CONVERTING THE PROPERTIES IN $\mathcal{B}(\mathcal{H})$ BY OPERATORS ON $\mathcal{B}(\mathcal{H})$

E. ANSARI-PIRI $^{(1)}$, R. G. SANATI $^{(2)}$ AND S. PARSANIA $^{(3)}$

ABSTRACT. The pair of operators on $\mathcal{B}(\mathcal{H})$ which are related to each other with respect to a specific property on $\mathcal{B}(\mathcal{H})$, have been studied before. In this paper, we study a pair of operators φ_1, φ_2 on $\mathcal{B}(\mathcal{H})$ which can convert some suitable properties to each other. For instance, we show that $\varphi_1(T)$ is a compact operator if and only if $\varphi_2(T)$ is compact, whenever $\varphi_1(T)$ is a Fredholm operator if and only if $\varphi_2(T)$ is a semi-Fredholm operator.

1. Introduction

One of the most interesting topics in functional analysis which has attracted a lot of attention in the last years, is the preserving maps in the sense that how to characterize a map φ between two spaces \mathcal{A} and \mathcal{B} in such away that, φ preserves a certain property (such as invertibility of an operator, the spectrum of an operator, and etc.) from \mathcal{A} into \mathcal{B} . The most commonly used types of spaces are Banach algebras of operators $\mathcal{B}(\mathcal{X})$ and $\mathcal{B}(\mathcal{Y})$ where \mathcal{X}, \mathcal{Y} are Banach spaces and $\mathcal{B}(\mathcal{X})$ denotes the algebra of all bounded linear operators on \mathcal{X} . Now there are two attitudes, where one of them is studying the maps preserving a certain property of an operator, and the other is studying about the maps that preserve a class of operators from $\mathcal{B}(\mathcal{X})$ into $\mathcal{B}(\mathcal{Y})$. For

²⁰¹⁰ Mathematics Subject Classification. Primary: 47B05; Secondary: 47L05, 47A53.

Key words and phrases. Preserving map, converting map, Fredholm operator, semi-Fredholm operator.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

instance, Jafarian and Sourour [10] and Sourour [16] investigate how to characterize linear maps preserving the spectrum of operators and the invertibility, respectively. Actually, they prove that a surjective linear spectrum preserving map of $\mathcal{B}(\mathcal{X})$ onto $\mathcal{B}(\mathcal{Y})$, is either an algebra isomorphism or an anti-isomorphism and obtain the same result for a unital bijective linear map which preserves invertibility of an operator. Later, Aupetit and Mouton [3] extended the result of Jafarian and Sourour to a primitive Banach algebra with minimal ideals.

As more aspects of linear maps preserving a certain property of an operator, we refer to see [4, 6, 11, 17].

Moreover, many kinds of linear preserver problems can be raised when we consider \mathcal{X}, \mathcal{Y} as a Hilbert space \mathcal{H} and then attempt to study the linear maps preserving the certain class of operators from $\mathcal{B}(\mathcal{H})$ into $\mathcal{B}(\mathcal{H})$. Among them, Mbekhta [12] characterize a surjective linear map $\varphi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ preserving the set of Fredholm operators in both directions, where by in both directions, we mean that for every $T \in \mathcal{B}(\mathcal{H})$ the operator T has a property p if and only if $\varphi(T)$ has this property. Also Mbekhta and Šemrl [13], show that, for a surjective linear map $\varphi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$, φ preserves the set of all compact operators, when it preserves the set of all semi-Fredholm (generalized invertible) operators in both directions.

In a more general view, Aghasizadeh and Hejazian [1] studied linear preserver problem for two linear maps φ_1 and φ_2 on $\mathcal{B}(\mathcal{H})$ and for a certain property p on $\mathcal{B}(\mathcal{H})$, introduce an equivalence relation " \sim_p " on $\mathcal{B}(\mathcal{H})$ for which, $\varphi_1 \sim_p \varphi_2$ if and only if $\varphi_1(T)$ has property p, whenever $\varphi_2(T)$ has this property.

In addition, there is a good motivation to study the maps preserving orthogonality property on a Hilbert space when we consider linear preserver problems on Hilbert spaces. So, many kinds of mappings preserving the orthogonality property have been studied, among other, by Chmieliński [5], Wójcik [19, 20], Moslehian and Zamani [21, 22], Ansari, Sanati and Kardel [2].

