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A STABLE METHOD FOR SOLVING NONLINEAR VOLTERRA

INTEGRAL EQUATIONS WITH TWO CONSTANT DELAYS

R. KATANI(1) AND S. SHAHMORAD(2)

Abstract. The main purpose of this paper is to propose a block by block method

for a class of the Volterra integral equations (VIEs) with double constant delays.

The convergence analysis is established and the fifth order of convergence is ob-

tained. Then the stability analysis of the presented method is carried out with

respect to the basic test equation

y(t) = 1 + λ

∫ t−τ1

t−τ2

y(s)ds, t > 0.

The analytical behavior of the solution of test equation is investigated and the

properties of the numerical solution are derived. Numerical examples are presented

to illustrate the capability and efficiency of the proposed method.

1. Introduction

Consider the Volterra integral equation

(1.1) y(t) = g(t) +

∫ t−τ1

t−τ2

k(t, s, y(s))ds, t ∈ [0, T ] =: I,
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with the constant delays τ1, τ2 (τ2 > τ1 > 0) and y(t) = φ(t), t ∈ [−τ2, 0], where φ(t)

is a given function such that

(1.2) φ(0) = g(0) +

∫ −τ1

−τ2

k(0, s, φ(s))ds.

By virtue of the above, we have y(0+) = φ(0) for every solution of Eq.(1.1).

We assume that the given functions φ : [−τ2, 0] → R, g : I → R and k : S × R → R

(with S := {(t, s) : t ∈ I, t − τ2 ≤ s ≤ t − τ1}) are at least continuous on their

respective domains and k(t, s, y) satisfies the Lipschitz condition with respect to y

and with the Lipschitz constant L:

|k(t, s, y)− k(t, s, z)| ≤ L|y − z|, ∀y, z ∈ R.

By these assumptions, we can obtain the existence and uniqueness results for Eq.(1.1)

by considering the theory of VIEs [23, 31, 32].

Many physical phenomena are modeled by using delay integral equations. These

integral equations are used for modeling of systems with history, such as electric

circuits, dynamical and mechanical systems. These equations also play a major role

in population dynamics, e.g., as models for growth of a population structured by age

with a finite life span [11, 25, 26] and models for the spread of certain infectious

diseases [21, 22, 38].

In recent years, various aspects of numerical methods have been studied for delay

integral equations. For example, in [10, 12, 13, 14, 15, 16, 30, 40] the collocation

methods are used to solve VIEs with delay. In [1, 2, 3] the spectral collocation

methods are proposed to solve Volterra type integral and related differential equations

with proportional delay. Bai [7] used collocation methods to solve the VIEs with

vanishing delay. In [28] a Nystrom method proposed for nonlinear Urysohn type

VIEs with proportional delay and Gu et al. [24] introduced a Chebyshev spectral

collocation method for weakly singular VIEs with proportional delay. Mosleh and
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Otadi [35] utilized last squares technique to solve delay VIEs and in [36] a single-term

Walsh series approach used for solving these equations. Other methods employed in

the litrature to solve such equations and similar ones, include Haar wavelet method

[5, 6], Chebyshev Galerkin method [27], TDQ (Trapezoidal Direct Quadrature) and

DQ (Direct Quadrature) methods [32, 33], Gaussian direct quadrature methods [20],

sinc method [37] and so on.

In this paper, we are interested to proposing a block by block method for solving

delay Volterra integral equations. The concept of block by block methods for integral

equations seems to be described for the first time by Young [41]. A similar technique

for differential equations was given by Milne [34]. In each step, this method compute

several values of the unknown function at the same time, therefore it’s called block

by block method. Most of the available methods for the solution of VIEs are based

on the expansions of solutions, e.g., the Taylor and Chebyshev expansion methods,

the Tau method, the Adomian and homotopy methods and etc. These methods are

efficient only for intervals of small length (say, [0, 1] or [−1, 1]) and are useless for

large intervals. The method used in the present paper is one of the most suitable

methods for large intervals [29]. In addition, the computation time for this method

is shorter than some well-known methods.

Concerning the stability of the method, we consider the test equation

(1.3) y(t) = 1 + λ

∫ t−τ1

t−τ2

y(s)ds, t > 0,

where λ ∈ R and we refer to [9], [17](chapter 7) and [31] (chapter 7) for a discussion

on the use of this test equations in the study of stability for VIEs. We study stability

of the presented method by using this test equation. For this order, we will show that

the presented method preserve the bound, limiting value and oscillating character of

the exact solution of (1.3). See [4, 8, 19, 32, 33, 39] for similar approaches.
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The rest of the paper is organized as follows. In Section 2, we introduce the

block by block method and in Section 3, we prove its convergence. In Section 4,

we study properties of the test equation. Then we carry out analogous studies on

the presented method and characterize the values of the step size h which lead to a

numerical solution that catch the properties of the exact one. Finally, we give some

numerical illustrations in Section 5 and we end the paper with some conclusions.

2. Description of the method

Let tn := nh, n = 0, ..., N − 1, tN = T , define a uniform partition for I = [0, T ]

and set XN := {t0, t1, ..., tN}, In := [tn, tn+1], n ≥ 0. The mesh XN is assumed to be

constrained, such that h = τ1
r1

= τ2
r2
, for some r1, r2 ∈ N.

For given real numbers {cj} with 0 = c0 < c1 < ... < c4 = 1, define the set ΠN :=

{tn,j} of collocation points by tn,j := tn + cjh, j = 0, 1, ..., 4, n = 0, ..., N − 1, where

tn ∈ XN and cj =
j
4
. Set t = tn,j in (1.1) then

(2.1) y(tn,j) = g(tn,j)+

∫ tn,j−τ1

tn,j−τ2

k(tn,j , s, y(s))ds, n = 0, 1, ..., N−1, j = 0, 1, ..., 4.

If t = tn,j is such that tn,j − τ2(= tn−r2,j) < 0, then we have

(2.2) y(tn,j) = g(tn,j) +

∫ 0

tn,j−τ2

k(tn,j, s, φ(s))ds+

∫ tn,j−τ1

0

k(tn,j, s, y(s))ds,

for j = 0, 1, ..., 4 and n = 0, ..., N − 1; we define

(2.3) Φ(t) :=

∫ 0

t−τ2

k(t, s, φ(s))ds.

