, and C,, present the
path and the cycle, respectively, with n vertices. A pair of vertices a;,as € V(A)
resolved by a vertex o’ of A if da(d',as) # da(d',a;). For a set of vertices A'=
{a},dh, ... a}} € V(A), the metric representation of a; € V(A) with reference to A’

is the k-tuple

r(at‘Al) = (dA(atv all)u dA(atu CL/2), SRIE) dA(atv a;c))
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A set A’ is recognized as a resolving set for A if r(a;|A’) # r(as|A") for every pair of
distinct vertices a;, as € V(A). The metric dimension of A is the smallest cardinality
of any resolving set for A, and denoted as dim(A). If dim(A) = k, then A is said to
be a k-dimensional.

The idea of metric dimension was introduced by Slater [?], where the resolving set
was called locating set. Later Harary and Melter [10] studied the resolving sets and
they introduced the term metric dimension rather than location number. Khuller
et al. [16] discussed applications of metric dimension to the navigation of robots in
networks. Applications of metric dimension in chemistry are discussed by Johnson
[13, 14]. Several variations of metric dimension have been discussed in the literature,
including resolving dominating sets [2], independent resolving sets [7], local metric
sets [18], resolving partitions [8], and strong metric generators [?].

Many graph operations show a major part in the computer science, the applied and
the pure mathematics, and many other fields of science. A novel graph can be con-
structed from a given graph by the help of different graph operations, and also a
number of chemical graphs can be formed from these graph operations. In these
graph operations, Indu-Bala product of different graphs is a very important and novel
graph operation. Let A; and A, be two vertex-disjoint graphs of order n; and ny, and
size my and meg, respectively. The union A; U A, of graphs A; and A, is a graph with
V(A1UAy) = V(A))UV(Ay) and E(A1 U Ag) = E(A1) UE(As). The order and size of
A1UA5 are ny+ny and my+ma, respectively. The join A;+ A, of Ay and A is a graph
union A; U Ay where all the vertices of A; are joining with every vertex of V(A,).
The order and size of A; + As are ny +ny and my + ms + ninsg, respectively. Recently,
Indulal and Balakrishnan [11] introduced a new graph operation named Indu-Bala
product of graphs. The Indu-Bala product A;V¥ A, of graphs A; and A, is obtained
from two disjoint copies of A; + A, by joining the corresponding vertices in the two

copies of Ay. The order and size of A; ¥ Ay are 2(ny +nsg) and 2(my +mgq +mnyng) + na,
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respectively. The Indu-Bala product of P; and Py is depicted in Figure 1. Let A}

FIGURE 1. P3V¥P,.

and A), be the copies of graphs A; and A, respectively. Let V(A;) = {v1,v2,...,0n, }
and V(Asg) = {uq, us, ..., uy,} be the sets of vertices of A; and A,, respectively and
V(A]) = {v],vy,..., v, } and V(A)) = {u, us, ..., u;,} be the sets of vertices of A

and A}, respectively. The vertex set of A; VA is V(A1) UV(As) U V(A)) UV(AL).

The distances between all pair of vertices of A; ¥ Ay are given by:

(11) dAlvAg(Uia U;) = 3,

(12) dAl'AQ (Uiv uk) = dAl'AQ (U;, u;) =1,

(1'3) dA1VA2 ('Uia u;c) = dA1VA2 ('Uz{a uk) = 2,

(1'4) dA1VA2 (uk> ul) = dA1VA2 (u;w u;) = min{Qa dAz (uk> ul)}a
(15) dAlvAg(Uia Uj) = dAlyAQ(U;,U;) = min{2, dAl(Ui7 Uj)}.

The distance between the vertices of As and Af in A; ¥ A, is given by:

1 ifk=1,
(1.6) dayva,(ue, up) = 4 2 if ey € E(Ay),
3 otherwise,
where 7,7 € {1,2,...,n1} and k,l € {1,2,...,ny}.
Yero et al. [5, ?|] computed the metric dimension of Cartesian product and some
applications of metric dimensions. Jannesari et al. [12] computed the metric di-

mension of composition of graphs. Metric dimension have been studied for corona
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product of graphs [17, 7], Hamming graphs [15], join of graphs [?] and comb product
of graphs [?]. For the depth study of metric dimension, we recommend the reader to
see [1, 3,4, 9,19, 7,7, ?]. In this paper, we study the metric dimension of Indu-Bala

product of some families of graphs.

