
Jordan Journal of Mathematics and Statistics (JJMS), 14(4), 2021, pp 671 - 689

DOI: https://doi.org/10.47013/14.4.5

A SYMBOLIC METHOD FOR FINDING APPROXIMATE

SOLUTION OF NEUTRAL FUNCTIONAL-DIFFERENTIAL

EQUATIONS WITH PROPORTIONAL DELAYS

SRINIVASARAO THOTA(1) AND SHIV DATT KUMAR(2)

Abstract. This paper presents a new symbolic method for finding an approxi-

mate solution of neutral functional-differential equations with proportional delays

having variable coefficients in an algebraic setting. In several cases exact solution is

obtained. This method is easy to apply for solving the multi-pantograph equations

with variable coefficients. We introduce iterative operator. In the proposed method,

the given problem is transformed into an operator based notation and again the

solution of operator problem is translated into the solution of the given problem.

The Maple implementation of the proposed algorithm is presented with sample

computations. Various numerical examples are discussed to illustrate the efficiency

of the proposed method, and comparisons are made to confirm the reliability of the

method.

1. Introduction

Theory of differential equations is very important for scientific computing, engineer-

ing and modelling natural phenomena. We normally come across with differential

equations in many theoretical and practical problems which cannot be solved by any

2010 Mathematics Subject Classification. 65L05; 40A25; 41A10.

Key words and phrases. Differential operators, Integral operators, Successive approximations,

Multi-pantograph equations, Neutral functional-differential equation.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: May 23, 2020 Accepted: Dec. 3, 2020 .

671



672 SRINIVASARAO THOTA AND SHIV DATT KUMAR

of the known standard methods. In particular, functional-differential equations play

an important role in the mathematical modelling of real world phenomena and the

multi-pantograph equations arise in many applications such as probability theory on

algebraic structures, electrodynamics, astrophysics, non-linear dynamical systems,

quantum mechanics and cell growth, number theory etc. Properties of the analytic

solution of these equations as well as numerical methods have been studied by sev-

eral authors, for example, [7] deals with an approximate solution of multi-pantograph

equation with variable coefficients in terms of Taylor polynomials, [24] deals with the

variational iteration method to neutral functional-differential equations with propor-

tional delays. However all have considered different methods in classical formulation.

This paper deals with symbolic formulation and Maple implementation. Various

Maple implementations of different algorithms are discussed in [9–21].

In this paper we consider the neutral functional-differential equation with propor-

tional delays of the following form [5]

(y(x) + β(x)y(qnx))
(n) = λy(x) +

n−1
∑

j=0

µj(x)y
(j)(qjx) + f(x), x ≥ 0,

y(i)(0) = ci, i = 0, 1, . . . , n− 1.

(1.1)

where λ, c0, c1, . . . , cn−1 ∈ C; µj(x) and f(x) are analytic functions; 0 < q1 < · · · <

qn−1 < 1, and the superscripts indicate differentiation. In order to apply symbolic

method, we write equation (1.1) as

y(n)(x) = λy(x)− (β(x)y(qnx))
(n) +

n−1
∑

j=0

µj(x)y
(j)(qjx) + f(x), x ≥ 0,

y(i)(0) = ci, i = 0, 1, . . . , n− 1.

(1.2)
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The multi-pantograph equation is a kind of delay differential equation of the form

y′(x) = λy(x) +

n
∑

i=1

µi(x)y(qix) + f(x), x ≥ 0,

y(0) = c0,

(1.3)

The main aim of this paper is to find an approximate solution of the given neu-

tral functional-differential equations with proportional delays as well as the multi-

pantograph equations with variable coefficients and a solution operator, so-called it-

erative operator. The key to find such an operator is the transformation of the given

neutral functional-differential equation into an operator based notations and then we

solve the operator problem using algebraic techniques. The solution of the opera-

tor problem is transformed again into the solution of the given neutral functional-

differential equation. In Section 2, the proposed method is described. The rest of the

paper is organized as follows: In Section 1.1, we recall the preliminary concepts related

to integral and differential equations. Section 2 describes the algebraic and symbolic

formulation of the proposed method, and its Maple implementation is presented in

Section 2.1. Several examples are given in Section 3 to illustrate the efficiency and

implementation of the method, sample computations are also presented using Maple

implementation.