This last expression represents a further potential source of error, since in applica-

tions, one will not be often able to evaluate the integral Φ(t) exactly; instead, one

will have to resort suitable numerical integration formula to approximate it.

In order to put (2.1) into an amenable form to numerical computation, define

(2.4) F (tn,j) :=

∫ tn−τ1

tn,j−τ2

k(tn,j, s, y(s))ds.
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Then for tn,j with 0 ≤ n < r2, we have

(2.5) F (tn,j) = Φ(tn,j) +

∫ t1

t0

k(tn,j, s, y(s))ds+ ...+

∫ tn−r1

tn−r1−1

k(tn,j, s, y(s))ds,

if tn,j is such that r2 ≤ n < N − 1, then

F (tn,j) =

∫ tn+1−τ2

tn,j−τ2

k(tn,j, s, y(s))ds+

∫ tn−τ1

tn+1−τ2

k(tn,j , s, y(s))ds

= h

∫ 1

cj

k(tn,j , tn−r2 + νh, y(tn−r2 + νh))dν +

∫ tn−r2+2

tn−r2+1

k(tn,j, s, y(s))ds

+ ...+

∫ tn−r1

tn−r1−1

k(tn,j , s, y(s))ds,(2.6)

where for the first integral, we used the change of variable s = tn−r2 + νh.

Thus, the equation (2.1) may be written in the form

y(tn,j) = g(tn,j) + F (tn,j) +

∫ tn,j−τ1

tn−τ1

k(tn,j, s, y(s))ds

= g(tn,j) + F (tn,j) + h

∫ cj

0

k(tn,j, tn−r1 + νh, y(tn−r1 + νh))dν, j = 0, 1, ..., 4.(2.7)

2.1. Romberg quadrature rule. By using the trapezoidal rule for
∫ α

β
k(tn,j, s, y(s))ds

with α, β ∈ ΠN we define

T 00 :=
α− β

2
[k(tn,j, α, y(α)) + k(tn,j, β, y(β))] ,

T 01 :=
1

2
T 00 +

α− β

2
k(tn,j ,

α + β

2
, y(

α+ β

2
)),

T 02 :=
1

2
T 01 +

α− β

4

[
k(tn,j,

α + 3β

4
, y(

α+ 3β

4
)) + k(tn,j,

3α + β

4
, y(

3α+ β

4
))

]
,
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then by using Romberg quadrature rule with two steps we obtain

∫ α

β

k(tn,j, s, y(s))ds ≈
64T 02 − 20T 01 + T 00

45

=
α− β

90

[
7
(
k(tn,j, α, y(α)) + k(tn,j, β, y(β))

)

+ 12k(tn,j,
α + β

2
, y(

α+ β

2
))

+ 32

(
k(tn,j,

3α + β

4
, y(

3α+ β

4
)) + k(tn,j,

α + 3β

4
, y(

α+ 3β

4
))

)]
.(2.8)

2.2. The block by block method. Assume that yn,cj be an approximation for the

exact solution y(t) in the point tn,j, a.e. yn,cj ≈ y(tn + cjh) for j = 0, 1, ..., 4 and

n = 0, 1, ..., N − 1, then by using (2.8), we can approximate F (tn,j) from (2.5)

F (tn,j) ≈ Φ(tn,j) + h

4∑

i=0

wik(tn,j, t0,i, y0,ci) + ...+ h

4∑

i=0

wik(tn,j, tn−r1−1,i, yn−r1−1,ci)

=: Φ(tn,j) + A(tn,j),(2.9)

for 0 ≤ n < r2 where w0 = w4 = 7/90, w2 = 2/15 and w1 = w3 = 16/45. Similarly

from (2.6) we have

F (tn,j) ≈ h(1− cj)
[
w0k(tn,j, tn−r2,j, yn−r2,cj)

+ w1k(tn,j, tn−r2 +
h

4
(1 + 3cj), yn−r2,

1+3cj

4

)

+ w3k(tn,j, tn−r2 +
h

4
(3 + cj), yn−r2,

3+cj

4

)

+w2k(tn,j, tn−r2 + h(1 + cj)/2, yn−r2,
1+cj

2

) + w4k(tn,j, tn−r2+1, yn−r2,1)
]

+ h

4∑

i=0

wi [k(tn,j , tn−r2+1,i, yn−r2+1,ci) + ...+ k(tn,j , tn−r1−1,i, yn−r1−1,ci)] ,(2.10)

for r2 ≤ n < N − 1. The points tn−r2 +
h(1+3cj)

4
and tn−r2 +

h(3+cj)

4
for j = 1, 2, 3

and points tn−r2 +
h(1+cj)

2
for j = 1, 3 do not belong to the collocation points (mesh

ΠN). In order to overcome this problem, we adopt an interpolation technique. By
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Lagrange interpolation, we can write

y(tn + νh) ≈ P (tn + νh) =
4∑

i=0

li(ν)yn,ci, tn + νh ∈ In,

where li(ν) :=
4∏

j=0
j 6=i

ν−cj
ci−cj

. Then for j = 2 we have from (2.10)

F (tn,j) ≈ h(1− cj)
[
w0k(tn,j, tn−r2,j, yn−r2,cj)

+ w1k(tn,j , tn−r2 + h(1 + 3cj)/4,

4∑

i=0

li((1 + 3cj)/4)yn−r2,ci)

+ w3k(tn,j , tn−r2 + h(3 + cj)/4,

4∑

i=0

li((3 + cj)/4)yn−r2,ci)

+ w2k(tn,j , tn−r2 + h(1 + cj)/2, yn−r2,
1+cj

2

) +w4k(tn,j, tn−r2+1, yn−r2,1)
]

+ h
4∑

i=0

wik(tn,j , tn−r2+1,i, yn−r2+1,ci) + ...