2. METRIC DIMENSION OF P, ¥P,,

In this section, we compute the metric dimension of Indu-Bala product of paths.
Let {p1,p2,---,Pn,} and {q1, 2, ..., qn,} be the sets of vertices of P,, and P,,, re-
spectively. Let P, and P;, be the copies of paths P,, and P,,, respectively, and
{p1.0h, .. 0), } and {q},q3,...,q,,} be the sets of vertices of P, and P,

1ys TESpec-

tively.

Theorem 2.1. [6] For an n-vertex connected graph A, we have dim(A) = 1 if and
only if A= P,.

FIGURE 2. P,YP,,.

Theorem 2.2. Ifny, > 1, then the following holds:

;

1 ifng =1,
2 if ng € {2,3,4},
3 if ng =5,
]

d1m(731 'Pnz) ==

\
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Proof. Let P;V¥P,, (see Figure 2) be the Indu-Bala product of P; and P,,. If ny =1,
then P;¥P; = P, and dim(P; ¥P;) = 1 by Theorem 2.1. If ny > 2, then P, ¥P,, is
not a path. Therefore dim(P, ¥P,,) > 2 by Theorem 2.1.

Case 1. Let A = P,¥P,, and ny € {2,3}. We show that theset A" = {p1, 1} C V(A)
is a resolving set of A. The representation of vertices in V(A) \ A’ with reference to

A’ is given by:

r(ph]A) = (3,2), r(ald) = (1,1-1), r(qld) =(2.0),

where 1 < [ < ny. We see that all vertices of A have different representations.
Therefore A" = {p1,q1} is a resolving set of A and thus dim(A) = 2.

Case 2. Let A =P, ¥YP,,, no =4 and A" = {q1,qu} C V(A). We present that A’ is
a resolving set for A. For this purpose, we present the representation of vertices in

V(A) \ A" with reference to A"

r(p]|A) = (1,1), r(pi|A") = (2,2), (g2 A") = (1,2), r(gz|A") = (2,1),
r(glA) =(,3), 1<1<ny—2, r(glA)=0B,nya—1+4+1), ng—1<1<ny.

From the above representation of vertices, we see that all vertices of A can be resolved
by the set of vertices in A’. Therefore, A" = {q1, q4} is a resolving set of A and thus
dim(A) = 2.

Case 3. Let A =P, VP,,, no =5 and A" = {q1,43,q95} C V(A). We show that A’ is
a resolving set of A. For this purpose, we describe the representation of vertices in

V(A) \ A" with reference to A"

I"(p1|A/) = (1> L, 1)7 I"(p/1|A/) = (2a2>2)a r(Q2|A/) = (1’ 1>2)’ r(Q4|A/) = (2>2’ 1)7

r(ql,|A,):(lvn2_l_173)7 1§l§n2_27

r(g|A) = (3,1 —=2,ny — 1 +1), ny—1<1<ny.
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From the above representation of vertices, we see that all vertices of A can be resolved
by the set of vertices in A’. Therefore, A" = {q1,q3,¢5} is a resolving set of A and
thus dim(A) = 3.

Case 4. Let A =P, ¥P,,, ny =0 (mod 2), ng > 6 and V(A) = V(P,,) UV(P, ) U
{p1,p}}. First we show that dim(A) > % by giving reasoning that there is no
resolving set with (% — 1) cardinality. Let V(Pp,) = {qg | 1 < k < ny} and
V(P,,) ={q | 1 <1 < ny} be the subsets of V(A). Let A} be a resolving set such

that |A}| = % — 1. Then, there are the following possibilities:

o If A\ C V(P,,) UV(P;,), then a vertex ¢ € V(Py,) \ A} and p| have the
same representation, because ¢ and p| have some equal distances by simple
computation. Also, a vertex ¢' € V(P,,) \ A} and p; have the same distance
from the vertices in Aj.

o If A] is a resolving set containing the vertex p; (or p}) and (% - 2) number
of vertices from V(P,,) U V(F,,), then a pair of vertices of (V(P,,) \ A}) U

(V(P',,) \ A}) have the same distance from the vertices in A} in the structure.

