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METRIC DIMENSION OF INDU-BALA PRODUCT OF GRAPHS

SHEHNAZ AKHTER(1) AND RASHID FAROOQ (2)

Abstract. In a simple connected graph A, a set of vertices A′ resolves A if every

vertex of A is uniquely represented by its vector of distances to the vertices in A
′.

A resolving set containing the smallest number of vertices is known as basis for A

and its cardinality is called metric dimension of A. The Indu-Bala product A1HA2

of graphs A1 and A2 is obtained from two disjoint copies of A1 +A2 by joining the

corresponding vertices in the two copies of A2. In this paper, we derive the metric

dimension of Indu-Bala product of some families of graphs.

1. Introduction

Throughout the article, all examined graphs are connected and simple. For a graph

A, the vertex and edge sets are denoted as V(A) and E(A), respectively. For at, as ∈

V(A), the distance among two vertices is represented by dA(at, as) and defined as the

length of the shortest path in A from at to as. The graphs Pn and Cn present the

path and the cycle, respectively, with n vertices. A pair of vertices at, as ∈ V(A)

resolved by a vertex a′ of A if dA(a
′, as) 6= dA(a

′, at). For a set of vertices A′=

{a′
1
, a′

2
, . . . , a′k} ⊆ V(A), the metric representation of at ∈ V(A) with reference to A′

is the k-tuple

r(at|A
′) = (dA(at, a

′

1
), dA(at, a

′

2
), . . . , dA(at, a

′

k)).
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A set A′ is recognized as a resolving set for A if r(at|A
′) 6= r(as|A

′) for every pair of

distinct vertices at, as ∈ V(A). The metric dimension of A is the smallest cardinality

of any resolving set for A, and denoted as dim(A). If dim(A) = k, then A is said to

be a k-dimensional.

The idea of metric dimension was introduced by Slater [?], where the resolving set

was called locating set. Later Harary and Melter [10] studied the resolving sets and

they introduced the term metric dimension rather than location number. Khuller

et al. [16] discussed applications of metric dimension to the navigation of robots in

networks. Applications of metric dimension in chemistry are discussed by Johnson

[13, 14]. Several variations of metric dimension have been discussed in the literature,

including resolving dominating sets [2], independent resolving sets [7], local metric

sets [18], resolving partitions [8], and strong metric generators [?].

Many graph operations show a major part in the computer science, the applied and

the pure mathematics, and many other fields of science. A novel graph can be con-

structed from a given graph by the help of different graph operations, and also a

number of chemical graphs can be formed from these graph operations. In these

graph operations, Indu-Bala product of different graphs is a very important and novel

graph operation. Let A1 and A2 be two vertex-disjoint graphs of order n1 and n2, and

size m1 and m2, respectively. The union A1∪A2 of graphs A1 and A2 is a graph with

V(A1 ∪A2) = V(A1)∪V(A2) and E(A1∪A2) = E(A1)∪E(A2). The order and size of

A1∪A2 are n1+n2 andm1+m2, respectively. The join A1+A2 of A1 and A2 is a graph

union A1 ∪ A2 where all the vertices of A1 are joining with every vertex of V(A2).

The order and size of A1+A2 are n1+n2 and m1+m2+n1n2, respectively. Recently,

Indulal and Balakrishnan [11] introduced a new graph operation named Indu-Bala

product of graphs. The Indu-Bala product A1HA2 of graphs A1 and A2 is obtained

from two disjoint copies of A1 + A2 by joining the corresponding vertices in the two

copies of A2. The order and size of A1HA2 are 2(n1+n2) and 2(m1+m2+n1n2)+n2,
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respectively. The Indu-Bala product of P3 and P4 is depicted in Figure 1. Let A′

1

Figure 1. P3HP4.

and A′

2
be the copies of graphs A1 and A2, respectively. Let V(A1) = {v1, v2, . . . , vn1

}

and V(A2) = {u1, u2, . . . , un2
} be the sets of vertices of A1 and A2, respectively and

V(A′

1
) = {v′

1
, v′

2
, . . . , v′n1

} and V(A′

2
) = {u′

1
, u′

2
, . . . , u′

n2
} be the sets of vertices of A′

1

and A′

2
, respectively. The vertex set of A1HA2 is V(A1) ∪ V(A2) ∪ V(A′

1
) ∪ V(A′

2
).

The distances between all pair of vertices of A1HA2 are given by:

dA1HA2
(vi, v

′

j) = 3,(1.1)

dA1HA2
(vi, uk) = dA1HA2

(v′i, u
′

k) = 1,(1.2)

dA1HA2
(vi, u

′

k) = dA1HA2
(v′i, uk) = 2,(1.3)

dA1HA2
(uk, ul) = dA1HA2

(u′

k, u
′

l) = min{2, dA2
(uk, ul)},(1.4)

dA1HA2
(vi, vj) = dA1HA2

(v′i, v
′

j) = min{2, dA1
(vi, vj)}.(1.5)

The distance between the vertices of A2 and A′

2
in A1HA2 is given by:

(1.6) dA1HA2
(uk, u

′

l) =







1 if k = l,

2 if ukul ∈ E(A2),

3 otherwise,

where i, j ∈ {1, 2, . . . , n1} and k, l ∈ {1, 2, . . . , n2}.

Yero et al. [5, ?] computed the metric dimension of Cartesian product and some

applications of metric dimensions. Jannesari et al. [12] computed the metric di-

mension of composition of graphs. Metric dimension have been studied for corona
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product of graphs [17, ?], Hamming graphs [15], join of graphs [?] and comb product

of graphs [?]. For the depth study of metric dimension, we recommend the reader to

see [1, 3, 4, 9, 19, ?, ?, ?]. In this paper, we study the metric dimension of Indu-Bala

product of some families of graphs.

2. Metric dimension of Pn1
HPn2

In this section, we compute the metric dimension of Indu-Bala product of paths.