In this paper, we study a pair of mappings on $\mathcal{B}(\mathcal{H})$ which are related to each other by a pair of properties (p,q) on $\mathcal{B}(\mathcal{H})$. Then, we concentrate to study linear convertor problems instead of linear preserver problems.

In order to establish the theory of linear convertor mappings, first we give some definitions and notations.

Let p and q be two properties on $\mathcal{B}(\mathcal{H})$ and φ_1 , φ_2 two maps on $\mathcal{B}(\mathcal{H})$. We say that φ_1 is (p,q)- related to φ_2 if for each $T \in \mathcal{B}(\mathcal{H})$, $\varphi_2(T)$ has the property q, whenever $\varphi_1(T)$ has the property p, and we say φ_1 is (p,q)- equivalent to φ_2 , whenever φ_1 is (p,q)- related to φ_2 and φ_2 is (q,p)- related to φ_1 . In this case, we use the notation $\varphi_1 \sim q \varphi_2$.

Let \mathcal{H} be an infinite dimensional separable Hilbert space. The ideals of compact operators and finite rank operators in $\mathcal{B}(\mathcal{H})$ is denoted by $\mathcal{K}(\mathcal{H})$ and $\mathcal{F}(\mathcal{H})$, respectively. We recall that the Calkin algebra $\mathcal{C}(\mathcal{H})$ is the quotient algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be Fredholm if its image is closed and both its kernel and co-kernel are finite-dimentional and is semi-Fredholm if its image is closed and its kernel or its co-kernel is finite-dimentional. The sets of all Fredholm and semi-Fredholm operators are denoted by $\mathcal{FR}(\mathcal{H})$ and $\mathcal{SF}(\mathcal{H})$, respectively. By Atkinson Theorem, [14, Theorem 1.4.16], if \mathcal{H} is an infinite-dimentional Hilbert space, then $T \in \mathcal{B}(\mathcal{H})$ is Fredholm (resp. semi-Fredholm) if and only if its projection is invertible (resp. right or left invertible) in Calkin algebra $\mathcal{C}(\mathcal{H})$. For more details about Fredholm operators and Calkin algebra, see [14, 18].

An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be generalized invertible if there is an operator $R \in \mathcal{B}(\mathcal{H})$ such that TRT = T. The set of all generalized invertible operators in $\mathcal{B}(\mathcal{H})$ is denoted by $\mathcal{G}(\mathcal{H})$. Note that $T \in \mathcal{G}(\mathcal{H})$ if and only if Im(T), the range of T, is closed [15].

Throughout this paper, we use the following notations for some specific properties: (i) "f" is the property of "being finite rank."

- (ii) "fr" is the property of "being Fredholm."
- (iii) "sf" is the property of "being semi-Fredholm."
- (iv) "k" is the property of "being compact."
- (v) "g" is the property of "being generalized invertible."

Example 1.1. Let \mathcal{H} be an infinite dimensional Hilbert space.

- 1. If φ is a map on $\mathcal{B}(\mathcal{H})$, then φ is (fr,g)-related to itself.
- 2. If $\varphi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is defined by $\varphi(T) = P_T$, where P_T is the orthogonal projection on $Im(T)^{\perp}$, then $\varphi_{sf} \sim_f \mathcal{I}$. Because we have

$$Ker(\varphi(T)) = \overline{Im(T)} = \mathcal{H}/Im(\varphi(T)).$$

Let p, q be two properties on $\mathcal{B}(\mathcal{H})$ and φ and \mathcal{I} be an arbitrary and the identity operator on $\mathcal{B}(\mathcal{H})$, respectively. We say that φ is invariant on a pair (p,q), whenever $\varphi_p \sim_q \mathcal{I}$.

Now let φ , φ_1 and φ_2 be linear operators on $\mathcal{B}(\mathcal{H})$. If φ is invariant on a pair (p,p), then φ preserves the property p in both directions and if $\varphi_1_p \sim_p \varphi_2$, then $\varphi_1 \sim_p \varphi_2$. If ψ is a linear operator on $\mathcal{B}(\mathcal{H})$, which is invariant on a pair of properties (p,q), then $\psi\varphi_p \sim_q \varphi$, for each linear map φ on $\mathcal{B}(\mathcal{H})$. Also, if v is a linear operator on $\mathcal{B}(\mathcal{H})$, which is not invariant on a pair of properties (p,q), then for each surjective linear map φ , $v\varphi_p \nsim_q \varphi$.