The above cases show that there is no resolving set A} with |A]| = % — 1. Thus
dim(A) > % Now, we need to show that dim(A) < % Let A" ={q2,qa,- -1 qny} C
V(A). We show that A’ is the resolving set of A. For this purpose, the representation

of vertices in V(A) \ A" with reference to A" is given below:

r(p1|A/) = (17 1’ ]'7 et 1)’r(p/1|A/) = (27 2’ . "2)7
r(q|A) =(1,2,2,...,2)r(gs|A) = (1,1,2,...,2), ..., t(qn,-1|A") = (2,2,...,2,1,1),
r(q1]A) =(2,3,3,...,3)r(gs|A) = (2,2,3,...,3),.. .,r(q;m_l\A') =(3,...,3,2,2),

r(gp]A) = (1,3,3,...,3)r(q)|A) = (3,1,3,...,3),.. .,r(q;LQ\A') =(3,...,3,1).
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This implies that all vertices have different representations with reference to A’. Thus
A’ is a resolving set of A and dim(A) < % So from above, we conclude that

(2.1) dim(A) = %

Similarly we can prove that A = {q2, 4, ..., Gn,—1} is a resolving set for A = P, ¥P,,,

with ny = 1(mod2), ny > 7 and thus

—1
(2.2) dim(A) = ”22
From equations (2.1) and (2.2), we get dim(A) = L%J This gives the desired
result. O

Theorem 2.3. Ifny € {2,4} and ny > 1, then we have

% +m if ny € {2,4},
diIn('Pn1 YP, ) = 1
: {”22 J+n1 ifns € {1,3,5,6,7...}.
-
(a) (b)

FIGURE 3. (a). PoV¥P,, (b). Pi¥YP,,.

Proof. Let A = P,,,¥P,, (see Figure 3) be the Indu-Bala product of P,, and P,,.
Now, we can convert this theorem in two cases.

Case 1. If ny € {2,4}, then we take A’ = {pl,p%,ql,q%,p’l,p’%} C V(A). We show
that A’ is a resolving set of A. Let J = {p1,po, - - ,p%}, K ={p},ph, - ,p/%l}, L=
{1, g0, - ,q%z} and M = {q1, ¢, ,q’%z} be the subsets of V(A) = JUKULUM.
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From distances (1.1), we see that the vertices p;, pm resolve the vertices of set J and
Pl p’% resolve the vertices of set K. From distances (1.1) and (1.6), we see that the
vertices ¢, qrz resolve the vertices of sets £ and M. Which implies that a resolving
set of A is A" and therefore dim(A) < % + ny.
On the other side we show that dim(A) > %+n1 by showing that there is no resolving
set with cardinality (% +ny — 1). On contrary we suppose A, is a resolving set of
A with |A)| = (% +ny — 1). Then, we consider the following possibilities:

o If A C (JUKUL) (or Ay C (JULUM)), then there are the following two

possibilities:

(1) If the set Ay contains %2 number of vertices of £ (or M) and other vertices

of A, belongs to J UK, then a pair of vertices in set (J \ A5) U (K \ A%)
have the same representation, by simple computation.

(2) If the set Aj contains %2 — 1 number of vertices of £ (or M) and other
vertices of Af belongs to J UK, then a pair of vertices in M (or £) have
the same representation, by the simple computation.

o If A, C (J UL UM), then the vertices in the K can not be resolved by
the vertices in A, because some vertices of K have equal distances in the
structure. Similarly if A} C (X U £ U M), then the vertices in the J can

not be resolved by the vertices in Aj, because some vertices of J have equal

distances in the structure.

n
From above cases we can derive that there is no a resolving set A} with (?2 +ny — 1)

number of vertices of A. Hence dim(A) > % + ny. Thus

dim(A) = % + n.

Case 2. If ng = 1(mod 2), then J = {p, | r € {1,2,....m}}, K ={p, | s €
{1,2,...;n} L L={q | t€{1,2,...,n2}}and M ={q/ |l € {1,2,...,n2}} are the

—1
subsets of V(A) = J UK U LU M. Initially we prove that dim(A) > e

+ ny.
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-1
e +n; — 1. Then

Suppose that A” is the resolving set of A with cardinality

there are following cases:

o If A" C(JUKUL) (or A” C (J UK UM)), then there exists following two

cases:

no—1

— number of vertices of £ (or M)

(1) If the resolving set A” contains
and other vertices of A” belongs to J U K, then a pair of vertices in set
(T \A")U (K \ A”) have the same distance from the vertices in A”, by
the simple computation.