Let {p1, p2, . . . , pn1
} and {q1, q2, . . . , qn2

} be the sets of vertices of Pn1
and Pn2

, re-

spectively. Let P ′

n1
and P ′

n2
be the copies of paths Pn1

and Pn2
, respectively, and

{p′
1
, p′

2
, . . . , p′n1

} and {q′
1
, q′

2
, . . . , q′n2

} be the sets of vertices of P ′

n1
and P ′

n2
, respec-

tively.

Theorem 2.1. [6] For an n-vertex connected graph A, we have dim(A) = 1 if and

only if A ∼= Pn.

Figure 2. P1HPn2
.

Theorem 2.2. If n2 ≥ 1, then the following holds:

dim(P1HPn2
) =







1 if n2 = 1,

2 if n2 ∈ {2, 3, 4},

3 if n2 = 5,

⌊n2

2
⌋ if n2 ≥ 6.
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Proof. Let P1HPn2
(see Figure 2) be the Indu-Bala product of P1 and Pn2

. If n2 = 1,

then P1HP1
∼= P4 and dim(P1HP1) = 1 by Theorem 2.1. If n2 ≥ 2, then P1HPn2

is

not a path. Therefore dim(P1HPn2
) ≥ 2 by Theorem 2.1.

Case 1. Let A = P1HPn2
and n2 ∈ {2, 3}. We show that the set A′ = {p1, q1} ⊂ V(A)

is a resolving set of A. The representation of vertices in V(A) \ A′ with reference to

A′ is given by:

r(p′
1
|A′) = (3, 2), r(ql|A

′) = (1, l− 1), r(q′l|A
′) = (2, l),

where 1 ≤ l ≤ n2. We see that all vertices of A have different representations.

Therefore A′ = {p1, q1} is a resolving set of A and thus dim(A) = 2.

Case 2. Let A = P1HPn2
, n2 = 4 and A′ = {q1, q4} ⊂ V(A). We present that A′ is

a resolving set for A. For this purpose, we present the representation of vertices in

V(A) \ A′ with reference to A′:

r(p1|A
′) = (1, 1), r(p′

1
|A′) = (2, 2), r(q2|A

′) = (1, 2), r(q3|A
′) = (2, 1),

r(q′l|A
′) = (l, 3), 1 ≤ l ≤ n2 − 2, r(q′l|A

′) = (3, n2 − l + 1), n2 − 1 ≤ l ≤ n2.

From the above representation of vertices, we see that all vertices of A can be resolved

by the set of vertices in A′. Therefore, A′ = {q1, q4} is a resolving set of A and thus

dim(A) = 2.

Case 3. Let A = P1HPn2
, n2 = 5 and A′ = {q1, q3, q5} ⊂ V(A). We show that A′ is

a resolving set of A. For this purpose, we describe the representation of vertices in

V(A) \ A′ with reference to A′:

r(p1|A
′) = (1, 1, 1), r(p′

1
|A′) = (2, 2, 2), r(q2|A

′) = (1, 1, 2), r(q4|A
′) = (2, 2, 1),

r(q′l|A
′) = (l, n2 − l − 1, 3), 1 ≤ l ≤ n2 − 2,

r(q′l|A
′) = (3, l − 2, n2 − l + 1), n2 − 1 ≤ l ≤ n2.
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From the above representation of vertices, we see that all vertices of A can be resolved

by the set of vertices in A′. Therefore, A′ = {q1, q3, q5} is a resolving set of A and

thus dim(A) = 3.

Case 4. Let A = P1HPn2
, n2 ≡ 0 (mod 2), n2 ≥ 6 and V(A) = V(Pn2

) ∪ V(P ′

n2
) ∪

{p1, p
′

1
}. First we show that dim(A) ≥

n2

2
by giving reasoning that there is no

resolving set with
(n2

2
− 1

)

cardinality. Let V(Pn2
) = {qk | 1 ≤ k ≤ n2} and

V(P ′

n2
) = {q′l | 1 ≤ l ≤ n2} be the subsets of V(A). Let A′

1
be a resolving set such

that |A′

1
| =

n2

2
− 1. Then, there are the following possibilities:

• If A′

1
⊂ V(Pn2

) ∪ V(P ′

n2
), then a vertex q ∈ V(Pn2

) \ A′

1
and p′

1
have the

same representation, because q and p′
1
have some equal distances by simple

computation. Also, a vertex q′ ∈ V(P ′

n2
) \ A′

1
and p1 have the same distance

from the vertices in A′

1
.

• If A′

1
is a resolving set containing the vertex p1 (or p

′

1
) and

(n2

2
− 2

)

number

of vertices from V(Pn2
) ∪ V(P ′

n2
), then a pair of vertices of (V(Pn2

) \ A′

1
) ∪

(V(P ′

n2
)\A′

1
) have the same distance from the vertices in A′

1
in the structure.

The above cases show that there is no resolving set A′

1
with |A′

1
| =

n2

2
− 1. Thus

dim(A) ≥
n2

2
. Now, we need to show that dim(A) ≤

n2

2
. Let A′ = {q2, q4, . . . , qn2

} ⊂

V(A). We show that A′ is the resolving set of A. For this purpose, the representation

of vertices in V(A) \ A′ with reference to A′ is given below:

r(p1|A
′) = (1, 1, 1, . . . , 1),r(p′

1
|A′) = (2, 2, . . . , 2),

r(q1|A
′) = (1, 2, 2, . . . , 2),r(q3|A

′) = (1, 1, 2, . . . , 2), . . . , r(qn2−1|A
′) = (2, 2, . . . , 2, 1, 1),

r(q′
1
|A′) = (2, 3, 3, . . . , 3),r(q′

3
|A′) = (2, 2, 3, . . . , 3), . . . , r(q′n2−1

|A′) = (3, . . . , 3, 2, 2),

r(q′
2
|A′) = (1, 3, 3, . . . , 3),r(q′

4
|A′) = (3, 1, 3, . . . , 3), . . . , r(q′n2

|A′) = (3, . . . , 3, 1).