+ h

4∑

i=0

wik(tn,j , tn−r1−1,i, yn−r1−1,ci) =: B(tn,j), r2 ≤ n < N − 1,(2.11)

and for j = 1 and j = 3 we use interpolation technique for y
n−r2,

1+cj

2

, too. Similarly,

for approximate the end integral in (2.7), we can write from (2.8)

∫ cj

0

k(tn,j, tn−r1 + νh, y(tn−r1 + νh))dν ≈ cjh
[
w0k(tn,j, tn−r1 , yn−r1,0)

+ w1k(tn,j, tn−r1 + cj/4h, yn−r1,cj/4) + w3k(tn,j, tn−r1 + 3cj/4h, yn−r1,3cj/4)

+w2k(tn,j, tn−r1 + cj/2h, yn−r1,cj/2) + w4k(tn,j, tn−r1,j , yn−r1,cj)
]
,

j = 0, 1, ..., 4, n = 0, 1, ..., N − 1,

where tn−r1 + cj/4h and tn−r1 + 3cj/4h do not belong to the collocation points for

j = 1, 2, 3, also, tn−r1 + cj/2h /∈ ΠN for j = 1, 3. Then we use again the Lagrange
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interpolation and for j = 1 and j = 3 we obtain

∫ cj

0

k(tn,j , tn−r1 + νh, y(tn−r1 + νh))dν ≈ cjh
[
w0k(tn,j, tn−r1, yn−r1,0)

+ w1k(tn,j, tn−r1 + cj/4h,

4∑

i=0

li(
cj
4
)yn−r1,ci)

+ w3k(tn,j, tn−r1 + 3cj/4h,
4∑

i=0

li(
3cj
4
)yn−r1,ci)

+ w2k(tn,j, tn−r1 + cj/2h,

4∑

i=0

li(
cj
2
)yn−r1,ci)

+ w4k(tn,j, tn−r1,j, yn−r1,cj)
]
=: C(tn,j),(2.12)

for each n = 0, ..., N − 1. Similar to (2.11), for j = 2 does not need use of Lagrange

interpolation for y
n−r2,

cj

2

.

Finally, for r2 ≤ n < N − 1, by substituting the approximations (2.10) and (2.12) in

(2.7) we will have a system of equations. But for 0 ≤ n < r2, if Φ(t) is not computable

exactly, we need to approximate Φ(tn,j), too. Then we can write

Φ(tn,j) =

∫ 0

tn,j−τ2

k(tn,j, s, φ(s))ds

=

∫ tn+1−τ2

tn,j−τ2

k(tn,j, s, φ(s))ds+

∫ 0

tn+1−τ2

k(tn,j, s, φ(s))ds,

for the first integral we use the change of variable s = tn−r2 + νh and obtain

Φ(tn,j) = h

∫ 1

cj

k(tn,j, tn−r2 + νh, φ(tn−r2 + νh))dν

+

∫ tn−r2+2

tn−r2+1

k(tn,j , s, φ(s))ds+ ... +

∫ t0

t1

k(tn,j, s, φ(s))ds.(2.13)



A STABLE METHOD FOR SOLVING NONLINEAR VIES WITH... 615

Using (2.8) leads to

Φ(tn,j) ≈ h(1− cj)[w0k(tn,j, tn−r2,j, φ(tn−r2,j))

+ w1k(tn,j, tn−r2 + h(1 + 3cj)/4, φ(tn−r2 + h(1 + 3cj)/4))

+ w3k(tn,j, tn−r2 + h(3 + cj)/4, φ(tn−r2 + h(3 + cj)/4))

+ w2k(tn,j, tn−r2 + h(1 + cj)/2, φ(tn−r2 + h(1 + cj)/2))

+ w4k(tn,j, tn−r2+1, φ(tn−r2+1))] + h

4∑

i=0

wik(tn,j, tn−r2+1,i, φ(tn−r2+1,i))

+ ...+ h
4∑

i=0

wik(tn,j, t−1,i, φ(t−1,i)) =: Φ̂(tn,j),(2.14)

where w0 = w4 = 7/90, w2 = 6/45, w1 = w3 = 16/45 and t−1,i = (ci − 1)h.

Therefore by substituting these approximations in relation (2.7), we will have

yn,cj =





g(tn,j) + Φ̂(tn,j) + A(tn,j) + C(tn,j), 0 ≤ n ≤ r2,

g(tn,j) +B(tn,j) + C(tn,j), r2 ≤ n ≤ N − 1.

For j = 1, ..., 4 we will obtain a system of algebraic equations in each step (n =

0, 1, .., N−1). By solving this system we obtain a block of unknowns U := (un,1, ..., un,4).

Of course, it is easy to generalize this method by increasing j and obtain a method

with higher order of convergence that give more unknowns in each step.

3. Convergence of the numerical method

Theorem 3.1. Assume that the integral

Φ(t) :=

∫ 0

t−τ2

k(t, s, φ(s))ds, t ∈ [−τ2, 0],

is given exactly. Then for all sufficiently small h

(3.1) h =
τ1
r1

=
τ2
r2
, r1, r2 ∈ N,
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the numerical solution given in previous section is convergent to y(t). In addition,

let us assume that k ∈ C6(S × R), g ∈ C6[0, T ] and φ ∈ C6[−τ2, 0]. Then, for all

sufficiently small h satisfying in condition (3.1), the numerical solution yn,cj satisfies

max
0≤n≤N,0≤j≤4

|y(tn,j)− yn,cj)| ≤ Ch5,

for some constant C which does not depend on h. This estimate holds for all collo-

cation parameters {cj} with 0 = c0 < c1 < ... < c4 = 1.

Remark 1. Provided that k, g and φ in Eq.(1.1) are sufficiently smooth, condition

(1.2) assures the continuity of y(t) for t ≥ 0 and by successively differentiating (1.1) it

is easy to verify that y(l)(t), l = 1, 2, ... present some points, θ1, θ2,..., θZ , of primary

discontinuities (θ1 = 0 for y′, θ1 = 0, θ2 = τ1, θ3 = τ2 for y′′,...) and it is continuous

for t > (l − 1)τ2.

Remark 2. We have tn,j ∈ [tn, tn+1] for j = 0, 1, ..., 4 and assume that h satisfies

the condition (3.1), which implies that tn,0, ..., tn,4 ∈ [θz, θz+1] or tn,0 ≥ θZ for the

discontinuity points θ1, ..., θZ . Then from the smoothness hypotheses on φ, g and k, the

exact solution y(t) of (1.1) is at least 5 times continuously differentiable on [θz, θz+1],

z = 1, ..., Z−1, and on [θZ , T ]. From the expression for y(v)(t), v = 0, 1, ..., 5, obtained

by successively differentiating (1.1) with respect to t, it is obvious that both the left

and right limits of y(v)(t) as t → θz exist and are finite.