Recall that a linear map $\varphi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is said to be surjective up to finite rank operators (resp. compact operators), if for each $T \in \mathcal{B}(\mathcal{H})$ there exists $A \in \mathcal{B}(\mathcal{H})$ and $F \in \mathcal{F}(\mathcal{H})$ (resp. $F \in \mathcal{K}(\mathcal{H})$) such that $T = \varphi(A) + F$. Obviously, if φ is surjective up to finite-rank operators, then it is surjective up to compact operators and each surjective linear map satisfies both of these properties.

Take $C = \{T \in \mathcal{B}(\mathcal{H}) \mid \text{ for every operator } A \in \mathcal{B}(\mathcal{H}) \text{ with } Im(A) \text{ not closed, there exists } \lambda \in \mathbb{C} \text{ such that } A + \lambda T \neq 0 \text{ and } Im(A + \lambda T) \text{ is closed} \}.$ It is proved in [8, Lemma 3.1] that $C = \mathcal{SF}(\mathcal{H})$.

Since $\mathcal{FR}(\mathcal{H}) \cap \mathcal{K}(\mathcal{H}) = \emptyset$, $\mathcal{SF}(\mathcal{H}) \cap \mathcal{K}(\mathcal{H}) = \emptyset$ and $\mathcal{SF}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}) = \emptyset$ and $\mathcal{FR}(\mathcal{H}) \cap \mathcal{F}(\mathcal{H}) = \emptyset$, there are many results. For instance,

$$\varphi_{1} \sim_{sf} \varphi_{2} \Rightarrow \varphi_{1 sf} \nsim_{f} \varphi_{2}, \varphi_{1 sf} \nsim_{k} \varphi_{2}, \varphi_{1 fr} \nsim_{f} \varphi_{2}, \varphi_{1 fr} \nsim_{k} \varphi_{2}.$$

$$\varphi_{g} \sim_{f} \varphi_{2} \Rightarrow \begin{cases} \varphi_{1 g} \nsim_{sf} \varphi_{2}, \varphi_{1 g} \nsim_{fr} \varphi_{2}, \varphi_{1 f} \nsim_{sf} \varphi_{2}, \varphi_{1 f} \nsim_{fr} \varphi_{2}, \varphi_{1 f} \wedge_{fr} \varphi_{2}, \varphi_{1 fr} \wedge_{sf} \varphi_{2}, \varphi_{1 fr} \wedge_{fr} \varphi_{2}, \varphi_{1 fr} \wedge_{fr} \varphi_{2}, \varphi_{1 fr} \wedge_{fr} \varphi_{2}. \end{cases}$$

It is clear that, if $\varphi_1 \sim_{sf} \varphi_2$, then φ_1 is (fr, sf) – related to φ_2 .

Now we give an example to show that the revers does not hold, in general.

Example 1.2. Suppose that $\varphi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is a surjective linear map and $S \in \mathcal{B}(\mathcal{H})$ is a lower semi-Fredholm operator. Since φ is surjective, there exists $T \in \mathcal{B}(\mathcal{H})$ such that $\varphi(T) = S$. Now if $A \in \mathcal{B}(\mathcal{H})$ is an upper semi-Fredholm operator, then φ is (fr, sf)—related to $L_A\varphi$ but $\varphi \nsim_{sf} L_A\varphi$ because S is a semi-Fredholm operator but $L_A(S)$ is not semi-Fredholm. Here $L_A : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ is the left multiplier operator defined by $L_A(S) = AS$.

In the next section, we study a pair of linear operators on $\mathcal{B}(\mathcal{H})$ which are related to each other with respect to a pair of properties (p,q) on $\mathcal{B}(\mathcal{H})$. For instance, we show that for linear mappings φ_1 and φ_2 on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators, if φ_1 $_{fr} \sim_{sf} \varphi_2$, then $\varphi_1 \sim_k \varphi_2$, also if φ_1 is (sf, f)— related to φ_2 , then φ_1 is (k, f)— related to φ_2 . Moreover, for linear mappings φ_1 and φ_2 on $\mathcal{B}(\mathcal{H})$ which are surjective up to finite-rank operators, we proved that, if $\varphi_1 \sim_g \varphi_2$, then φ_1 $_{sf} \sim_f \varphi_2$. We also show that, if φ_1 $_{sf} \sim_f \varphi_2$ on $\mathcal{B}(\mathcal{H}) \setminus \{0\}$ under a certain conditions, there exists a linear bijective continuous map from $\mathcal{B}(\mathcal{H})$ onto Calkin algebra $\mathcal{C}(\mathcal{H})$ which is homomorphism or anti-homomorphism. Finally, we give other versions of proposition 2.5 of [1].