METRIC DIMENSION OF INDU-BALA PRODUCT OF GRAPHS 587

This implies that all vertices have different representations with reference to A′. Thus

A′ is a resolving set of A and dim(A) ≤
n2

2
. So from above, we conclude that

(2.1) dim(A) =
n2

2
.

Similarly we can prove that A = {q2, q4, . . . , qn2−1} is a resolving set for A = P1HPn2
,

with n2 ≡ 1(mod2), n2 ≥ 7 and thus

(2.2) dim(A) =
n2 − 1

2
.

From equations (2.1) and (2.2), we get dim(A) =
⌊n2

2

⌋

. This gives the desired

result. �

Theorem 2.3. If n1 ∈ {2, 4} and n2 ≥ 1, then we have

dim(Pn1
HPn2

) =







n2

2
+ n1 if n2 ∈ {2, 4},

⌊
n2 − 1

2

⌋

+ n1 if n2 ∈ {1, 3, 5, 6, 7 . . .}.

(a) (b)

Figure 3. (a). P2HPn2
(b). P4HPn2

.

Proof. Let A = Pn1
HPn2

(see Figure 3) be the Indu-Bala product of Pn1
and Pn2

.

Now, we can convert this theorem in two cases.

Case 1. If n2 ∈ {2, 4}, then we take A′ = {p1, pn1

2

, q1, qn2

2

, p′
1
, p′n1

2

} ⊂ V(A). We show

that A′ is a resolving set of A. Let J = {p1, p2, · · · , pn1

2

}, K = {p′
1
, p′

2
, · · · , p′n1

2

}, L =

{q1, q2, · · · , qn2

2

} and M = {q′
1
, q′

2
, · · · , q′n2

2

} be the subsets of V(A) = J ∪K∪L∪M.
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From distances (1.1), we see that the vertices p1, pn1

2

resolve the vertices of set J and

p′
1
, p′n1

2

resolve the vertices of set K. From distances (1.1) and (1.6), we see that the

vertices q1, qn2

2

resolve the vertices of sets L and M. Which implies that a resolving

set of A is A′ and therefore dim(A) ≤
n2

2
+ n1.

On the other side we show that dim(A) ≥
n2

2
+n1 by showing that there is no resolving

set with cardinality
(n2

2
+ n1 − 1

)

. On contrary we suppose A′

2
is a resolving set of

A with |A′

2
| =

(n2

2
+ n1 − 1

)

. Then, we consider the following possibilities:

• If A′

2
⊂ (J ∪K∪L) (or A′

2
⊂ (J ∪L∪M)), then there are the following two

possibilities:

(1) If the set A′

2
contains n2

2
number of vertices of L (orM) and other vertices

of A′

2
belongs to J ∪K, then a pair of vertices in set (J \A′

2
)∪ (K \A′

2
)

have the same representation, by simple computation.

(2) If the set A′

2
contains n2

2
− 1 number of vertices of L (or M) and other

vertices of A′

2
belongs to J ∪K, then a pair of vertices in M (or L) have

the same representation, by the simple computation.

• If A′

2
⊂ (J ∪ L ∪ M), then the vertices in the K can not be resolved by

the vertices in A′

2
, because some vertices of K have equal distances in the

structure. Similarly if A′

2
⊂ (K ∪ L ∪ M), then the vertices in the J can

not be resolved by the vertices in A′

2
, because some vertices of J have equal

distances in the structure.

From above cases we can derive that there is no a resolving set A′

2
with

(n2

2
+ n1 − 1

)

number of vertices of A. Hence dim(A) ≥
n2

2
+ n1. Thus

dim(A) =
n2

2
+ n1.

Case 2. If n2 ≡ 1(mod 2), then J = {pr | r ∈ {1, 2, . . . , n1}}, K = {p′s | s ∈

{1, 2, . . . , n1}}, L = {qt | t ∈ {1, 2, . . . , n2}} and M = {q′l | l ∈ {1, 2, . . . , n2}} are the

subsets of V(A) = J ∪ K ∪ L ∪M. Initially we prove that dim(A) ≥
n2 − 1

2
+ n1.
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Suppose that A′′ is the resolving set of A with cardinality
n2 − 1

2
+ n1 − 1. Then

there are following cases:

• If A′′ ⊂ (J ∪K ∪ L) (or A′′ ⊂ (J ∪K ∪M)), then there exists following two

cases:

(1) If the resolving set A′′ contains n2−1

2
number of vertices of L (or M)

and other vertices of A′′ belongs to J ∪ K, then a pair of vertices in set

(J \ A′′) ∪ (K \ A′′) have the same distance from the vertices in A′′, by

the simple computation.

(2) If the resolving set A′′ contains n2−1

2
− 1 number of vertices of L (or M)

and other vertices of A′′ belongs to J ∪ K, then a pair of vertices in

M (or L)have the same distance from the vertices of A′′, by the simple

computation.

• If A′′ ⊂ (K ∪ L ∪M), then the vertices in J can not be resolved by the ver-

tices in A′′, because some vertices of J have equal distances in the structure.

Similarly if A′′ ⊂ (J ∪ L ∪ M), then the vertices in K can not be resolved

by the vertices in A′′, because some vertices of K have equal distances in the

structure.

Therefore in every case we get a contradiction. Thus we conclude that there does

not exists a resolving set A′′ containing
n2 − 1

2
+ n1 − 1 vertices of A. Therefore

dim(A) ≥
n2 − 1

2
+ n1.

Now we find a resolving set A′ which contains exactly
n2 − 1

2
+n1 number of vertices

of A. Let A′ = {pi, p
′

j, qk | i, j ∈ {1, 3, . . . , n1−1} and k ∈ {1, 3, . . . , n2−2}} ⊂ V(A).