1.1. Preliminaries. For convenience of the reader, we briefly recall the basic con-

cepts and results related to the differential and integral equations required for this

paper (see [2, 4, 8]).

Definition 1.1. [4] A vector-valued function f(x, y) is said to satisfy a Lipschitz

condition in a region R if, for some constant L (called Lipschitz constant), we have

(1.4) ‖f(x, y1)− f(x, y2)‖ ≤ L‖y1 − y2‖,

whenever (x, y1), (x, y2) ∈ R.
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The following lemma illustrates the relation between integral equations and differen-

tial equation, see [8] for further details.

Lemma 1.1. (Replacement Lemma) Suppose f : [a, b] −→ R is continuous. Then

∫

a

x∫

a

x1

f(t) dt dx1 =

∫

a

x

(x− t)f(t) dt, (x ∈ [a, b]).

Since the transformation of given neutral functional-differential equations arises in

the form of initial value problem (IVP). The following theorem gives a solution of a

IVP.

Theorem 1.1. Let f(x, y(x)) be a continuous function on the interval [a, b] with

fundamental system 1, x, x2, . . . , xn−1 for L, a function y(x) is a solution of the IVP

Ly(x) = f(x, y(x)),

y(a) = c0, y
′(a) = c1, y

′′(a) = c2, . . . , y
n−1(a) = cn−1,

(1.5)

if and only if it is a solution of the integral equation

(1.6) y(x) =
n−1
∑

i=0

ci
(x− a)i

i!
+

∫ x

a

∫ x1

a

. . .

∫ xn−1

a

f(t, y(t)) dt dx1 . . . dxn−1.

Proof. Integrating the differential equation (1.5) n times over the interval (a, x) and

substituting the initial conditions in the resultant integral equation, we get (1.6).

Conversely by differentiating equation (1.6) n times, we get Ly(x) = f(x, y(x)) and

setting x = a in (1.6) yields y(i)(a) = ci, for i = 0, . . . , n− 1. �

For a given function y = f(x), if it is defined for all x in |x−a| ≤ m and is continuous,

where m > 0 is a fixed constant, then we can define an operator P by

(1.7) P (y) =

n−1
∑

i=0

ci
(x− a)i

i!
+

∫ x

a

∫ x1

a

. . .

∫ xn−1

a

f(t, y(t)) dt dx1 . . . dxn−1.

A solution of the integral equation (1.6) is a fixed point of the operator P , y =

P (y). By using the operator P , we can generate a sequence of functions {yi} by the
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successive iterations from the given initial conditions

(1.8) y0 ≡ c0, yi = P (yi−1) = Pi(y0), for i = 1, 2, . . . .

This is called a Picard’s iteration. We know that a Picard’s iteration converges to a

solution of the IVP (1.5) (see [2, 4, 8]). This can be stated as follows.

Theorem 1.2. [4] Assume that f(x, y) is continuous and satisfy the Lipschitz con-

dition (1.4) on the interval |x − a| ≤ m for all x, y. Then the IVP (1.5) has the

unique solution on the interval |x− a| ≤ m.

2. Algebraic Representation and Symbolic Formulation

In this section, we generalize the results from the Section 1.1 in symbolic formulation

corresponding to special choice of S = C∞[0, 1] for simplicity. In Section 2.1 we

demonstrate this method in Maple. Recall the equation (1.1) as follows.

L(y(x) + β(x)y(qnx)) = λy(x) +
n−1
∑

j=0

µj(x)y
(j)(qjx) + f(x),

y(0) = c0, Dy(0) = c1, D
2y(0) = c2, . . . , D

(n−1)y(0) = cn−1,

(2.1)

where L : S → S is a linear differential operator and L = Dn = dn

dxn
, y ∈ S, and

c0, . . . , cn−1 are constants of C. Analytically speaking, the differential operator L

acts on the Banach space (C[0, 1], ‖ · ‖∞) with dense domain of definition Cn[0, 1]

but algebraically speaking, the domain of L is the complex vector space C∞[0, 1]

without any prescribed topology. As mentioned in Section 1, we want to find an

operator P which produces a sequence of functions by successive iterations from the

given initial conditions and these functions satisfy the given differential equation and

DiP (0) = ci, for i = 0, 1, . . . , n−1. This can be achieved by finding right inverse of the

differential operator L as described below. Since the operator P involves integration,
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we introduce an operator I, called integral operator, for computing the antiderivative

If(x) =

∫

0

x

f(t) dt,

such that the operator P can be rewritten in terms of I by replacing integral portion.