Proof of Theorem 3.1. Let e(tn,j) = y(tn,j) − yn,j and assume that j = 1 or j = 3

(for other values of j do similarly). If tn < τ2, then tn−r2,j = tn + cjh− τ2 ≤ 0. From
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(1.1) we have

y(tn,j) = g(tn,j) +

∫ tn,j−τ1

tn,j−τ2

k(tn,j, s, y(s))ds

= g(tn,j) + Φ(tn,j) +

∫ t1

0

k(tn,j, s, y(s))ds+ ...

+

∫ tn−r1

tn−r1−1

k(tn,j, s, y(s))ds+ h

∫ cj

0

k(tn,j , tn−r1 + νh, y(tn−r1 + νh))dν,

and by substituting the approximations (2.9) and (2.12) in (2.7) we obtain y(tn,j).

Since y(t) = φ(t) on [−τ2, 0] and Φ(t) is given exactly, then

en,j := e(tn,j) =

∫ t1

0

k(tn,j, s, y(s))ds+ ...+

∫ tn−r1

tn−r1−1

k(tn,j, s, y(s))ds

+ h

∫ cj

0

k(tn,j, tn−r1 + νh, y(tn−r1 + νh))ds− h

4∑

i=0

wik(tn,j, t0,i, y0,ci)− ...

− h

4∑

i=0

wik(tn,j , tn−r1−1,i, yn−r1−1,ci)− hcj

[
w0k(tn,j, tn−r1, yn−r1,0)

+w1k(tn,j, tn−r1 +
cj
4
h, P (tn−r1 +

cj
4
h)) + ...+ w4k(tn,j, tn−r1,j , yn−r1,cj)

]
.

By adding and diminishing terms

h

4∑

i=0

wik(tn,j, t0,i, y(t0,i)), ..., h

4∑

i=0

wik(tn,j, tn−r1−1,i, y(tn−r1−1,i))

, hcj

[
w0k(tn,j , tn−r1, y(tn−r1)), w1k(tn,j, tn−r1 +

cj
4
h,

4∑

i=0

li(
cj
4
)y(tn−r1,i)),

..., w4k(tn,j , tn−r1,j, y(tn−r1,j))
]
,

and by setting

w0k(tn,j, tn−r1, y(tn−r1)) + w1k(tn,j, tn−r1 +
cj
4
h,

4∑

i=0

li(
cj
4
)y(tn−r1,i)) + ...

+ w4k(tn,j, tn−r1,j, y(tn−r1,j)) :=
4∑

i=0

wik(tn,j, tn−r1 + cicjh, P (tn−r1 + cicjh)),
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we will have

|en,j | ≤ |

∫ t1

0

k(tn,j , s, y(s))ds− h
4∑

i=0

wik(tn,j , t0,i, y(t0,i)|+ ...

+ |

∫ tn−r1

tn−r1−1

k(tn,j , s, y(s))ds− h
4∑

i=0

wik(tn,j , tn−r1−1,i, y(tn−r1−1,i)|

+ h|

∫ cj

0

k(tn,j, tn−r1 + νh, y(tn−r1 + νh))dν

±

∫ cj

0

k(tn,j , tn−r1 + νh, P (tn−r1 + νh))dν

− hcj

4∑

i=0

wik(tn,j, tn−r1 + cicjh, P (tn−r1 + cicjh)|

+ |h

4∑

i=0

wik(tn,j , t0,i, y0,i)− h

4∑

i=0

wik(tn,j , t0,i, y(t0,i)|+ ...

+ |h

4∑

i=0

wik(tn,j , tn−r1−1,ci, yn−r1−1,ci)− h

4∑

i=0

wik(tn,j , tn−r1−1,i, y(tn−r1−1,i)|

+ hcj [w0|k(tn,j , tn−r1 , y(tn − r1))− k(tn,j , tn−r1,0, yn−r1,0)|

+ w1|k(tn,j , tn−r1 +
cj
4
h, y(tn−r1 +

cj
4
h))− k(tn,j , tn−r1 +

cj
4
h, P (t

n−r1,
cj

4
h
)|+

...+ w4|k(tn,j , tn−r1,j , y(tn−r1 , j))− k(tn,j, tn−r1,j , yn−r1,cj )|
]
.

By using the Lipschitz condition for k with the Lipschitz constant L, we obtain

|en,j | ≤ |R0|+ ...+ |Rn−r1−1|+ h

∣∣∣∣
∫ cj

0

k(tn,j , tn−r1 + νh, y(tn−r1 + νh))dν

−

∫ cj

0

k(tn,j , tn−r1 + νh, P (tn−r1 + νh))dν

∣∣∣∣

+ h

∣∣∣∣
∫ cj

0

k(tn,j , tn−r1 + νh, P (tn−r1 + νh))dν

−cj

4∑

i=0

wik(tn,j, tn−r1 + cicjh, P (tn−r1 + cicjh))

∣∣∣∣∣

+ hL

4∑

i=0

wi|e0,i|+ ...+ hL

4∑

i=0

wi|en−r1−1,i|

+ hLcj

[
w0|en−r1,0|+ w1

4∑

i=0

|li(
cj
4
)||en−r1,i|

+w3

4∑

i=0

|li(
3cj
4

)||en−r1,i|+ w2

4∑

i=0

|li(
cj
2
)||en−r1,i|+ w4|en−r1,j |

]
,
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where |Ri|, i = 0, ..., n− r1 − 1 are the errors of numerical integrations, also,

∣∣∣∣∣

∫ cj

0
k(tn,j , tn−r1 + νh, P (tn−r1 + νh))dν − cj

4∑

i=0

wik(tn,j, tn−r1 + cicjh, P (tn−r1 + cicjh))

∣∣∣∣∣ ,

is error of the numerical integration that we show by |Rn−r1|. Again, by adding

and diminishing the term
∫ cj
0

k(tn,j , tn−r1 + νh,
∑4

i=0 li(ν)y(tn−r1,i))dν and using the

Lipschitz condition we have

|en,j| ≤ |R0|+ ... + |Rn−r1−1|+ h|Rn−r1|

+ hL

∫ cj

0

∣∣∣∣∣y(tn−r1 + νh)−

4∑

i=0

li(ν)y(tn−r1,i)

∣∣∣∣∣ dν

+ hL

∫ cj

0

∣∣∣∣∣

4∑

i=0

li(ν) (y(tn−r1,i)− yn−r1,ci)