(2) If the resolving set A” contains 22- — 1 number of vertices of £ (or M)
and other vertices of A” belongs to J U K, then a pair of vertices in
M (or L)have the same distance from the vertices of A”, by the simple
computation.

o If A” C (KU LUM), then the vertices in J can not be resolved by the ver-
tices in A”, because some vertices of J have equal distances in the structure.
Similarly if A” C (J U L U M), then the vertices in K can not be resolved
by the vertices in A”, because some vertices of K have equal distances in the
structure.

Therefore in every case we get a contradiction. Thus we conclude that there does

: : . ong—1 :
not exists a resolving set A” containing 2T + ny — 1 vertices of A. Therefore

dim(4) > "2

+ nq.

Ng —

Now we find a resolving set A’ which contains exactly +ny number of vertices
of A. Let A" = {pi,p,qr | 4,5 € {1,3,...,ma—1}and k € {1,3,...,ny—2}} C V(A).
We prove that A’ is a resolving set of A. From distances (1.1) and (1.6), we see
that the vertices g, € L, k € {1,3,...,ny — 2}, resolve the vertices of sets £ and

M. The vertices p; and p; have same distance from the vertices of sets £ and M,

therefore the vertices p; and pj, for 4,7 € {1,3,...,n; — 1}, resolve the p; and pj,
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fori,j € {2,4,...,n1}, respectively. This implies that A’ is a resolving set of A and
—1
dim(A4) < 2

+ ny. Therefore we conclude that

ng—l

(2.3) dim(4) = ==

+ nq.

Similarly A" = {pi, p}, qr | 3,5 € {1,3,...,n1 =1} and k € {2,4,...,ny — 2}} C V(4)
is a resolving set of A for ny = 0(mod 2), ny > 6 and

(2.4) dim(A) = ”22_ 2ty

From equations (2.3) and (2.4), we get

—1
dim(A) = {nQ J + n.
This completes the proof. O

Theorem 2.4. Ifny, > 1, then following holds:

(1) If ny = 0(mod 2), ny > 6, then

| L if ng € {2,4},
dim(P,, ¥P,,) = {nz; 1J Y —2 ifng €{1,3,5,6,7,...}.
(2) If ny = 1(mod 2), ny > 3, then
| @+n1—1 if no € {2,4},
dim(P,, ¥P,,) = V@z— 1J tni—1 ifng €{1,3,56,7,...}.

Proof. Let A = P,,¥YP,, and n; = 0(mod 2), ny > 6 (see Figure 4). Let V(P,,) =
{or [r e {2, om}}, V(P) = {pi [ s € {L,2,...,m}}, V(Poy) ={a [ T €
{1,2,...,no}} and V(P),) = {q | [ € {1,2,...,n2}} be the subsets of V(A) =
V(Pn,) UV(P;, ) UV(Pr,) UV(P,).

Case 1. Let ny € {2,4} and A" = {pg,p4,...,pnl_g,ql,q%,p’z,pﬁl,...,p;1_2} C
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(a) (b)

FIGURE 4. (a). PsV¥P,, (b). PsVPp,.

V(P,,). We show that A’ is a resolving set of A. From (1.1) and (1.6), we see that
the vertices p,, and p,, for each ry,ry € {2,4,--- ,n; — 2} resolve the vertices in
V(Py,) and V(P}, ), respectively. However, the vertices ¢, 1 <t < %, can easily
resolve the vertices in sets V(P,,) and V(P,, ). Thus the set A’ is a resolving set of
A and

dim(A) < % g — 2.

Now we find that there is no a resolving set with <% +ny — 3) number of vertices.
n
On contrary we suppose that A), is a resolving set of A with |A)| = ?2 +n;—3. Then

there are following cases:

o If AY C (V(Pn,) UV(Pr,) UV(Py},)), then the vertices p), 1 < s < ny, can not
be resolved by the vertices in Aj. Similarly if Ay C (V(P), )UV(Pn,)UV(P;,)),
then the vertices p,, 1 < r < nq, can not be resolved by the vertices in A,
because these vertices have equal distances in the structure.

o If A5 C (V(Pn,)UV(P},)UV(Py,)), then there are following two possibilities:

(1) If the set A5 have at least %2 number of vertices from set V(P,,), then a
pair of vertices in set (V(Pn,)\ A5)U(V(P;,, )\ Ay) have the same distance
from the vertices in Aj.