Since DIf = f , i.e., DI = 1, we call I as the right inverse of D. The powers of integral

operator I define in the obvious way. Of course, every Inf must be continuous. In

particular,

I2f(x) =

∫ x

0

∫ x1

0

f(t) dt dx1.

From Lemma 1.1, we have

(2.2) I2f(x) = x

∫ x

0

f(t) dt−

∫ x

0

tf(t) dt.

Thus, equation (2.2) can be written in terms of I as follows

I2f(x) = xIf(x)− Ixf(x),

and as an operator we have I2 = xI−Ix. moreover we can easily check that D2I2 = 1

and also D2(xI−Ix) = 1. The operator xI−Ix is called normal form of I2. Lemma 1.1

can be restated in operator based notations as follows:

Lemma 2.1. If f(x) is integrable, then I2f(x) = xIf(x)− Ixf(x) for all x ∈ [0, 1].

Proof. Result follows from integration by parts. �

Since DnIn = 1, In is the right inverse of L = Dn and by Lemma 2.1 one can easily

compute the normal form of In by induction on n. Let the normal form of In be

denoted by L† and hence LL† = 1. The normal form of the right inverse of the

differential operator L is also computed using the well-known variation of parameters

formula (see [2]) as follows:



A SYMBOLIC METHOD FOR NFDES 677

Lemma 2.2. For a given differential operator L = Dn with the fundamental system

1, x, x2, . . . , xn−1, the normal form of the right inverse of L is given by

(2.3) L† =
n
∑

i=1

xi−1

1! 2! · · · (n− 1)!
I det(Wi),

where I is the integral operator
∫ x

0
, Wi is the Wronskian matrix associated with

1, x, x2, . . . , xn−1 whose i-th column is the n-th unit vector.

Putting n = 2 in the Lemma 2.2, we get L† = 1
1
I(−x) + x

1
I(1) = −Ix + xI which is

exactly as given in Lemma 2.1.

Now similar to the equation (1.7), the symbolic formulation for the approximate

solution of (2.1) as iterative operator P is given by,

(2.4) Py = −β(x)y(qnx) +

n−1
∑

i=0

ci
xi

i!
+ L†g(x, y),

where L† is the right inverse of the differential operator L as given in the equation (2.3)

and g(x, y) = λy(x)+
∑n−1

j=0 µj(x)y
(j)(qjx)+ f(x). The approximate solution of (2.1)

after k number of iterations is given by

(2.5) yk(x) = −β(x)y(qnx) +
n−1
∑

i=0

ci
xi

i!
+ L†

(

λy(t) +
n−1
∑

j=0

µj(t)y
(j)(qjt) + f(t)

)

.

Since yk(x) is an approximate solution, the error involved due to the approximation

is calculated as follows and it must be approximately zero, for i = 0, 1, . . .,

E(xi) = |y(xi)− yk(xi)| ≅ 0

or

E(xi) = (yk(xi) + β(xi)yk(qnxi))
(n) − λyk(xi)−

∑n−1
j=0 µj(xi)y

(j)
k (qjxi) + f(xi) ≅ 0.
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2.1. Proposed Method in Maple. In this section, we implement the proposed

symbolic method for solving multi-pantograph delay equations with variable coeffi-

cients in Maple. For obtaining iterative operator of a given problem, we need to enter

the order n of the differential operator L and initial condition values c0, . . . , cn−1 as

given in the following Maple procedure for getting iterative operator.