∣∣∣∣∣ dν + hL

n−r1−1∑

m=0

4∑

i=0

wi|em,i|

+ hLcj

[
w0|en−r1,0|+ w1max

i
{li(

cj
4
)}

4∑

i=0

|en−r1,i|

+ w3max
i

{li(
3cj
4
)}

4∑

i=0

|en−r1,i| +w2max
i

{li(
cj
2
)}

4∑

i=0

|en−r1,i|+ w4|en−r1,j|

]
,

by define c′1 := Lcjw1max
i

{li(
cj
4
)}, c′2 := Lcjw3max

i
{li(

3cj
4
)} and c′3 := Lcjw2max

i
{li(

cj
2
)}

we obtain

|en,j| ≤ |R0|+ ... + |Rn−r1−1|+ h|Rn−r1|+ hL

∫ cj

0

In−r1dν + hL

∫ cj

0

∣∣∣∣∣

4∑

i=0

li(ν)en−r1,i

∣∣∣∣∣ dν

+ hLw′

n−r1−1∑

m=0

4∑

i=0

|em,i|+ hLcjw0|en−r1,0|+ hc′1

4∑

i=0

|en−r1,i|

+ hc′2

4∑

i=0

|en−r1,i|+ hc′3

4∑

i=0

|en−r1,i|+ hLcjw4|en−r1,j|,
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where In−r1 is the interpolation error at tn−r1 + νh and c′ is constant, then

|en,j| ≤ |R0|+ ...+ |Rn−r1−1|+ h|Rn−r1 |+ hLcjIn−r1 + hc

4∑

i=0

|en−r1,i|

+ hLw′

n−r1−1∑

m=0

4∑

i=0

|em,i|.

We can obtain the same inequalities for j = 2 and j = 4. Without diminishing

universality, we assume that |ẽn,1| = max
j=1,2,3,4

|en,j|, therefore

|ẽn,1| ≤ |R0|+ ...+ |Rn−r1−1|+ h|Rn−r1 |

+ hLcjIn−r1 + 4hc |ẽn−r1,1|+ 4hLw′

n−r1−1∑

m=0

|ẽm,1|

≤ |R0|+ ...+ |Rn−r1−1|+ h|Rn−r1 |+ hLcjIn−r1 + hc′′
n−r1∑

m=0

|ẽm,1|,

where Ri, i = 0, ..., n− r1 are the error of the numerical integrations and In−r1 is the

interpolation error. So from the smoothness hypotheses on φ, g and k and Remark

2, there exists C1 > 0 and C2 > 0 such that |Ri| ≤ C1h
6 and |In−r1| ≤ C2h

5 [18],

therefore

|ẽn,1| ≤ (n− r1 + h)C1h
6 + C2Lcjh

6 + hc′′
n−1∑

m=0

|ẽm,1|

≤ TC1h
5 + C2Lcjh

6 + hc′′
n−1∑

m=0

|ẽm,1| ≤ C̃h5 + hc′′
n−1∑

m=0

|ẽm,1|,

by using the discrete Gronwall inequality ([17]. p.41) we get the error bound

|ẽn,1| ≤ C̃h5ec
′′T .

For tn ≥ tr2(= τ2), a similar process implies

|ẽn,1| ≤ C̃h5ec
′′T ,

thus |ẽn,1| −→ 0 as h −→ 0 and |ẽn,1| = O(h5). �
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Now we turn to the case where we approximate integral in (2.3) by the quadrature

rule given by (2.14).

Theorem 3.2. Let assumptions of Theorem 3.1 hold, except for t = tn,j (j = 0, ..., 4

and 0 ≤ n ≤ r2 − 1) the integral

Φ(t) =

∫ 0

t−τ2

k(t, s, φ(s))ds,

is approximated by the quadrature formula given by (2.14). Define the quadrature

error by E0(t) := Φ(t)− Φ̂(t) such that

|E0(t)| ≤ Q0(t)h
q, t = tn,j , 0 ≤ n < r2,

for some q > 0. Then for the approximate solution u we have the error bound

max
0≤n≤N,0≤j≤4

|y(tn,j)− yn,j)| ≤ Chm,

for sufficiently small h and m := min{5, q}.

Proof. Assume that j = 1 or j = 3 (for other values of j do similarly) and

0 ≤ n < r2. Subtracting (2.9) and (2.12) from (2.2), implies

e(tn,j) = (Φ(tn,j)− Φ̂(tn,j)) +

∫ tn,j−τ1

0

k(tn,j, s, y(s))ds

− h

4∑

i=0

wik(tn,j, t0,i, y0,ci)− ...− h

4∑

i=0

wik(tn,j, tn−r1−1,i, yn−r1−1,ci)

− hcj

[
w0k(tn,j , tn−r1, yn−r1,0) + w1k(tn,j, tn−r1 +

cj
4
, P (tn−r1 +

cj
4
h) +

... +w4k(tn,j, tn−r1,j, yn−r1,cj)
]
,

then similar to the proof of Theorem 3.1, we obtain

|ẽn,1| ≤ |Φ− Φ̂|+ C̃h5 + hc′
n−1∑

m=0

|ẽm,1|, 0 ≤ n < r2,
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for some constants C1 and C2. Therefore using the discrete Gronwall inequality

implies

|ẽn,1| ≤ {|Φ− Φ̂|+ C̃h5}ec
′T , 0 ≤ n < r2.

Hence |ẽn,1| −→ 0, as h −→ 0, T = Nh and |ẽn,1| = O(hm) if and only if m :=

min{5, q}.�

4. Numerical stability

4.1. Properties of the test equation. In this section we investigate the analytical

behavior of the solution of test equation

(4.1) y(t) = 1 + λ

∫ t−τ1

t−τ2

y(s)ds, t ∈ [0, T ],

that it is the test equation introduced in [33].

Firstly, we prove the following lemma.

Lemma 4.1. Assume that λ > 0, then if the solution y(t) of (4.1) is a monotone

increasing (decreasing) function in [t − τ2, t] for some t ≥ 0, then it is ultimately

increasing (decreasing) for all t ≥ t.

Proof. Since y(s) is continuous for t − τ2 ≤ s ≤ t − τ1 and τ2 ≤ t ≤ T we obtain

from (4.1)

y′(t) = λ[y(t− τ1)− y(t− τ2)].

For t ∈ [t, t + τ1] we have t − τ2, t− τ1 ∈ [t− τ2, t], so if y is increasing in [t − τ2, t],

then y(t− τ1) ≥ y(t− τ2) and hence y′(t) ≥ 0. Continuing step-by-step through the

adjacent intervals [t+ τ1, t+ 2τ1],... we conclude that y′(t) ≥ 0, ∀t ∈ [t, T ].