We prove that A′ is a resolving set of A. From distances (1.1) and (1.6), we see

that the vertices qk ∈ L, k ∈ {1, 3, . . . , n2 − 2}, resolve the vertices of sets L and

M. The vertices pi and p′j have same distance from the vertices of sets L and M,

therefore the vertices pi and p′j , for i, j ∈ {1, 3, . . . , n1 − 1}, resolve the pi and p′j,
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for i, j ∈ {2, 4, . . . , n1}, respectively. This implies that A′ is a resolving set of A and

dim(A) ≤
n2 − 1

2
+ n1. Therefore we conclude that

(2.3) dim(A) =
n2 − 1

2
+ n1.

Similarly A′ = {pi, p
′

j, qk | i, j ∈ {1, 3, . . . , n1 − 1} and k ∈ {2, 4, . . . , n2 − 2}} ⊂ V(A)

is a resolving set of A for n2 ≡ 0(mod 2), n2 ≥ 6 and

(2.4) dim(A) =
n2 − 2

2
+ n1.

From equations (2.3) and (2.4), we get

dim(A) =

⌊
n2 − 1

2

⌋

+ n1.

This completes the proof. �

Theorem 2.4. If n2 ≥ 1, then following holds:

(1) If n1 ≡ 0(mod 2), n1 ≥ 6, then

dim(Pn1
HPn2

) =







n2

2
+ n1 − 2 if n2 ∈ {2, 4},

⌊
n2 − 1

2

⌋

+ n1 − 2 if n2 ∈ {1, 3, 5, 6, 7, . . .}.

(2) If n1 ≡ 1(mod 2), n1 ≥ 3, then

dim(Pn1
HPn2

) =







n2

2
+ n1 − 1 if n2 ∈ {2, 4},

⌊
n2 − 1

2

⌋

+ n1 − 1 if n2 ∈ {1, 3, 5, 6, 7, . . .}.

Proof. Let A = Pn1
HPn2

and n1 ≡ 0(mod 2), n1 ≥ 6 (see Figure 4). Let V(Pn1
) =

{pr | r ∈ {1, 2, . . . , n1}}, V(P
′

n1
) = {p′s | s ∈ {1, 2, . . . , n1}}, V(Pn2

) = {qt | t ∈

{1, 2, . . . , n2}} and V(P ′

n2
) = {q′l | l ∈ {1, 2, . . . , n2}} be the subsets of V(A) =

V(Pn1
) ∪ V(P ′

n1
) ∪ V(Pn2

) ∪ V(P ′

n2
).

Case 1. Let n2 ∈ {2, 4} and A′ = {p2, p4, . . . , pn1−2, q1, qn2

2

, p′
2
, p′

4
, . . . , p′n1−2

} ⊂
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(a) (b)

Figure 4. (a). P3HPn2
(b). P6HPn2

.

V(Pn2
). We show that A′ is a resolving set of A. From (1.1) and (1.6), we see that

the vertices pr1 and pr2 for each r1, r2 ∈ {2, 4, · · · , n1 − 2} resolve the vertices in

V(Pn1
) and V(P ′

n1
), respectively. However, the vertices qt, 1 ≤ t ≤

n2

2
, can easily

resolve the vertices in sets V(Pn2
) and V(P ′

n2
). Thus the set A′ is a resolving set of

A and

dim(A) ≤
n2

2
+ n1 − 2.

Now we find that there is no a resolving set with
(n2

2
+ n1 − 3

)

number of vertices.

On contrary we suppose that A′

2
is a resolving set of A with |A′

2
| =

n2

2
+n1−3. Then

there are following cases:

• If A′

2
⊂ (V(Pn1

)∪V(Pn2
)∪V(P ′

n2
)), then the vertices p′s, 1 ≤ s ≤ n1, can not

be resolved by the vertices in A′

2
. Similarly if A′

2
⊂ (V(P ′

n1
)∪V(Pn2

)∪V(P ′

n2
)),

then the vertices pr, 1 ≤ r ≤ n1, can not be resolved by the vertices in A′

2
,

because these vertices have equal distances in the structure.

• If A′

2
⊂ (V(Pn1

)∪V(P ′

n1
)∪V(Pn2

)), then there are following two possibilities:

(1) If the set A′

2
have at least n2

2
number of vertices from set V(Pn2

), then a

pair of vertices in set (V(Pn1
)\A′

2
)∪(V(P ′

n1
)\A′

2
) have the same distance

from the vertices in A′

2
.

(2) If the set A′

2
have at least n2

2
−1 number of vertices from set V(Pn2

), then

a pair of vertices in set V(P ′

n2
) have the same distance from the vertices

in A′

2
.
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Similarly A′

2
⊂ (V(Pn1

) ∪ V(P ′

n1
) ∪ V(P ′

n2
)) is not a resolving set of A.

From above cases, we get that there is no any resolving set A′

2
with |A′

2
| =

n2

2
+n1−3.

Hence dim(A) ≥
n2

2
+ n1 − 2. This implies that dim(A) =

n2

2
+ n1 − 2 in this case.

Case 2. Let n2 = 1 and n2 ≡ 1(mod2). First we drive that dim(A) ≥
n2 − 1

2
+n1−2.

On contrary we suppose that there is a resolving set A′′ of A with |A′′| =
n2 − 1

2
+

n1 − 3. Then there are following cases:

• If A′′ ⊂ (V(Pn1
) ∪ V(Pn2

) ∪ V(P ′

n2
)), then the vertices p′s, 1 ≤ s ≤ n1, can

not be resolved by A′′. Similarly if A′′ ⊂ (V(P ′

n1
) ∪ V(Pn2

) ∪ V(P ′

n2
)), then

the vertices pr, 1 ≤ r ≤ n1, can not be resolved by A′′, because these vertices

have equal distances in the structure.