2. Linear maps converting the properties in $\mathcal{B}(\mathcal{H})$

The following two lemmas play an important role in this paper.

Lemma 2.1. ([12, Lemma 2.2], [13, Lemma 2.2]) Let $T \in \mathcal{B}(\mathcal{H})$. Then the following are equivalent.

- (i) T is compact.
- (ii) For every $R \in \mathcal{FR}(\mathcal{H})$, we have $R + T \in \mathcal{FR}(\mathcal{H})$.
- (iii) For every $R \in \mathcal{SF}(\mathcal{H})$, we have $R + T \in \mathcal{SF}(\mathcal{H})$.

To state the next lemma, we recall that a C^* -algebra is of real rank zero, if the set of all real combinations of orthogonal Hermitian idempotents is dense in the set of all its Hermitian elements. In particular, $\mathcal{B}(\mathcal{H})$ is a real rank zero C^* - algebra.

Note that an algebra \mathcal{A} is prime if and only if $a\mathcal{A}b = 0$ implies that a = 0 or b = 0, where $a, b \in \mathcal{A}$. (see page 449 of [9]).

Lemma 2.2. ([7, Theorem 3.1]) Let \mathcal{A} be a unital C^* - algebra of real rank zero and \mathcal{B} a unital semi-simple complex Banach algebra. Let Sp(.) denote the spectral function. Suppose that $\varphi : \mathcal{A} \to \mathcal{B}$ is a surjective linear map such that $Sp(\varphi(a)) \subseteq Sp(a)$ for every $a \in \mathcal{A}$. Then φ is a Jordan homomorphism and if \mathcal{B} is prime, then φ is either a homomorphism or an anti-homomorphism.

We recall that the essential spectrum of an operator $T \in \mathcal{B}(\mathcal{H})$ is the spectrum of $T + \mathcal{K}(\mathcal{H})$ in the Calkin algebra $\mathcal{C}(\mathcal{H})$.

In the theory of linear preserver problems, one of the most important results was obtained by Mbekhta [12], where he characterized linear maps on $\mathcal{B}(\mathcal{H})$ preserving the set of compact operators.

Theorem 2.1 (Mbekhta). ([12, Theorem 3.2]) Let \mathcal{H} be an infinite-dimentional Hilbert space and $\phi : \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be a linear map. Assume that ϕ is surjective

up to compact operators. Then the following are equivalent:

- (i) ϕ preserves the set of Fredholm operators in both directions and $\phi(I) = I K$, where $K \in \mathcal{K}(\mathcal{H})$;
- (ii) ϕ preserves the essential spectrum;
- (iii) $\phi(\mathcal{K}(\mathcal{H})) \subseteq \mathcal{K}(\mathcal{H})$ and the induced map $\varphi : \mathcal{C}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$, $\varphi o \pi = \pi o \phi$ is either an automorphism or an anti-automorphism.

Let φ_1 , φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$. We can write $\varphi_1 \sim_k \mathcal{I}$, whenever φ_1 preserves the set of compact operators in both directions. In this section, we substitute \mathcal{I} , the identity map on $\mathcal{B}(\mathcal{H})$, with φ_2 and we obtain a certain condition under which $\varphi_1 \sim_k \varphi_2$.

It is well known that if $T \in \mathcal{G}(\mathcal{H})$, then for each finite rank operator $F \in \mathcal{F}(\mathcal{H})$, we have $T + F \in \mathcal{G}(\mathcal{H})$.

Theorem 2.2. Let φ_1 and φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$.

Assume that φ_1 and φ_2 are surjective up to compact operators. Then

- (i) If φ_1 fr $\sim_{sf} \varphi_2$, then $\varphi_1 \sim_k \varphi_2$.
- (ii) If φ_1 is (sf, f) related to φ_2 , then φ_1 is (k, f) related to φ_2 .

Assume that φ_1 and φ_2 are surjective up to finite rank operators, then

(iii) If $\varphi_1 \sim_g \varphi_2$, then $\varphi_{1 sf} \nsim_f \varphi_2$.