IterativeOperator:=proc (n, c::(seq(anything)))

local bval,nbv,RightInv,P,bpart;

bval:=[c];

nbv:=nops(bval);

if nbv <> n then

print(‘Invalid Equation‘)

else

RightInv:=1/((n-1)!)*I*(x-t)^ (n-1);

bpart:=sum(bval[i]*x^ (i-1)/(i-1)!,i=1..n);

P:=bpart+RightInv;

return P;

end if;

end proc:

For obtaining approximate solution of a given ODEs, we have the following pro-

cedure ApproximateSolution(k,n,f(x, y),c0 , . . . , cn−1), where f(x, y) is right hand

side of differential equation Ly = f and k is the number of iterations required.

ApproximateSolution:=proc(k,n,fun,c::(seq(anything)))

local bval,nbv,bpart,y,i;

bval:=[c];
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nbv:=nops(bval);

if nbv <> n then

print(‘Invalid IVP‘)

else

bpart:=sum(bval[i]*x^ (i-1)/(i-1)!,i=1..n);

f(x,y):=fun;

y[0](x):=bval[1];

for i from 1 to k do

y[i](x):=bpart+1/((n-1)!)*int((x-t)^ (n-1)*f(t,y[i-1]),t=0..x);

end do;

return y[k](x);

end if;

end proc:

In the above procedure we have used the following well-known identity to find the

right inverse and one can obtain this identity from Lemma 2.2.
∫ x

0

∫ x1

0

. . .

∫ xn−1

0

f(t, y(t)) dt dx1 . . . dxn−1

=
1

(n− 1)!

∫ x

0

(x− t)n−1f(t, y) dx.

3. Numerical Examples

Example 3.1. Consider a multi-pantograph equation

y′(x) = λy(x) + µy(
x

2
),

y(0) = 1, 0 ≤ x ≤ 1.

where λ = a
2
and µ = a

2
e

ax

2 . In symbolic notations, we have Ly(x) = f(x, y(x)) where

L = D, f(x, y(x)) = a
2
e

ax

2 y(x
2
)+ a

2
y(x) and c0 = 1. The right inverse of L, as described

in Section 2, is L† = I.
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Now the iterative operator, for k = 1, 2, . . ., is

yk = P (yk) = c0 + L†f(x, yk−1)

= 1 + I (
a

2
e

ax

2 yk−1(
x

2
) +

a

2
yk−1(x))

and y0 = y(0) = 1.

First iteration i.e. k = 1

y1(x) = e
ax

2 + 1
2
ax.

Second iteration i.e. k = 2

y2(x) =
−1
6
+ 2

3
e

3

4
ax + ax

4
e

ax

2 + 1
2
e

ax

2 + 1
8
a2x2.

Similarly one can perform more number of iterations for better approximation. The

analytic solution of given equation is y(x) = eax. Table 1 shows the numerical results

of the analytical and the approximation solution when a = 1. The absolute errors due

to the approximation are presented. Figure 1 shows the graphical comparison between

analytic and approximate solution upto the fifth iteration using maple.

Figure 1. Comparison of y5(x) with analytic solution y(x).

From Table 1, the errors are significantly very small; and from Figure 1, the approx-

imate solution curve is very closer to the analytical solution curve. Therefore, the

proposed symbolic method is efficient.
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Table 1. Comparison between y5(x) and y(x) with absolute errors.

x Analytic value y(x) Approx. value y5(x) Absolute errors

−1.00 0.9048374180 0.9048374179 1× 10−10

−0.70 0.4965853038 0.4965752455 1.00583× 10−5

−0.55 0.5769498104 0.5769473641 2.4463× 10−6

0.00 1.000000000 1.000000000 0

0.01 1.010050167 1.010050167 0

0.25 1.284025417 1.284025391 2.6× 10−8

0.37 1.447734615 1.447734333 2.82× 10−7

0.50 1.648721271 1.648719499 1.772× 10−6

0.78 2.181472265 2.181444819 2.7446× 10−5

1.00 2.718281828 2.718152636 1.29192× 10−4

Example 3.2. [7] Consider the equation

y′(x) = λy(x) + µ1y(
x

2
) + µ2(x)y(

x

4
),

y(0) = 1, 0 ≤ x ≤ 1,

where λ = −1, µ1(x) = −e−
x

2 sin(x
2
) and µ2(x) = −2e−

3x

4 cos(x
2
) sin(x

4
). In symbolic

notations, Ly(x) = f(x, y(x)) where L = D, f(x, y(x)) = λy(x) + µ1y(
x
2
) + µ2(x)y(

x
4
)

and c0 = 1. The right inverse of L is L† = I.