(2) If the set A have at least %2 — 1 number of vertices from set V(P,,), then
a pair of vertices in set V(P,,) have the same distance from the vertices

: /
in Aj.
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Similarly A% C (V(Py,) UV(P,, ) UV(P,,)) is not a resolving set of A.

n
From above cases, we get that there is no any resolving set A, with |A}| = ?2 +nq,—3.

Hence dim(A) > % + ny — 2. This implies that dim(A) = % + ny — 2 in this case.

7’L2—1

Case 2. Let ny = 1 and ny = 1(mod2). First we drive that dim(A) > +ny—2.

n2—1

On contrary we suppose that there is a resolving set A” of A with |A"| = +

ny — 3. Then there are following cases:

o If A” C (V(Pn,) UV(Py,,) UV(P;,)), then the vertices p, 1 < s < ny, can
not be resolved by A”. Similarly if A” C (V(Py,) UV(Py,) UV(P;,)), then
the vertices p,, 1 < r < nq, can not be resolved by A”, because these vertices
have equal distances in the structure.

o If A” C (V(Pn,)UV(P,,)UV(Pr,)), then there are following two possibilities:

(1) If the set A” have at least “2-! number of vertices from set V(P,,), then
a pair of vertices in set (V(Py,,) \ A”) U (V(P},) \ A”) have the same
distance from the vertices in A’.

(2) If the set A” have at least “2-1 — 1 number of vertices from set V(P,,),
then a pair of vertices in set V(P;,) have the same distance from the
vertices in A”.

Similarly we can prove that A” C (V(P,,)UV(P;,)UV(P,,)) is not a resolving
set of A.

-1
Therefore from above discussed cases, we get conclusion that A” with WT +nq—2

ng—l

vertices is not a resolving set of A. Thus dim(A) > +np — 2.

—1
Next we determine that A’ is a resolving set of A having <nQT +ny — 2) number

of vertices. Let A" = {p,, ¢, 0, | r,s €{2,4,....,n1 —2}and t € {1,3,...,np—2}} C

V(P,,). We prove that A’ is a resolving set of A. We present the representation of
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distances in V(P,,) \ A" with reference to A’:

pr qt s
N ——
r(pA)=(@1,...,1,1,1

1,2....229,....2

Pr qt

P
—— ——
r(qd)=(1,.. 1,2, 1,1,2,....2,2,

—

)

Ppr qt s
—N—
r(gn,|A) = (1,...,1,2...,2.1,2,....2
pr qt Ps
r(gn, |A7) = (1,

——
1.2.2,...2.2...9.
The representation of vertices of set V(P,,) \ A’ is given below:

Pr qt

P
r(gh|A) = (2,2,...,2,2,2,2,2,3...,3,3,1,1,

A

D)
U & A
r(gh]A) =(2,2,...,2,3,2,2,3...,3,1,1...,1)

U & A
(g, 1|A) =(2,2,...,2,3,3...,3,2,1,1....1).
r(g)|A) = (2,2,...,2,2,2,1,3...,3,3,1,1,...,1)
o “ A
r(gylA) = (2,2,...,2,3,1,3...,31,1...,1)
o % A
(g, olA) = (2,2,...,2,3,3...,3,1,1,1...,1)
Pr qt Ds
(g, |A) = (2,2,...,2,3,...,3,1,1,

593
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The representation of vertices of set V(P,,) \ A’ is given below:

Pr qt pg
r(ip|A) =(1,2,2,...,2,2,1,1,...,1,1,3,3...,3)

v < A
r(ps|A) = (1,1,2,2,...,2,2,1,1,...,1,1,3,3...,3)

Pr qt p;.
rpslA) = (31,12, .2.21.1,.. . L1,3,3....3)

r(pp,—1]A) =(2,2,...,2,1,1,1,...,1,1,3,3,...,3)

r(pn, |A) = (2,2,...,2,2,1,1,...,1,1,3,3,...,3).

The representation of vertices of set V(P;,,) \ A’ is given below:

Ppr qt Ps

/_/Hr -\ ~ -\
r(ph]4) = (3,3...,3,2,2,...,2,2,1,2,2,...,2,2)

Pr qt s
et - N A N
r(pg|A,>:(373"'7372727"'72727171722 ctt

/_/H -\ N\
r(pi|A) =(3,3...,3,2,2,...,2,2,2,1,1,2,...,2,2)

r(pl,|4) = (3,3,...,3,2,2,...,2,2,2,2,...,2).