• If A′′ ⊂ (V(Pn1
)∪V(P ′

n1
)∪V(Pn2

)), then there are following two possibilities:

(1) If the set A′′ have at least n2−1

2
number of vertices from set V(Pn2

), then

a pair of vertices in set (V(Pn1
) \ A′′) ∪ (V(P ′

n1
) \ A′′) have the same

distance from the vertices in A′.

(2) If the set A′′ have at least n2−1

2
− 1 number of vertices from set V(Pn2

),

then a pair of vertices in set V(P ′

n2
) have the same distance from the

vertices in A′′.

Similarly we can prove that A′′ ⊂ (V(Pn1
)∪V(P ′

n1
)∪V(P ′

n2
)) is not a resolving

set of A.

Therefore from above discussed cases, we get conclusion that A′′ with
n2 − 1

2
+n1−2

vertices is not a resolving set of A. Thus dim(A) ≥
n2 − 1

2
+ n1 − 2.

Next we determine that A′ is a resolving set of A having

(
n2 − 1

2
+ n1 − 2

)

number

of vertices. Let A′ = {pr, qt, p
′

s | r, s ∈ {2, 4, . . . , n1 − 2} and t ∈ {1, 3, . . . , n2 − 2}} ⊂

V(Pn2
). We prove that A′ is a resolving set of A. We present the representation of
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distances in V(Pn2
) \ A′ with reference to A′:

r(q2|A
′) = (

pr
︷ ︸︸ ︷

1, . . . , 1,

qt
︷ ︸︸ ︷

1, 1, 2 . . . , 2, 2,

p′s
︷ ︸︸ ︷

2, . . . , 2)

r(q4|A
′) = (

pr
︷ ︸︸ ︷

1, . . . , 1,

qt
︷ ︸︸ ︷

2, 1, 1, 2, . . . , 2,

p′s
︷ ︸︸ ︷

2, . . . , 2)

...

r(qn2−1|A
′) = (

pr
︷ ︸︸ ︷

1, . . . , 1,

qt
︷ ︸︸ ︷

2 . . . , 2, 1,

p′s
︷ ︸︸ ︷

2, . . . , 2)

r(qn2
|A′) = (

pr
︷ ︸︸ ︷

1, . . . , 1,

qt
︷ ︸︸ ︷

2, 2, . . . , 2,

p′s
︷ ︸︸ ︷

2, . . . , 2).

The representation of vertices of set V(Pn2
) \ A′ is given below:

r(q′
2
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2, 2,

qt
︷ ︸︸ ︷

2, 2, 3 . . . , 3, 3,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1)

r(q′
4
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2,

qt
︷ ︸︸ ︷

3, 2, 2, 3 . . . , 3,

p′s
︷ ︸︸ ︷

1, 1 . . . , 1)

...

r(q′n2−1
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2,

qt
︷ ︸︸ ︷

3, 3 . . . , 3, 2,

p′s
︷ ︸︸ ︷

1, 1 . . . , 1).

r(q′
1
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2, 2,

qt
︷ ︸︸ ︷

1, 3 . . . , 3, 3,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1)

r(q′
3
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2,

qt
︷ ︸︸ ︷

3, 1, 3 . . . , 3,

p′s
︷ ︸︸ ︷

1, 1 . . . , 1)

...

r(q′n2−2
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2,

qt
︷ ︸︸ ︷

3, 3 . . . , 3, 1,

p′s
︷ ︸︸ ︷

1, 1 . . . , 1)

r(q′n2
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2,

qt
︷ ︸︸ ︷

3, . . . , 3,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1, 1).
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The representation of vertices of set V(Pn1
) \ A′ is given below:

r(p1|A
′) = (

pr
︷ ︸︸ ︷

1, 2, 2, . . . , 2, 2,

qt
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

r(p3|A
′) = (

pr
︷ ︸︸ ︷

1, 1, 2, 2, . . . , 2, 2,

qt
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

r(p5|A
′) = (

pr
︷ ︸︸ ︷

2, 1, 1, 2, . . . , 2, 2,

qt
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

...

r(pn1−1|A
′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 1,

qt
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

3, 3, . . . , 3)

r(pn1
|A′) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

qt
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

3, 3, . . . , 3).

The representation of vertices of set V(P ′

n1
) \ A′ is given below:

r(p′
1
|A′) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

qt
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

1, 2, 2, . . . , 2, 2)

r(p′
3
|A′) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

qt
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

1, 1, 2, 2, . . . , 2, 2)

r(p′
5
|A′) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

qt
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

2, 1, 1, 2, . . . , 2, 2)

...

r(p′n1−1
|A′) = (

pr
︷ ︸︸ ︷

3, 3, . . . , 3,

qt
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

2, 2, . . . , 2, 1)

r(p′n1
|A′) = (

pr
︷ ︸︸ ︷

3, 3, . . . , 3,

qt
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

2, 2, . . . , 2).

One can easy to see that there are no two vertices having the same representations.

Thus A′ is a resolving set of A and dim(A) ≤
n2 − 1

2
+ n1 − 2. Hence

(2.5) dim(A) =
n2 − 1

2
+ n1 − 2.
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Case 3. Let n2 ≡ 0(mod 2). First we prove that dim(A) ≥
n2

2
+n1−2. On contrary

we suppose that there is a resolving set A′

2
of A with |A′

2
| =

n2

2
+n1− 3. Then there

are following cases:

• If A′

2
⊂ (V(Pn1

)∪V(Pn2
)∪V(P ′

n2
)), then the vertices p′s, 1 ≤ s ≤ n1, can not

be resolved by the vertices in A′

2
. Similarly if A′

2
⊂ (V(P ′

n1
)∪V(Pn2

)∪V(P ′

n2
)),

then the vertices pr, 1 ≤ r ≤ n1, can not be resolved by the vertices in A′

2
,

because these vertices have equal distances in the structure.