The same procedure can be applied if we assume that y′ < 0 in [t− τ2, t]. In this case

y′(t) ≤ 0 for all t ∈ [t, T ] and this yields the result stated in this lemma. �

We recall the following lemma and theorems from [33].
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Lemma 4.2. Let y(t) be the solution of (4.1). If λ ≤ 0 then y′(t) is neither ultimately

positive nor negative.

Theorem 4.1. Let φ(t) ≥ 0 for all t ∈ [−τ2, 0]. Then the solution y(t) of (4.1) is

positive for λ > 0. Furthermore, if φ(t) ≤ 1 and

(4.2) |λ|(τ2 − τ1) < 1,

then y(t) is positive and bounded for all t ≥ 0 and any λ.

Theorem 4.2. Assume that the hypotheses of Theorem 4.1 hold, then the solution

y(t) of (4.1) is convergent and

(4.3) lim
t−→∞

y(t) = y∗ =
1

1− λ(τ2 − τ1)
.

Thus y(t) is positive and bounded for all t ≥ 0 and for any λ.

4.2. Properties of the numerical solution. In this section we investigate numer-

ical stability of the block by block method for solving (4.1).

By applying the block by block method to the test equation (4.1), we obtain

y(tn,j) = 1 + λh

∫ 1

cj

y(tn − τ2 + νh))dν + λ

∫ tn−r2+2

tn−r2+1

y(s)ds

+ ...+ λ

∫ tn−r1

tn−r1−1

y(s)ds+ λh

∫ cj

0

y(tn − τ1 + νh)dν

≈ 1 + λh(1− cj)[w0yn−r2,cj

+
3∑

i=1

wi

4∑

ii=0

lii(i+ (4− i)cj/4)yn−r2,cii + w4yn−r2+1]

+ λh

4∑

i=0

wiyn−r2+1,ci + ...+ λh

4∑

i=0

wiyn−r1−1,ci

+ λhcj [w0yn−r1 +

3∑

i=1

wi

4∑

ii=0

lii(icj/4)yn−r1,cii + w4yn−r1,cj ],

j = 0, ..., 4, r2 ≤ n ≤ N − 1,(4.4)
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where lii(ν) =
4∏

i=0
i6=ii

ν−ci
cii−ci

. Similarly for r2 > n ≥ 0 we obtain

y(tn,j) ≈ 1 + λh(1− cj)
4∑

i=0

wiφ(tn−r2 + h(i+ (4− i)cj)/4)

+ λh

4∑

i=0

wiφ(tn−r2+1,i) + ...+ λh

4∑

i=0

wiφ(t−1,i) + λh

4∑

i=0

wiy0,ci +

...+ λh

4∑

i=0

wiyn−r1−1,ci + λhcj [w0yn−r1(4.5)

+
3∑

i=1

wi

4∑

ii=0

lii(icj/4)yn−r1,cii + w4yn−r1,cj ], j = 0, ..., 4,

with h = τ1
r1

= τ2
r2
, y−r2,cj = φ(t−r2,j) (t−r2,j = (cj − r2)h), . . . , y0,cj = φ(t0,j) and

y0 = 1.

Hence, we look for conditions on the parameters of (4.4), (4.5) that lead to a numerical

solution yn which replicates the global properties obtained in the previous subsection

for the analytical solution y(t).

In the following theorems which are the discrete analogues of Lemmas 4.1 and 4.2,

we show the monotonicity and oscillatory behavior of yn for n > 0.

Theorem 4.3. Assume that λ > 0, then if there exists n̄ ∈ N such that yn,cj is mono-

tone increasing (decreasing) for n = n̄ − r2, ...n̄, j = 0, ..., 4; then yn,cj is increasing

(decreasing) for all n ≥ n̄ and j = 0, ..., 4.

Proof. Applying the block by block method on the test equation, we obtain

yn+1,cj − yn,cj = λh(1− cj)[w0(yn−r2+1,cj − yn−r2,cj) + w4(yn−r2+2 − yn−r2+1)

+
3∑

i=1

wi

4∑

ii=0

lii(i+ (4− i)cj)/4)(yn−r2+1,cii − yn−r2,cii)](4.6)
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+ λh
4∑

i=0

wi(yn−r2+2,ci − yn−r2+1,ci) + ...+ λh
4∑

i=0

wi(yn−r1,ci − yn−r1−1,ci)

+ λhcj [w0(yn−r1+1 − yn−r1) + w4(yn−r1+1,cj − yn−r1,cj)

+
3∑

i=1

wi

4∑

ii=0

lii(icj/4)(yn−r1+1,cii − yn−r1,cii)], r2 ≤ n ≤ N − 1, j = 0, ..., 4.

For n = n̄,...,n̄+ r1, j = 0, ..., 4, the values of yn,cj (in the parentheses involved in the

previous expression) are equal to n̄− r2,...,n̄. If for these values of n, yn+1,cj ≥ yn,cj ,

then all the parentheses involved in the previous expression are positive. Since wi > 0

and λ > 0, then yn+1,cj ≥ yn,cj for n = n̄ + 1....n̄ + r1. Proceeding step-by-step and

applying the same procedure for n = n̄+ r1+1, ..., n̄+2r1, n = n̄+2r1+1, ..., n̄+3r1

and so on, we obtain yn+1,cj ≥ yn,cj for all n ≥ n̄ and j = 0, ..., 4. The same proof

can be carried out if we assume that yn+1,cj ≤ yn,cj for n = n̄− r1,...,n̄, then it comes

out that yn+1,cj ≤ yn,cj for all n ≥ n̄, j = 0, ..., 4. This yields the result stated in the

theorem. �

Theorem 4.4. Assume that λ < 0, then, for n ≥ 0 and j = 0, ..., 4, yn,cj is an

oscillatory sequence in the sense that it is not ultimately increasing nor decreasing.

Proof. Assume that yn,cj is increasing for all n and j = 0, ..., 4, then the right-hand

side of (4.6) is negative, which contrasts our assumption. The proof is similar, when

yn,cj is decreasing. �

A simple procedure based on the method of steps helps us to prove the following

theorem which is the discrete analogue of Theorem 4.1 and gives conditions for the

positiveness and boundedness of yn,cj for n > 0.