One can easy to see that there are no two vertices having the same representations.
N9y — 1

Thus A’ is a resolving set of A and dim(A) < + ny — 2. Hence

(2.5) dim(A) =
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Case 3. Let ny = 0(mod 2). First we prove that dim(A) > % +n; —2. On contrary
we suppose that there is a resolving set A} of A with |A}| = % +n1 — 3. Then there

are following cases:

o If A5 C (V(Pu,) UV(Pny) UV(Py,)), then the vertices p), 1 < s < ny, can not
be resolved by the vertices in A5. Similarly if A5 C (V(P, )UV(P,,)UV(P,,)),
then the vertices p,, 1 < r < ny, can not be resolved by the vertices in Aj,
because these vertices have equal distances in the structure.

o If A5 C (V(Pn,)UV(P},)UV(Py,)), then there are following two possibilities:

(1) If the set A} have at least %2 number of vertices from set V(P,,), then a
pair of vertices in set V(P,,)\ A5 and V(P ) \ Aj have the same distance
from the vertices in Aj.

(2) If the set Aj have at least %2 — 1 number of vertices from set V(P,,), then
a pair of vertices in set V() ) have the same distance from the vertices
in A

Similarly we can prove that Ay C (V(Py,)UV(P},,)UV(P;,)) is not a resolving
set of A.
Thus, in every case we obtain a contradiction. Therefore any resolving set of A
contains at least % + ny — 2 vertices and we get dim(A) > % +n; — 2.
Now we find the resolving set of A having exactly (% +ny — 2) number of vertices
of A. Let A = {p,,qi, 0, | r,s €{2,4,....,n1 =2} and t € {2,4,...,n2—2}} C V(A).
Now we derive that A’ is a set of vertices to resolve the vertices in V(A) \ A’. Let
AL = A{pn,p, | s € {2,4,...,n1 — 2}} C A’. We describe the representation of
vertices V(A) \ A} with reference to A}:

r(qlA) =1,1,...,1,1,2,2,...,2), 1<t<ny,

r(ql/|A/1):(§727"’727§7i717"'7i)7 1§l§n27
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Dr Pl Dr Pl

N N\ A\ A\

r(pn, |A7Y) = (2,2,...,2,2,1,1,...,1,1), (¢, |4) =(2,2,...,2,21,1,...,1).

The representation of vertices p; and pj, for i, j € {1,3,...,n; — 1} are
pr 2
——TN—
rip|A) = (1,2,2,...,2,2,5,3....3)
Pr p{s

Pr Ps

pr Ps
—
r(pA) =33, .3.1,2.2,....2,9)
pr A

—— - N
r(pg|A&):(373'"73717172727"'7272)

Pr pg

—— - N
r(pZ5|A/1):(373'"73727171727"'7272)

Pr Py

r(pl, 14D = (3,3,...,3,2,2,...,2,1).

From above representations of vertices we see that all vertices in V(A) \ A" have
distinct representations except the vertices p,,,q, p), , ., t,0 € {1,2,...,n2}. The
vertices g, for each t € {2,4,...,ny; — 2} resolve the vertices p,,,q, p;,,q, where
t,l €{1,2,...,n9}. This implies that A" = A] U {q2, q, ..., qn,—2} is a resolving set
of A and dim(A) < % + ny — 2. Therefore

(2.6) dim(A) = % Yy -2
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From equations (2.5) and (2.6), we have

1
dim(A) = {"22 J T

Similarly we can find the resolving set and the matric dimension of P,, ¥P,, for

ny = 1(mod 2), ny > 1, (see Figure 4). This finishes the proof. O

3. METRIC DIMENSION OF C,, YP,,

Khuller et al. [16] and Chartrand et al. [6] showed that dim(C,) = 2. In this sec-
tion, we compute the metric dimension of Indu-Bala product of C,, and P,,. Let
{c1,¢9,... ¢} and {p1,pa,...,Pn,} be the set of vertices of C,, and P,,, respec-
tively. Let C,, and Pj, be the copies of C,, and P,,, respectively and V(C;, ) =
{cl, ¢y, .. ¢} and V(P,,) = {p],ph,...,p),} Let A = C, VP, be a Indu-Bala
product of C,, and P,, with vertex set V(A4) = V(Cy,) UV(Pp,) UV(C,,,) UV(P,,).