• If A′

2
⊂ (V(Pn1

)∪V(P ′

n1
)∪V(Pn2

)), then there are following two possibilities:

(1) If the set A′

2
have at least n2

2
number of vertices from set V(Pn2

), then a

pair of vertices in set V(Pn1
)\A′

2
and V(P ′

n1
)\A′

2
have the same distance

from the vertices in A′

2
.

(2) If the set A′

2
have at least n2

2
−1 number of vertices from set V(Pn2

), then

a pair of vertices in set V(P ′

n2
) have the same distance from the vertices

in A′

2
.

Similarly we can prove that A′

2
⊂ (V(Pn1

)∪V(P ′

n1
)∪V(P ′

n2
)) is not a resolving

set of A.

Thus, in every case we obtain a contradiction. Therefore any resolving set of A

contains at least
n2

2
+ n1 − 2 vertices and we get dim(A) ≥

n2

2
+ n1 − 2.

Now we find the resolving set of A having exactly
(n2

2
+ n1 − 2

)

number of vertices

of A. Let A′ = {pr, qt, p
′

s | r, s ∈ {2, 4, . . . , n1−2} and t ∈ {2, 4, . . . , n2−2}} ⊂ V(A).

Now we derive that A′ is a set of vertices to resolve the vertices in V(A) \ A′. Let

A′

1
= {pr, p

′

s | r, s ∈ {2, 4, . . . , n1 − 2}} ⊂ A′. We describe the representation of

vertices V(A) \ A′

1
with reference to A′

1
:

r(qt|A
′

1
) = (

pr
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′s
︷ ︸︸ ︷

2, 2, . . . , 2), 1 ≤ t ≤ n2,

r(q′l|A
′

1
) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1), 1 ≤ l ≤ n2,
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r(pn1
|A′

1
) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1, 1), r(p′n1
|A′

1
) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

1, 1, . . . , 1).

The representation of vertices pi and p′j, for i, j ∈ {1, 3, . . . , n1 − 1} are

r(p1|A
′

1
) = (

pr
︷ ︸︸ ︷

1, 2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

r(p3|A
′

1
) = (

pr
︷ ︸︸ ︷

1, 1, 2, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

r(p5|A
′

1
) = (

pr
︷ ︸︸ ︷

2, 1, 1, 2, . . . , 2, 2,

p′s
︷ ︸︸ ︷

3, 3 . . . , 3)

...

r(pn1−1|A
′

1
) = (

pr
︷ ︸︸ ︷

2, 2, . . . , 2, 1,

p′s
︷ ︸︸ ︷

3, 3, . . . , 3).

r(p′
1
|A′

1
) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

p′s
︷ ︸︸ ︷

1, 2, 2, . . . , 2, 2)

r(p′
3
|A′

1
) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

p′s
︷ ︸︸ ︷

1, 1, 2, 2, . . . , 2, 2)

r(p′
5
|A′

1
) = (

pr
︷ ︸︸ ︷

3, 3 . . . , 3,

p′s
︷ ︸︸ ︷

2, 1, 1, 2, . . . , 2, 2)

...

r(p′n1−1
|A′

1
) = (

pr
︷ ︸︸ ︷

3, 3, . . . , 3,

p′s
︷ ︸︸ ︷

2, 2, . . . , 2, 1).

From above representations of vertices we see that all vertices in V(A) \ A′ have

distinct representations except the vertices pn1
, q′l, p

′

n1
, qt,, t, l ∈ {1, 2, . . . , n2}. The

vertices qt for each t ∈ {2, 4, . . . , n2 − 2} resolve the vertices pn1
, q′l, p

′

n1
, qt, where

t, l ∈ {1, 2, . . . , n2}. This implies that A′ = A′

1
∪ {q2, q4, . . . , qn2−2} is a resolving set

of A and dim(A) ≤
n2

2
+ n1 − 2. Therefore

(2.6) dim(A) =
n2

2
+ n1 − 2.
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From equations (2.5) and (2.6), we have

dim(A) =

⌊
n2 − 1

2

⌋

+ n1 − 2.

Similarly we can find the resolving set and the matric dimension of Pn1
HPn2

for

n1 ≡ 1(mod 2), n2 ≥ 1, (see Figure 4). This finishes the proof. �

3. Metric dimension of Cn1
HPn2

Khuller et al. [16] and Chartrand et al. [6] showed that dim(Cn) = 2. In this sec-

tion, we compute the metric dimension of Indu-Bala product of Cn1
and Pn2

. Let

{c1, c2, . . . , cn1
} and {p1, p2, . . . , pn2

} be the set of vertices of Cn1
and Pn2

, respec-

tively. Let C′

n1
and P ′

n2
be the copies of Cn1

and Pn2
, respectively and V(C′

n1
) =

{c′
1
, c′

2
, . . . , c′n1

} and V(Pn2
) = {p′

1
, p′

2
, . . . , p′n2

}. Let A = Cn1
HPn2

be a Indu-Bala

product of Cn1
and Pn2

with vertex set V(A) = V(Cn1
) ∪ V(Pn2

) ∪ V(C′

n1
) ∪ V(P ′

n2
).

Theorem 3.1. If n1 ∈ {3, 4} and n2 ≥ 2, then we have dim(Cn1
HPn2

) =
⌊n2

2

⌋

+ 4.

(a) (b)

Figure 5. (a). C3HPn2
(b). C4HPn2

.

Proof. Let A = Cn1
HPn2

, n2 ≡ 1(mod 2) (see Figure 5) and A′ = {c1, c2, p1, p3, . . . ,

pn2−2, c
′

1
, c′

2
} ⊂ V(A). We need to derive that A′ is a resolving set of A. Let A′′ = {pt |

t ∈ {1, 3, . . . , n2 − 2}} ⊂ A′. We present the representation of vertices of V(A) \ A′′
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with reference to A′′:

r(p2|A
′′) = (1, 1, 2, 2, . . . , 2)

r(p4|A
′′) = (2, 1, 1, 2, . . . , 2, 2)

...

r(pn2−1|A
′′) = (2, 2, . . . , 2, 1)

r(pn2
|A′′) = (2, 2, . . . , 2).