Now the iterative operator, for k = 1, 2, . . ., is

yk = P (yk) = c0 + L†f(x, yk−1)

= 1 + I
(

−yk−1(x)− e−
x

2 sin(
x

2
)yk−1(

x

2
)− 2e−

3x

4 cos(
x

2
) sin(

x

4
)yk−1(

x

4
)
)

and y0 = y(0) = 1.

First iteration i.e. k = 1
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y1(x) = − 4
15

− x+ e−
x

2 cos(x
2
) + e−

x

2 sin(x
2
) + 2

3
e−

3x

4 cos(3x
4
) + 2

3
e−

3x

4 sin(3x
4
)−

2
5
e−

3x

4 cos(x
4
)− 6

5
e−

3x

4 sin(x
4
).

Better approximation can be obtained using more iterations. The analytic solution

of given equation is y(x) = e−x cos(x). Table 2 gives the absolute errors in different

iterations. Figure 2 shows the error function for different iterations.

Table 2. Errors comparison

xi |y(xi)− y1(xi)| |y(xi)− y2(xi)| |y(xi)− y3(xi)|

0.00 0 0 0

0.01 5.01236× 10−5 1.672× 10−7 3× 10−10

0.02 2.009780× 10−4 1.3414× 10−6 6.7× 10−9

0.03 4.532640× 10−4 4.5404× 10−6 3.39× 10−8

0.04 8.076505× 10−4 1.07930× 10−5 1.080× 10−7

0.05 1.2647737× 10−3 2.11401× 10−5 2.642× 10−7

From Table 2 and Figure 2, it is clear that proposed method is more efficient and the

approximate solution is almost equal to analytic solution.

Example 3.3. [5] Consider the following neutral functional-differential equation

y′′(x) = y′(
x

2
)−

x

2
y′′(

x

2
) + 2,

y(0) = 1, y′(0) = 0, 0 ≤ x ≤ 1.

In symbolic notations, Ly(x) = f(x, y(x)) where L = D2, f(x, y(x)) = y′(x
2
)−x

2
y′′(x

2
)+

2 and c0 = 1, c1 = 0. The right inverse of L as described in Section 2 is L† = xI−Ix.
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(a) Error function |y(x)− y1(x)| (b) Error function |y(x)− y2(x)|

(c) Error function |y(x)− y3(x)|

Figure 2. Error functions

Now the iterative operator, for k = 1, 2, . . ., is

yk = P (yk) = c0 + L†f(x, yk−1)

= 1 + (xI− Ix)
(

y′k−1(
x

2
)−

x

2
y′′k−1(

x

2
) + 2

)

and y0 = y(0) = 1, y′(0) = 0.

First iteration i.e. k = 1

y1(x) = 1 + x2.

Second iteration i.e. k = 2

y2(x) = 1 + x2.

Since the last two iterations are same, the exact solution of the given equation is

y(x) = 1 + x2.
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Example 3.4. [6] Consider the following NFDE with proportional delay to compare

with other existing methods.

(3.1) y′(x) = −y(x) +
1

2
y(

x

2
) +

1

2
y′(

x

2
), 0 ≤ t ≤ 1,

with initial conditions y(0) = 1. It has the exact solution y(x) = e−x. Using the

proposed algorithm, we have the iterative operator, for k = 1, 2, . . ., as

yk = P (yk) = c0 + L†f(x, yk−1)

= 1 + I

(

−yk−1(x) +
1

2
yk−1(

x

2
) +

1

2
y′k−1(

x

2
)

)

and y0 = y(0) = 1.