Proof. (i) Suppose that $\varphi_1(T) \in \mathcal{K}(\mathcal{H})$, but $\varphi_2(T)$ is not compact. Therefore, there exists $S \in \mathcal{SF}(\mathcal{H})$ such that $S + \varphi_2(T)$ is not semi-Fredholm. Since φ_2 is surjective up to compact operators, there exists $A \in \mathcal{B}(\mathcal{H})$ and $K \in \mathcal{K}(\mathcal{H})$ such that $S = \varphi_2(A) + K$. So $\varphi_2(A+T)+K$ is not semi-Fredholm, which implies that $\varphi_2(A+T) \notin \mathcal{SF}(\mathcal{H})$. Therefore by assumption we have $\varphi_1(A+T)$ is not Fredholm operator, which is a contradiction because $\varphi_2(A) \in \mathcal{SF}(\mathcal{H})$ and by the fact $\varphi_1_{fr} \sim_{sf} \varphi_2$, we have $\varphi_1(A) \in FR(\mathcal{H})$. Thus, $\varphi_1(A+T)$ is a Fredholm operator. By similar proof, we

obtain that φ_2 is (k, k) – related to φ_1 .

(ii) Suppose that $\varphi_1(T)$ is compact. Let S be an arbitrary semi-Fredholm operator. Then $S + \varphi_1(T) \in \mathcal{SF}(\mathcal{H})$. Since φ_1 is surjective up to compact operators, there exists $A \in \mathcal{B}(\mathcal{H})$ and $K \in \mathcal{K}(\mathcal{H})$ such that $S = \varphi_1(A) + K$. So $\varphi_1(A)$ is semi-Fredholm and by the fact φ_1 is (sf, f)— related to φ_2 , we have $\varphi_2(A)$ is finite rank. On the other hand, $\varphi_1(A+T) + K \in \mathcal{SF}(\mathcal{H})$, therefore $\varphi_1(A+T) \in \mathcal{SF}(\mathcal{H})$. Thus, $\varphi_2(A+T) \in \mathcal{F}(\mathcal{H})$ and $\varphi_2(T)$ is finite rank.

(iii) suppose that $\varphi_1(T)$ is a semi-Fredholm and $\varphi_2(T)$ is a finite rank operator. Since $\varphi_1(T) \in C$, for every operator $A \in \mathcal{B}(\mathcal{H})$ with Im(A) not closed, there exists $\lambda \in \mathbb{C}$ such that $A + \lambda \varphi_1(T) \neq 0$ and $Im(A + \lambda \varphi_1(T))$ is closed. By the assumption φ_1 is surjective up to $\mathcal{F}(\mathcal{H})$, for $A + \lambda \varphi_1(T) \in \mathcal{B}(\mathcal{H})$, there exists $B \in \mathcal{B}(\mathcal{H})$ and $F \in \mathcal{F}(\mathcal{H})$ such that $A + \lambda \varphi_1(T) = \varphi_1(B) + F$. So $Im(\varphi_1(B - \lambda T))$ is not closed and by the fact $\varphi_1 \sim_g \varphi_2$, we have $\varphi_2(B - \lambda T) \notin \mathcal{G}(\mathcal{H})$. Therefore, $\varphi_2(B) \notin \mathcal{G}(\mathcal{H})$ which implies that $\varphi_1(B) \notin \mathcal{G}(\mathcal{H})$. That is a contradiction because $\varphi_1(B) + F \in \mathcal{G}(\mathcal{H})$, so $Im(\varphi_1(B))$ is closed.

Corollary 2.1. Suppose that ϕ is a linear map on $\mathcal{B}(\mathcal{H})$ which is surjective up to compact operators and \mathcal{I} is the identity map on $\mathcal{B}(\mathcal{H})$ such that $\phi_{fr} \sim_{sf} \mathcal{I}$. Then by Theorem 2.2 (i), ϕ preserves the set of compact operators in both directions. Now by Mbekhta's theorem which is expressed in the Theorem 2.1, the induced map φ : $\mathcal{C}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$, $\varphi \circ \pi = \pi \circ \phi$ is either an automorphism or an anti-automorphism if and only if ϕ preserves the essential spectrum if and only if ϕ preserves the set of Fredholm operators in both directions and $\phi(I) = I - K$, where $K \in \mathcal{K}(\mathcal{H})$.

Corollary 2.2. Suppose that φ_1 and φ_2 are bijective linear maps on $\mathcal{B}(\mathcal{H})$ such that φ_1 $_{fr} \sim_{sf} \varphi_2$. Take $\psi = \varphi_1 \varphi_2^{-1}$ and suppose that the induced map $\hat{\psi} : \mathcal{C}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$ be an automorphism or an anti-automorphism. Then by Theorem 2.2 (i), ψ preserves the set of compact operators in both directions. Therefore, $\psi(\mathcal{K}(\mathcal{H})) = \mathcal{K}(\mathcal{H})$ and

hence ψ preserves the essential spectrum, and preserves the set of Fredholm operators in both directions.