The representation of vertices p′l ∈ V(P ′

n2
), l ∈ {2, 4, . . . , n2 − 1} is given below:

r(p′
2
|A′′) = (2, 2, 3, . . . , 3, 3), r(p′

4
|A′′) = (3, 2, 2, 3, . . . , 3), . . . , r(p′n2−1

|A′′) = (3, 3, . . . , 3, 2).

The representation of vertices p′l ∈ V(P ′

n2
), l ∈ {1, 3, . . . , n2} is given below:

r(p′
1
|A′′) = (1, 3, . . . , 3, 3)

r(p′
3
|A′′) = (3, 1, 3, . . . , 3)

...

r(p′n2−2
|A′′) = (3, 3, . . . , 3, 1)

r(p′n2
|A′′) = (3, 3, . . . , 3, 3).

The representations of vertices of set V(Cn1
) and V(C′

n1
) are given below:

r(cs|A
′′) = (1, 1, . . . , 1, 1), r(c′t|A

′′) = (2, 2, . . . , 2, 2).

where 1 ≤ s, t ≤ n1. From above we conclude that all vertices in V(A) \ A′′ have

distinct representation except the vertices in sets V(Cn1
) and V(C′

n1
). The vertices

c1, c2, c
′

1
, c′

2
resolve the vertices of sets V(Cn1

) and V(C′

n1
). Which implies that A′ =

A′′ ∪ {c1, c2, c
′

1
, c′

2
} is a resolving set of A and dim(A) ≤

n2 − 1

2
+ 4.

Also, we need to find that dim(A) ≥
n2 − 1

2
+ 4. On contrary, we suppose that there

exists a resolving set A′

1
with |A′

1
| =

n2 − 1

2
+3. Then there are following possibilities:
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• If A′

1
⊂ (V(Cn1

) ∪ V(Pn2
) ∪ V(P ′

n2
)), then the vertices of set C′

n1
have same

distance from the vertices in A′

1
. Similarly, we can prove that A′

1
⊂ (V(C′

n1
)∪

V(Pn2
)∪V(P ′

n2
)) is not a resolving set of A, because some vertices have equal

distances in the structure.

• If A′

1
⊂ (V(Cn1

) ∪ V(C′

n1
) ∪ V(Pn2

)), then there are two possibilities:

(1) If the set A′

1
have exactly two vertices of Cn1

and two vertices of C′

n1
,

then a pair of vertices of V(P ′

n2
) \ A′

1
have the same distance from the

vertices in A′

1
.

(2) If the set A′

1
have at least n2−1

2
number of vertices from set V(Pn2

), then

a pair of vertices in V(Cn1
) ∪ V(C′

n1
) have the same distance from the

vertices in A′

1
.

Similarly we can prove that A′

1
⊂ (V(Cn1

)∪V(C′

n1
)∪V(P ′

n2
)) does not resolved

the elements of V(A).

Therefore from above cases, we see that any resolving set of A have at least
n2 − 1

2
+4

vertices and we get dim(A) ≥
n2 − 1

2
+ 4. Thus dim(A) =

n2 − 1

2
+ 4.

Similarly we can prove that A′ = {c1, c2, p2, p4, . . . , pn2−2, c
′

1
, c′

2
} is a resolving set for

A = Cn1
HPn2

, n2 ≡ 0(mod 2) and dim(A) =
n2

2
+ 4. This finishes the proof. �

Theorem 3.2. If n1 ≥ 5 and n2 ≥ 1, then following holds:

dim(Cn1
HPn2

) =







⌊n2

2

⌋

+ n1 − 2 if n1 ≥ 6 even,

⌊n2

2

⌋

+ n1 − 1 if n1 ≥ 5 odd.

Proof. Let A = Cn1
HPn2

, n1 ≡ 0(mod 2), n1 ≥ 6 (see Figure 6).

Case 1. Let n2 ≡ 0(mod 2). First we show that dim(A) ≥
n2

2
+ n1 − 2. We suppose

contrary that A′

1
with |A′

1
| =

n2

2
+n1 − 3 is a resolving set. Then there are following

possibilities:
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Figure 6. C6HPn2
.

• If A′

1
can not contain any vertex of C′

n1
, then all vertices of set C′

n1
have same

representation with respect to A′

1
. Similarly we can prove that if A′

1
can not

contain any vertex of Cn1
, then A′

1
is not a resolving set of A, because elements

of A′

1
have same representations.

• If A′

1
can not contain any vertex of V(P ′

n2
), then there are two possibilities:

(1) If the set A′

1
have

n2

2
vertices of set V(Pn2

), then pair of vertices in set

V(Cn1
) ∪ V(C′

n1
) have the same distance from the vertices in A′

1
.

(2) If the set A′

1
have

n2

2
−1 number of vertices from set V(Pn2

), then a pair

of vertices of V(P ′

n2
) have the same distance from the vertices in A′

1
.

Similarly we can prove that A′

1
⊂ (V(Cn1

)∪V(C′

n1
)∪V(P ′

n2
)) is not a resolving

set of A.

Therefore from above cases, we see that any resolving set of A have at least
n2

2
+n1−2

vertices and we get dim(A) ≥
n2

2
+ n1 − 2. Thus dim(A) =

n2

2
+ n1 − 2.

Now we determine a resolving set A′ which have exactly
(n2

2
+ n1 − 2

)

number of

vertices. Let A′ = {cs, pk, c
′

t | s, t ∈ {2, 4, . . . , n1 − 2} and k ∈ {2, 4, . . . , n2 − 2}}.