Following the proposed algorithm, compute the approximate solution for k = 7, we

have

y7(x) = 1−
255

256
x+

32385

65536
x2 −

680085

4194304
x3 +

21082635

536870912
x4 −

63247905

8589934592
x5

+
147578445

137438953472
x6 −

63247905

549755813888
x7 +

63247905

8796093022208
x8.

In Table 3, we compare the absolute errors of the proposed method (P-M) for k = 7

with those of the variational iteration method (VIM) [24] with ni = 7, the Runge-

Kutta method (R-KM) of [1,24] and the one-leg-θ method (OLM) [22,23] with θ = 0.8,

where h = 0.01 and homotopy perturbation method (HPM) [3] with n = 7.

From Table 3, one can observe that the absolute errors obtained by proposed method

are smaller than the other existing methods.

Example 3.5. Consider an IVP of order four in Maple implementation as follows:

y(4)(x) = x+ y,

y(0) = 1, y′(0) = 2, y′′(0) = −1, y′′′(0) = 1.

We have Ly = f(x, y) where L = D4, f(x, y) = x+ y, c0 = 1, c1 = 2, c2 = −1, c3 = 1.

The right inverse of L is:
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Table 3. Absolute errors comparison for Example 3.4

x P-M VIM R-KM OLM HPM

0.1 3.36× 10−4 7.43× 10−4 4.55× 10−4 2.57× 10−3 6.73× 10−4

0.2 5.80× 10−4 1.42× 10−3 8.24× 10−4 8.86× 10−3 1.16× 10−3

0.3 7.51× 10−4 2.02× 10−3 1.12× 10−3 1.72× 10−2 1.50× 10−3

0.4 8.64× 10−4 2.58× 10−3 1.33× 10−3 2.66× 10−2 1.73× 10−3

0.5 9.33× 10−4 3.07× 10−3 1.52× 10−3 3.63× 10−2 1.86× 10−3

0.6 9.69× 10−4 3.52× 10−3 1.66× 10−3 4.58× 10−2 1.94× 10−3

0.7 9.78× 10−4 3.93× 10−3 1.75× 10−3 5.47× 10−2 1.95× 10−3

0.8 9.62× 10−4 4.30× 10−3 1.81× 10−3 6.29× 10−2 1.93× 10−3

0.9 9.44× 10−4 4.64× 10−3 1.84× 10−3 7.02× 10−2 1.89× 10−3

1.0 9.10× 10−4 4.94× 10−3 1.85× 10−3 7.66× 10−2 1.82× 10−3

L† = 1
6
x3 I + 1

2
x I x2 − 1

2
x2 I x− 1

6
I x3.

Now the iterative operator, for k = 1, 2, . . ., is

IterativeOperator(4,1,2,-1,1);

1 + 2x−
1

2
x2 +

1

6
x3 +

1

6
I x3 −

1

2
I x2t+

1

2
I xt2 −

1

6
I t3

f(x,y):= x + y;

(x, y) → x+ y

PicardsApproxSol(1,4,f(x,y),1,2,-1,1);

1 + 2x−
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5
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PicardsApproxSol(2,4,f(x,y),1,2,-1,1);

1 + 2x−
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

40
x5 −

1

720
x6 +

1

5040
x7 +

1

40320
x8 +

1

362880
x9

Similarly one can find the required number of iterations by increasing the value of

k for better approximate solution. The exact solution of the given IVP is y(x) =

−x + cos(x) + ex + sin(x) − e−x. In Figure 3, two graphs show the comparison of

the 5th and 20th iteration respectively with the exact solution. In the figures, red

and black lines indicate the approximate and exact solutions respectively. One can

Figure 3. Comparison of approximate solution functions with ana-

lytic solution

easily observe from Figure 3 that the two lines are almost coincide each other in 20th

iterations, i.e., the approximate solution using proposed method is very close to the

analytic solution.

4. Conclusion

In this paper, we presented a symbolic method for finding an approximate solution of

the neutral functional-differential equations with proportional delays having variable

coefficients on the level of operators. In many cases we get exact solution in few steps

as shown shown in example 3.3 and example 3.4. This method is also applicable

to solve the multi-pantograph equations with variable coefficients. Efficiency of the

proposed method is shown by considering several numerical examples.
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