Remark 1. By similar proof of Theorem 2.2 (ii), we obtain the following results: Let φ_1 and φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators. Then

- (i) If φ_1 is (fr, f) related to φ_2 , then φ_1 is (k, f) related to φ_2 .
- (ii) If φ_1 is (sf, k) related to φ_2 , then φ_1 is (k, k) related to φ_2 .
- (iii) If φ_1 is (fr,k)- related to φ_2 , then φ_1 is (k,k)- related to φ_2 .

Theorem 2.3. Let φ_1 , φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators. If $Sp(\varphi_1(T)) \subseteq Sp(T)$ and $\varphi_{1 sf} \sim_f \varphi_2$ on $\mathcal{B}(\mathcal{H}) \setminus \{0\}$, then there exists a bijective continuous map from $\mathcal{B}(\mathcal{H})$ onto Calkin algebra $\mathcal{C}(\mathcal{H})$ which is homomorphism or anti-homomorphism.

Proof. Define $\tau: \mathcal{B}(\mathcal{H}) \to \mathcal{C}(\mathcal{H})$ by $\tau(T) = \varphi_1(T) + \mathcal{K}(\mathcal{H})$. First we show that τ is one-to-one. For this purpose, suppose that there exists $T \in \mathcal{B}(\mathcal{H}) \setminus \{0\}$ such that $\varphi_1(T)$ is a compact operator, then Theorem 2.2 (ii) implies that $\varphi_2(T)$ is finite rank, so by the fact φ_1 $_{sf} \sim_f \varphi_2$, $\varphi_1(T)$ is semi-Fredholm which is a contradiction. Hence, τ is one-to-one. Also if $T + \mathcal{K}(\mathcal{H}) \in \mathcal{C}(\mathcal{H})$, then there exist $A \in \mathcal{B}(\mathcal{H})$ and $K \in \mathcal{K}(\mathcal{H})$ such that $T = \varphi_1(A) + K$. Now $\tau(A) = \varphi_1(A) + \mathcal{K}(\mathcal{H}) = \varphi_1(A) + K + \mathcal{K}(\mathcal{H}) = T + \mathcal{K}(\mathcal{H})$. This shows that τ is onto. On the other hand, $\mathcal{B}(\mathcal{H})$ is a unital C^* -algebra of real rank zero and $\mathcal{C}(\mathcal{H})$ is a unital semi-simple Banach algebra and so Lemma 2.2 implies that τ is a continuous Jordan homomorphism. But $\mathcal{C}(\mathcal{H})$ is a prime algebra (see [7]), hence τ is a homomorphism or anti-homomorphism.

Corollary 2.3. Let I be the identity map on \mathcal{H} . With the stated assumptions in the above theorem we have, $\varphi_1(I) \in \mathcal{FR}(\mathcal{H})$.

Proof. Since τ is Jordan homomorphism, we have:

$$\tau(I) = I + \mathcal{K}(\mathcal{H}) = \varphi_1(I) + \mathcal{K}(\mathcal{H}).$$

This shows that there is an operator $W \in \mathcal{K}(\mathcal{H})$ such that $\varphi_1(I) = I + W$ which implies that $\varphi_1(I)$ is a Fredholm operator.

The following proposition was proved in [1]

Proposition 2.1. Let φ_1 , φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators and $\varphi_2 = L_A R_B \varphi_1 + \lambda$, where $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ is a linear map and $A, B \in \mathcal{B}(\mathcal{H})$. (Here $L_A(resp.\ R_B)$ is the left (resp. right) multiplier operator on $\mathcal{B}(\mathcal{H})$). If $\varphi_1 \sim_k \varphi_2$, then A and B are Fredholm operators and $\varphi_1 \sim_{fr} \varphi_2$ and $\varphi_1 \sim_{sf} \varphi_2$.

In the following theorem, we show that if A is in the center of $\mathcal{B}(\mathcal{H})$, then automatically we have $\varphi_1 \sim_k \varphi_2$. So A and B are Fredholm operators.

Theorem 2.4. Let φ_1 , φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators and $\varphi_2 = L_A R_B \varphi_1 + \lambda$, where $A, B \in \mathcal{B}(\mathcal{H})$ and $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ is a linear mapping. If A is in the center of $\mathcal{B}(\mathcal{H})$, then $\varphi_1 \sim_k \varphi_2$.