no

Theorem 3.1. Ifn, € {3,4} and ny > 2, then we have dim(C,, ¥P,,) = L 5

| +4

(@) (b)
FIGURE 5. (a). C3VP,, (b). C4¥P,,.
Proof. Let A = C,, YP,,, no = 1(mod 2) (see Figure 5) and A" = {c1, ¢, p1,P3, - - -,

Pry—2,C, 5} C V(A). We need to derive that A’ is a resolving set of A. Let A” = {p, |
t€{1,3,...,ny —2}} C A’. We present the representation of vertices of V(A)\ A”
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with reference to A”:
r(po|A”) = (1,1,2,2,...,2)

r(pa]A”) = (2,1,1,2,...,2,2)

r(pn2—1|A”) = (2’ 2,...,2, ]-)
r(pn,|A”) = (2,2,...,2).

The representation of vertices p; € V(P,,,), | € {2,4,...,ny — 1} is given below:

r(pylA”) =(2,2,3,...,3,3),2(pA") = (3,2,2,3,....3), ..., x(p,,,1]A") = (3,3,...,3,2).

The representation of vertices p; € V(Py,), I € {1,3,...,na} is given below:
r(py|A”") = (1,3,...,3,3)

r(ps|A") = (3,1,3,...,3)

r(p,,_olA") = (3,3,...,3,1)
(| AT) = (3.3,...,3,3).
The representations of vertices of set V(C,,) and V(C,,,) are given below:

r(c|A") = (1,1,...,1,1), r(c|A") =(2,2,...,2,2).

where 1 < s,t < ny. From above we conclude that all vertices in V(A) \ A” have
distinct representation except the vertices in sets V(Cy,) and V(C,, ). The vertices

c1, 2, ¢, ¢y resolve the vertices of sets V(Cy,) and V(C;, ). Which implies that A" =
Ng — 1

A" UA{cy, e, ), cy} s a resolving set of A and dim(A) < + 4.

—1
Also, we need to find that dim(A) > e

+ 4. On contrary, we suppose that there

ng—l

exists a resolving set A} with |A]| = +3. Then there are following possibilities:
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o If A7 C (V(Cpn,) UV(Pr,) UV(Py,)), then the vertices of set C,, have same
distance from the vertices in A}. Similarly, we can prove that A} C (V(C;,)U
V(P,,)UV(P,,)) is not a resolving set of A, because some vertices have equal
distances in the structure.

o If A} C (V(Cn,) UV(C,,,) UV(P,,)), then there are two possibilities:

(1) If the set A} have exactly two vertices of C,, and two vertices of C], ,
then a pair of vertices of V(P},) \ A} have the same distance from the
vertices in A}.

(2) If the set A{ have at least 22 number of vertices from set V(P,,), then

a pair of vertices in V(C,,) U V(C,,) have the same distance from the
vertices in A}.

Similarly we can prove that A} C (V(Cy,)UV(C,,,)UV(P),)) does not resolved
the elements of V(A).

-1
Therefore from above cases, we see that any resolving set of A have at least e +4
—1 -1

vertices and we get dim(A) > = + 4. Thus dim(A) = e +4.

Similarly we can prove that A" = {c1, ¢, P2, P4y - - -, Pny—2, €}, ¢4} is a resolving set for
A=C,, YP,,, no = 0(mod 2) and dim(A) = % + 4. This finishes the proof. O
Theorem 3.2. Ifny > 5 and ny > 1, then following holds:

{%J +mny—2 ifny > 6 even,

dim(Cp,, YPy,) =

{%J +ni—1 ifng >5 odd.

Proof. Let A = C,,, YPy,, n1 = 0(mod 2), ny > 6 (see Figure 6).
Case 1. Let ny = 0(mod 2). First we show that dim(A) > % +ny — 2. We suppose
contrary that A} with |A}| = % +ny — 3 is a resolving set. Then there are following

possibilities:
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N
y—
\\

FIGURE 6. C4VP,,.

o If A can not contain any vertex of C,

"..» then all vertices of set C;, have same

representation with respect to A}. Similarly we can prove that if A| can not
contain any vertex of C,,, then A} is not a resolving set of A, because elements
of A} have same representations.
e If A} can not contain any vertex of V(P,_), then there are two possibilities:
(1) If the set A have % vertices of set V(P,,,), then pair of vertices in set
V(Cy,) UV(C;,,) have the same distance from the vertices in Aj.
(2) If the set A| have % — 1 number of vertices from set V(P,,), then a pair
of vertices of V(P ) have the same distance from the vertices in Aj.
Similarly we can prove that A} C (V(C,,)UV(C,,,)UV(P,,)) is not a resolving
set of A.

n
Therefore from above cases, we see that any resolving set of A have at least 72 +ny—2

vertices and we get dim(A) > % +ny — 2. Thus dim(A4) = % +ny —2.

n
Now we determine a resolving set A" which have exactly (72 +ny — 2) number of

vertices. Let A" = {cs,pr, ¢} | s,t € {2,4,...,n1 — 2} and k € {2,4,...,ny — 2}}.