Theorem 4.5. Assume that φl,j ≥ 0 for l = −r2, ..., 0, j = 0, ..., 4 and h = τ1
r1

= τ2
r2
,

then the solution yn,cj of (4.4) is positive when λ > 0. Furthermore, if φl,j ≤ 1 for
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l = −r2, ...,−1, j = 0, ..., 4 and if

(4.7) h|λ|(r2 − r1) < 1,

then yn,cj is positive and bounded for all n ≥ 0, j = 0, ..., 4 and for each λ.

Proof. We prove the theorem for the positive and negative values of λ separately.

Let us assume λ > 0. If n = 0, 1, ..., r1 − 1, then n − r2 + 1, ..., n − r1 are equal to

−r2, ...,−1, so yn−r2+1,cj = φn−r2+1,j,..., yn−r1,cj = φn−r1,j. Since φl,j is positive and

bounded by 1, it is easy to show that

0 ≤ yn,cj ≤ 1 + λh(r2 − r1), ∀n = 0, 1, ..., r1 − 1, j = 0, 1, ..., 4.

For n = r1, r1 + 1, ..., 2r1 − 1, we have 0 ≤ n − r1 ≤ r1 − 1, thus 0 ≤ yn−r1,cj ≤

1 + λh(r2 − r1) and so

0 ≤ yn,cj ≤ 1+λh(r2−r1)+λ2h2(r2−r1)
2, n = r1, r1+1, ..., 2r1−1, j = 0, 1, ..., 4.

Continuing this procedure for the next values of n, we obtain

(4.8) 0 ≤ yn,cj ≤

k∑

j=0

λjhj(r2 − r1)
j.

Since the series on the right side of (4.8) converges for λh(r2 − r1) < 1, the theorem

is proved for λ > 0.

If λ < 0, then for n = 0, 1, ..., r1 − 1, it is easy to show that

(4.9) 1 + λh(r2 − r1) < yn,cj < 1.

Thus, yn,cj is bounded and it is positive for h|λ|(r2 − r1) < 1. Repeating the process

of previous case implies that (4.9) satisfies for each value of n and this yields the

result stated in the theorem. �

Since conditions (4.7) and (4.2) coincide, Theorem 4.5 states that the numerical

solution of (4.1), obtained by the block by block method, is positive and bounded as
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the analytical solution. The same correspondence holds on the asymptotic behavior,

as shown in the following theorem.

Theorem 4.6. Assume that (4.7) holds, then yn,cj converges and its limit is

(4.10) lim
n−→∞

yn,cj = y∗ =
1

1− hλ(r2 − r1)
.

Proof. Let us suppose that yn,cj is not regular, hence there exist {k′
n} and {k′′

n}

such that l′ = liminf
n

yn,cj = lim yk′n,cj < lim yk′′n,cj = limsup
n

yn,cj = l′′. Set

zn,j := (1− cj)[w0yn−r2,cj +

3∑

i=1

wi

4∑

ii=0

lii(i(1− cj)h/4)yn−r2,cii + w4yn−r2+1]

+
4∑

i=0

wiyn−r2+1,ci + ...+
4∑

i=0

wiyn−r1−1,ci

+ cj[w0yn−r1 +
3∑

i=1

wi

4∑

ii=0

lii(icjh/4)yn−r1,cii + w4yn−r1,cj ], j = 0, ..., 4,

then yn,cj = 1 + λhzn,j and thus,

lim zk′n,j =
l′ − 1

λh
,

lim zk′′n,j =
l′′ − 1

λh
.

Moreover, after some manipulation on the expression of zn,j , we get

(r2 − r1)l
′ ≤

l′ − 1

λh
≤ (r2 − r1)l

′′,

(r2 − r1)l
′ ≤

l′′ − 1

λh
≤ (r2 − r1)l

′′,

combining the last inequalities gives

(4.11) (1− h|λ|(r2 − r1))(l
′′ − l′) ≤ 0,

since h|λ|(r2−r1) < 1, (4.11) is satisfied only for l′ = l′′ = y∗. Hence, letting n −→ ∞

in equation (4.4) gives y∗ = 1+ hλ(r2− r1)y∗ and this yields the result stated in the

theorem.�
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Now, we investigate the numerical stability of the proposed block by block method

according to the following definition [32].

Definition 4.1. A numerical method is stable with respect to (4.1), when its appli-

cation to (4.1) gives a numerical solution behaving like the continuous one.

Hence, we look for the conditions on the step size h and on the parameters of (4.1)

that lead to a numerical solution yn,cj which replicates the global properties obtained

in pervious subsection for the analytical solution y(t). From the obtained results we

immediately derive the following result.

Corollary 4.1. Theorems and lemma in this section assure that, with the hypotheses

(4.2), the analytical solution of (4.1) and its numerical solution furnished by the block

by block method have the same behavior. In this sense we can claim that if (4.2) is

satisfied, the block by block method is stable with respect to the test equation (4.1).

5. Numerical examples

In this section we report some numerical experiments that show the performances

of the block by block method (with h satisfying (3.1)). All results computed by

programming in Maple 14.

Example 5.1. ([8]) Consider

(5.1) y(t) = 1/4(sin(2(t− τ))− sin(2t)) + cos(t)− 1/2τ +

∫ t

t−τ

y2(s)ds,

with

y(t) = φ(t) = cos(t) (−τ ≤ t ≤ 0),

y(t) = cos(t), (t ≥ 0).

Similar to [8], we choose a fixed delay τ = 1.0 and various step sizes h = 0.1, 0.05

and 0.025 with t ∈ [0, 5]. In Table 1 we have presented a comparison between the
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absolute errors of the Trapezium (TM) and Simpson (SM) methods that reported

in [8] and the block by block method (BBM). In the last row of table, we reported

computing times (programming of the all methods have been done by using Maple

package).