Proof. For i=1,2, define $\tau_i:\mathcal{B}(\mathcal{H})\to\mathcal{C}(\mathcal{H})$ by $\tau_i(T)=\varphi_i(T)+\mathcal{K}(\mathcal{H})$. Since $\varphi_1,\ \varphi_2$ are surjective up to compact operators, τ_1 and τ_2 are surjective. Let $a=A+\mathcal{K}(\mathcal{H})$ and $b=B+\mathcal{K}(\mathcal{H})$. Then trivially, $\tau_2(T)=a\tau_1(T)b$. Now let I be the identity operator on \mathcal{H} , since τ_2 is surjective, there exists $T\in\mathcal{B}(\mathcal{H})$ such that $a\tau_1(T)b=I+\mathcal{K}(\mathcal{H})$ or equivalently, $A\varphi_1(T)B+\mathcal{K}(\mathcal{H})=I+\mathcal{K}(\mathcal{H})$. So there is an operator $W\in\mathcal{K}(\mathcal{H})$ such that $A\varphi_1(T)B-I=W$, hence $A\varphi_1(T)B=I+W\in\mathcal{FR}(\mathcal{H})$. This shows that A and B are semi-Fredholm operators.

If $\varphi_1(T)$ is a compact operator, then trivially $\varphi_2(T)$ is compact. Now let π be the

canonical map from $\mathcal{B}(\mathcal{H})$ onto $\mathcal{C}(\mathcal{H})$ and $\varphi_2(T)$ be compact. We have $\varphi_2(T) - \lambda(T) = A\varphi_1(T)B$. Therefore,

$$\pi(A)\pi(\varphi_1(T))\pi(B) = \pi(A\varphi_1(T)B) = \pi(\varphi_2(T) - \lambda(T)) = 0 \quad (1).$$

Let $\pi(\varphi_1(T)) \neq 0$ and M be the left ideal generated by $\pi(\varphi_1(T))$. Since $\mathcal{C}(\mathcal{H})$ is a simple algebra, $\overline{M} = \mathcal{C}(\mathcal{H})$. Note that A is in the center of $\mathcal{B}(\mathcal{H})$, so (1) implies that $\pi(A)\overline{M}\pi(B) = 0$ or equivalently, $\pi(A)\mathcal{C}(\mathcal{H})\pi(B) = 0$. But $\mathcal{C}(\mathcal{H})$ is a prime algebra and so $\pi(A) = 0$ or $\pi(B) = 0$ which is a contradiction, because A and B are semi-Fredholm operators. Thus, $\pi(\varphi_1(T))$ must be zero i.e. $\varphi_1(T)$ is compact. \square

In the next proposition, we prove the Proposition 2.1 with the assumption that φ_2 is (k, f)— related to φ_1 instead of $\varphi_1 \sim_k \varphi_2$.

Proposition 2.2. Let φ_1 , φ_2 be two linear maps on $\mathcal{B}(\mathcal{H})$ which are surjective up to compact operators and $\varphi_2 = L_A R_B \varphi_1 + \lambda$, where $A, B \in \mathcal{B}(\mathcal{H})$ and $\lambda : \mathcal{B}(\mathcal{H}) \to \mathcal{K}(\mathcal{H})$ is a linear mapping. If φ_2 is (k, f)— related to φ_1 , then A and B are Fredholm operators, and hence $\varphi_1 \sim_{fr} \varphi_2$ and $\varphi_1 \sim_{sf} \varphi_2$.

Proof. By similar proof of what we saw in the first paragraph of Theorem 2.4, we obtain that A and B are semi-Fredholm operators. Now we show that A and B are Fredholm. The condition φ_2 is (k, f)— related to φ_1 says that, if $\tau_2(T) = 0$, then $\tau_1(T) = 0$ (i.e. if $a\tau_1(T)b = 0$, then $\tau_1(T) = 0$, for $a = A + \mathcal{K}(\mathcal{H})$ and $b = B + \mathcal{K}(\mathcal{H})$). Since τ_1 is onto, this in turn says that with $x \in \mathcal{C}(\mathcal{H})$, if axb = 0, then x = 0. If A were not Fredholm, then (since a is right invertible), we must have $null(A) = \infty$. Let $P \in \mathcal{B}(\mathcal{H})$ be the orthogonal projection from \mathcal{H} onto Ker(A) and π be the canonical map from $\mathcal{B}(\mathcal{H})$ onto $\mathcal{C}(\mathcal{H})$. Then $apb = \pi(APB) = \pi(0B) = 0$ but $p = \pi(P) \neq 0$, which is a contradiction. Thus A is Fredholm. Finally, since τ_2 is onto, $azb = \pi(I)$, for some $z \in \mathcal{C}(\mathcal{H})$. Thus, there exists $Z \in \mathcal{B}(\mathcal{H})$ such that AZB

is a Fredholm operator. Therefore, $B^*Z^*A^*$ is also a Fredholm operator. The same argument implies that B^* , and hence B are Fredholm operators.