Let A" = {cs,¢, | s,t € {2,4,...,n1 —2}} C A". We determine that the elements

of A’ resolve all the vertices of A. For this we see the representation of elements of

V(Cp,) \ A" with reference to A”:

re]A) = (12,....2,5,....9)
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/—/;
r(es|A”) = (1,1,2,...,2,3,...,3

r(cp,_1|A") = 2, 1,3,...,3)

—
Hem]AY) = (5,...2,5,. .,3}.

The representation of vertices of set V(C;, ) \ A" is given below:

/
Cs Ct

—
WA = 531209

/
Cs Ct

e N e N
r(cé|A//):(3,,,.,3,1,1,2,...,2)

1(c), 1 4") = 52
1(c),|4") = cathes Do ¥

The representation of vertices of set V(P,,) and V(P,,_) are given below:

/ /
Cs Dy Cs

N\ N\ N\ N
7

1,1,...,1,1,2,2,...,2,2), r(p|A") =(2,2,...,2,2,1,1,...,1,1).
l

r(pi|A”)

where 1 < k,I < ny. It can be seen that except the vertices in sets V(C,,) and
V(C},), all other elements of V(A) have same representations with reference to A”.
The vertices py, for k € {2,4,...,ny — 2} resolve the vertices of V(P,,) and V(P,,).
Hence A’ is a resolving set of A and dim(A) < % +n;—2.

-1
Case 2. Let ny = 1 and ny = 1(mod 2). First we show that dim(A) > 12

+n1—2.

There are following possibilities:

e The vertices py, for k € {1,3,...,n2 — 2} resolve the vertices of C,, and C,,, .
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e The vertices p; for [ € {1,3,...,ny — 2} resolve the vertices of C,, and C;, .
e The vertices ¢; and ¢, for s,t € {2,4,...,n; — 2} resolve the vertices ¢, and

¢, for s,t € {1,3,...,n1 — 1,n1}, respectively.

-1
Hence dim(A) > e 5 + ny; — 2. Now we find a resolving set A’ which consist of

exactly n +ny — 2 vertices. Let A" = {cs,px, ¢ | s,t € {2,4,....,n1 —2} and k €
{1,3,...,n2 — 2}}. We derive that A" is a resolving set of A. Let A” = {c,, ¢} |
s,t € {2,4,...,n1 — 2}} € A’. Then we describe the representation of vertices of

V(Cy,) \ A” with reference to A”:

Cs Ct

——
r(¢]A") = (1,2,...,2,3,...,3
S Ct
r(es]A) = (1,1,2,...,2.5,....3
Cs Cy
rlen1|A”) = (2,....2,1,5,....9)

——
Hem|AY) = (5,...2,5,....3).

The representation of vertices of set V(C;,,) \ A” is given below:

r(cj]A") = (3,...,3,1,2,...,2)

Vi U;'
—N— ——
T(C§,|A”)=(3’--->3a1>1’2’---’2)

’
Uy Uj

—
v, (A =332, .21

v Y
(A = G35 ).
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The representation of vertices of set V(P,,) and V(P,,_) are given below:

/ /
Cs Cy Cs Ct
A A A A
N\

r(peld) = (1,1,...,1,1,2,2,...,2,2), t(p)|A) =(2,2,...,2,2,1,1,...,1,1).

It can be seen that the vertices py and p; have same representations with respect

to A”. The vertices py for k € {1,3,...,ny — 2} resolve the vertices of V(P,,) \ A’

—1
and V(P,,,). Hence A’ is a resolving set of A and dim(A) < = +ny — 2. Thus
—1
dim(A) = e + n; — 2. Similarly we can find the metric dimension of C,, ¥P,,,
ny = 1(mod 2), ny > 5. This completes the proof. O
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