TABLE 1. Absolute errors of (5.1)

h = 0.1 h = 0.05 h = 0.025

t TM SM BBM TM SM BBM TM SM BBM

1.0 5.4e−3 1.5e−5 4.6e−11 1.4e−3 9.0e−7 1.2e−13 3.6e−4 5.9e−8 1.8e−15

2.0 8.1e−5 2.4e−7 2.6e−12 3.3e−5 2.2e−8 3.3e−14 9.7e−6 1.6e−9 4.7e−16

3.0 7.3e−4 2.0e−6 6.2e−12 1.8e−5 1.2e−7 9.6e−14 4.6e−5 7.7e−9 1.5e−16

4.0 1.0e−4 2.8e−7 9.5e−12 2.6e−4 1.7e−8 8.1e−14 6.4e−6 1.1e−9 1.2e−15

5.0 1.3e−3 3.5e−6 1.3e−11 3.3e−3 2.2e−7 2.0e−13 8.3e−5 1.4e−8 3.1e−15

time 0.717s 0.640s 3.406s 1.375s 1.512s 5.023s 3.545s 3.451s 8.469s

Example 5.2. ([20]) Consider

(5.2) y(t) = g(t) +

∫ t−τ1

t−τ2

(σ + µ(t− s))(1 + y(s))2ds, t ∈ [0, T ],

with τ1 = 0.5, τ2 = 1, σ = 1, µ = −1.2 and we choose g(t) such that the exact

solution of the (5.2) to be y(t) = sin(t) and set φ(t) = sin(t).
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The absolute errors in some mesh points for different values of T and h are reported

in Table 2.

TABLE 2. Absolute error of (5.2).

ti N = 100

T = 1

0.1 2.881e−17

0.2 2.929e−17

0.3 2.852e−17

0.4 2.653e−17

0.5 2.340e−17

0.6 2.880e−17

0.7 3.542e−17

0.8 4.304e−17

0.9 5.136e−17

1 5.998e−17

time 10.140s

ti N = 400

T = 2

0.1 4.501e−19

0.2 4.576e−19

0.5 3.655e−19

0.8 6.767e−19

1 9.447e−19

1.2 7.020e−19

1.4 6.701e−19

1.5 8.162e−19

1.8 1.991e−18

2 2.518e−18

time 66.441s

ti N = 1000

T = 10

1 5.999e−17

2 1.594e−16

3 9.389e−16

4 2.250e−15

5 4.618e−16

6 4.268e−17

7 8.336e−17

8 3.687e−16

9 2.217e−16

10 7.069e−15

time 99.123s

Remark 3. We assume that error of the block by block method is E(h) = chq, where

c is constant and q is order of the convergence. Then we obtain

(5.3) q =
ln(E(h)

c
)

ln(h)
.

By computing the order q from the relation (5.3) for the reported errors in Tables

1-2, we conclude that q ≥ 5 and it shows that our method produces the desired order

according to Theorems 3.1 and 3.2.

In the following, we consider some test problems for illustrate theoretical results

of the Corollary 4.1; In these tests we set τ1 = 0.5 and τ2 = 1. In order to compare

numerical results of the introduced method with the results of [33], we choose three

examples from this reference:
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Example 5.3. Consider

y(t) = g(t) +

∫ t−τ1

t−τ2

(σ + µ(t− s))y(s)ds,

and choose g(t) in such way that the exact solution to be y(t) = tsin(t).

Figure 1 shows the behavior of the numerical solution (∗) and exact solution (solid

line) for µ = −1, N = 80, T = 20 and different values of the parameter σ. If

similar to [33] set (by first approximation) λ ≈ σ, then from these figures it is clear

that when condition (4.2) is satisfied, the numerical solution is perfectly matches the

exact solution (I, II), while it may skip away from the exact solution when (4.2) is

not satisfied (III, IV ).

I) II)

0 5 10 15 20
−20

−10

0

10

20

0 5 10 15 20
−20

−10

0

10

20

III) IV)

0 5 10 15 20
−1000

0

1000

2000

3000

0 5 10 15 20
−800

−600

−400

−200

0

200

Figure 1. Solutions of Ex.5.3 I)σ = −1, λ(τ2 − τ1) = −0.5. II)σ =

1, λ(τ2 − τ1) = 0.5. III)σ = −6, λ(τ2 − τ1) = −3. IV)σ = 6, λ(τ2 − τ1) = 3.
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Example 5.4. Consider nonlinear delay equation introduced in Example 5.2, with

µ = −1.

Figure 2 shows the behavior of the numerical solution (∗) and exact solution (solid

line) for different values of the parameter σ and confirms the Corollary 4.1. In this

case we set (from [33]) λ ≈ 2σ.

I) II)

0 20 40 60 80 100
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−1

0

1

2

0 20 40 60 80 100
−2

−1

0

1

2

III) IV)

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

0 10 20 30 40
−2

0

2

4

6

Figure 2. Solutions of Ex.5.4 I)T = 100, N = 200, σ = −1/2, λ(τ2−τ1) =

−0.5. II)T = 100, N = 200, σ = 1/2, λ(τ2 − τ1) = 0.5. III)T = 34, N =

68, σ = −2, λ(τ2 − τ1) = −1. IV )T = 40, N = 80, σ = 3, λ(τ2 − τ1) = 1.5.

Example 5.5. In this example we show that condition (4.2) is a sufficient condition

for the stability of the block by block method with respect to test problem (4.1) and

it is not a necessary condition. To do this, we consider k(t, s, y) = (σ + µ(t −

s))exp(−y(s))y(s) with exact solution y(t) = 1.



A STABLE METHOD FOR SOLVING NONLINEAR VIES WITH... 633

Figure 3 shows the behavior of the numerical solution (∗) and exact solution (solid

line) for µ = −1, T = 100, N = 200 and different values of σ. It is clear that

numerical and analytical solution are coincide even when (4.2) is not satisfied.

I) II)

0 20 40 60 80 100
0

0.5

1

1.5

2

0 20 40 60 80 100
0

0.5

1

1.5

2

III) IV)

0 20 40 60 80 100
0

0.5

1

1.5

2

0 20 40 60 80 100
0

0.5

1

1.5

2

Figure 3. Solutions of Ex.5.5 I)σ = −1, λ(τ2 − τ1) = −0.5. II)σ =

1, λ(τ2 − τ1) = 0.5. III)σ = −6, λ(τ2 − τ1) = −3. IV )σ = 6, λ(τ2 − τ1) = 3.

6. Conclusion

In this paper, we proposed a block by block method for approximate solution of

a class of the delay Volterra integral equations. We also discussed the convergence

analysis with the order of convergence at least 5. Then, in order to complete the

study of the proposed method, we analyzed the stability with respect to a class

of test problems introduced in [33]. We found a sufficient condition for numerical

stability which assure that the numerical solution inherits the asymptotic properties
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of the continuous one. The numerical results confirmed that our method gives fairly

good results in addition to its simplicity and efficiency for large intervals.
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