Acknowledgement

The authors sincerely thank the editor and the referees for the valuable comments.

References

- [1] T. Aghasizadeh, S. Hejazian, Some equivalence classes of operators on B(H), Bull. Iran Math. Soc. Vol. 37 No. 1(2011), 225–233
- [2] E. Ansari-piri, R. G. Sanati, M. Kardel, A characterization of orthogonality preserving operators, Bull. Iran Math. Soc. vol. 43 No. 7(2017), 2495–2505
- [3] B. Aupetit, H. du T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109(1994), 91–100
- [4] M.Brešar, P. Šemrl, Invertibility preserving maps preserve idempotents, Michigan J. Math.
 45(1998), 483–488
- [5] J. Chmieliński, Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl. 304(2005), 158–169
- [6] M-D. Choi, D. Hadwin, E. Nordgren, H. Radjavi, P. Rosenthal, On positive linear maps preserving invertibility, J. Funct. Anal. 59(1984), 462–469
- [7] J. Cui, J. Hou, Linear maps between Banach algebras compressing certain spectral functions, Rocky Mountain J. Math. Vol. 34 No. 2(2004), 565-584
- [8] J. Hou, J. Cui, Linear maps preserving essential spectral functions and closeness of operator ranges, Bull. Lond. Math. Soc. **39**(2007), 575–582
- [9] T. W. Hungerford, Algebra, Springer-Verlag, New York, Inc., 1974
- [10] A. A. Jafarian, A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66(1986), 255–261
- [11] I. Kaplansky, Algebraic and analytic aspects of operator algebras, Amer. Math. Soc., Providence, 1970
- [12] M. Mbekhta, Linear maps preserving the set of Fredholm operators, Proc. Amer. Math. Soc. 135(2007), 3613–3619

- [13] M. Mbekhta, P. Šemrl, Linear maps preserving semi-Fredholm operators and generalized invertibility, Linear Multilinear Algebra 57(2009), 55–64
- [14] G. J. Murphy, C*-Algebras and operator theory, Academic Press, Inc., Boston, MA, 1990
- [15] M. Z. Nashed (ed.), Generalized inverses and applications, Univ. Wisconsin Math., Res. Center Publ. No. 32, Academic press, New York, 19761
- [16] A. R. Sourour, Invertibility preserving linear maps on L(X), Trans. Amer. Math. Soc. 348(1996), 13–30
- [17] Q. Wang, J. Hou, Point-spectrum preserving elementary operators on B(H), Proc. Amer. Math. Soc. **126**: **7**(1998), 2083–2088
- [18] N. E. Wegge-Olsen, K-Theory and C*-Algebras, a Friendly Approach, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993
- [19] P. Wójcik, Linear mappings preserving ρ -orthogonality, J. Math. Anal. Appl. **386** No. **1**(2012), 171–176
- [20] P. Wójcik, Linear mappings approximately preserving orthogoality in real normed spaces, Banach J. Math. Anal. 9(2015), 134–141
- [21] A. Zamani, M.S. Moslehian, Approximate Robert orthogonality, Aequationes Math. 89 No. 3(2015), 529–541
- [22] A. Zamani, M.S. Moslehian, M. Frank, Angle preserving mappings, Z. Anal. Anwend. 34(2015), 485–500.
- (1) FACULTY OF MATHEMATICS, UNIVERSITY OF GUILAN, P.O. BOX 1914, RASHT, IRAN. Email address: eansaripiri@gmail.com
- (2) FACULTY OF MATHEMATICS, UNIVERSITY OF GUILAN, P.O. BOX 1914, RASHT, IRAN. Email address: reza_sanaaty@gmail.com
- (3) FACULTY OF MATHEMATICS, UNIVERSITY OF GUILAN, P.O. BOX 1914, RASHT, IRAN. Email address: sparsania512@gmail.com