Let A′′ = {cs, c
′

t | s, t ∈ {2, 4, . . . , n1 − 2}} ⊂ A′. We determine that the elements

of A′ resolve all the vertices of A. For this we see the representation of elements of

V(Cn1
) \ A′′ with reference to A′′:

r(c1|A
′′) = (

cs
︷ ︸︸ ︷

1, 2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3)
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r(c3|A
′′) = (

cs
︷ ︸︸ ︷

1, 1, 2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3)

...

r(cn2−1|A
′′) = (

cs
︷ ︸︸ ︷

2, . . . , 2, 1,

c′t
︷ ︸︸ ︷

3, . . . , 3)

r(cn2
|A′′) = (

cs
︷ ︸︸ ︷

2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3).

The representation of vertices of set V(C′

n1
) \ A′′ is given below:

r(c′
1
|A′′) = (

cs
︷ ︸︸ ︷

3, . . . , 3,

c′t
︷ ︸︸ ︷

1, 2, . . . , 2)

r(c′
3
|A′′) = (

cs
︷ ︸︸ ︷

3, . . . , 3,

c′t
︷ ︸︸ ︷

1, 1, 2, . . . , 2)

...

r(c′n2−1
|A′′) = (

cs
︷ ︸︸ ︷

3, . . . , 3,

c′t
︷ ︸︸ ︷

2, . . . , 2, 1)

r(c′n2
|A′′) = (

cs
︷ ︸︸ ︷

3, . . . , 3,

c′t
︷ ︸︸ ︷

2, . . . , 2).

The representation of vertices of set V(Pn2
) and V(P ′

n2
) are given below:

r(pk|A
′′) = (

cs
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

p′t
︷ ︸︸ ︷

2, 2, . . . , 2, 2), r(p′l|A
′′) = (

cs
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

p′t
︷ ︸︸ ︷

1, 1, . . . , 1, 1).

where 1 ≤ k, l ≤ n2. It can be seen that except the vertices in sets V(Cn1
) and

V(C′

n1
), all other elements of V(A) have same representations with reference to A′′.

The vertices pk for k ∈ {2, 4, . . . , n2 − 2} resolve the vertices of V(Pn2
) and V(Pn2

).

Hence A′ is a resolving set of A and dim(A) ≤
n2

2
+ n1 − 2.

Case 2. Let n2 = 1 and n2 ≡ 1(mod 2). First we show that dim(A) ≥
n2 − 1

2
+n1−2.

There are following possibilities:

• The vertices pk for k ∈ {1, 3, . . . , n2 − 2} resolve the vertices of Cn1
and C′

n1
.
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• The vertices p′l for l ∈ {1, 3, . . . , n2 − 2} resolve the vertices of Cn1
and C′

n1
.

• The vertices cs and c′t for s, t ∈ {2, 4, . . . , n1 − 2} resolve the vertices cs and

c′t for s, t ∈ {1, 3, . . . , n1 − 1, n1}, respectively.

Hence dim(A) ≥
n2 − 1

2
+ n1 − 2. Now we find a resolving set A′ which consist of

exactly
n2 − 1

2
+n1−2 vertices. Let A′ = {cs, pk, c

′

t | s, t ∈ {2, 4, . . . , n1−2} and k ∈

{1, 3, . . . , n2 − 2}}. We derive that A′ is a resolving set of A. Let A′′ = {cs, c
′

t |

s, t ∈ {2, 4, . . . , n1 − 2}} ⊂ A′. Then we describe the representation of vertices of

V(Cn1
) \ A′′ with reference to A′′:

r(c1|A
′′) = (

cs
︷ ︸︸ ︷

1, 2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3)

r(c3|A
′′) = (

cs
︷ ︸︸ ︷

1, 1, 2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3)

...

r(cn2−1|A
′′) = (

cs
︷ ︸︸ ︷

2, . . . , 2, 1,

c′t
︷ ︸︸ ︷

3, . . . , 3)

r(cn2
|A′′) = (

cs
︷ ︸︸ ︷

2, . . . , 2,

c′t
︷ ︸︸ ︷

3, . . . , 3).

The representation of vertices of set V(C′

n2
) \ A′′ is given below:

r(c′
1
|A′′) = (

vi
︷ ︸︸ ︷

3, . . . , 3,

v′j
︷ ︸︸ ︷

1, 2, . . . , 2)

r(c′
3
|A′′) = (

vi
︷ ︸︸ ︷

3, . . . , 3,

v′j
︷ ︸︸ ︷

1, 1, 2, . . . , 2)

...

r(c′n2−1
|A′′) = (

vi
︷ ︸︸ ︷

3, . . . , 3,

v′j
︷ ︸︸ ︷

2, . . . , 2, 1)

r(c′n2
|A′′) = (

vi
︷ ︸︸ ︷

3, . . . , 3,

v′j
︷ ︸︸ ︷

2, . . . , 2).
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The representation of vertices of set V(Pn2
) and V(P ′

n2
) are given below:

r(pk|A
′) = (

cs
︷ ︸︸ ︷

1, 1, . . . , 1, 1,

c′t
︷ ︸︸ ︷

2, 2, . . . , 2, 2), r(p′l|A
′) = (

cs
︷ ︸︸ ︷

2, 2, . . . , 2, 2,

c′t
︷ ︸︸ ︷

1, 1, . . . , 1, 1).

It can be seen that the vertices pk and p′l have same representations with respect

to A′′. The vertices pk for k ∈ {1, 3, . . . , n2 − 2} resolve the vertices of V(Pn2
) \ A′

and V(P ′

n2
). Hence A′ is a resolving set of A and dim(A) ≤

n2 − 1

2
+ n1 − 2. Thus

dim(A) =
n2 − 1

2
+ n1 − 2. Similarly we can find the metric dimension of Cn1

HPn2
,

n1 ≡ 1(mod 2), n1 ≥ 5. This completes the proof. �
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