ON SOME PROPERTIES OF WEAKLY PRIME SEMI-IDEALS OF POSETS

K. PORSELVI $^{(1)}$ AND B. ELAVARASAN $^{(2)}$

ABSTRACT. In this paper, we discuss some properties of direct product of weakly prime semi-ideals of $P_1 \times P_2$ where P_1 and P_2 are partially ordered sets (posets). We also find an equivalence condition for a semi-ideal to be weakly prime. Further we show that the semi-ideals are prime provided the direct product P of semi-ideals is a weakly prime semi-ideal of P, and the intersection of n distinct prime semi-ideals of P is a weakly (n+1)-prime semi-ideal of P.

1. Preliminaries

Throughout this paper, (P, \leq) denotes a poset with zero element 0 and K denotes a proper semi-ideal of P. For $K \subseteq P$, let $(K)^l := \{r \in P : r \leq k \text{ for all } k \in K\}$ denotes the lower cone of K in P. For $K_1, K_2 \subseteq P$, we write $(K_1, K_2)^l$ instead of $(K_1 \cup K_2)^l$. If $K = \{d_1, ..., d_n\}$ is finite, then we use the notation $(d_1, ..., d_n)^l$ instead of $(\{d_1, ..., d_n\})^l$. Following [4], a non-empty subset K of P is a semi-ideal of P if P if P is an anomalous P if P is prime if for each P is P in the P in the

²⁰⁰⁰ Mathematics Subject Classification. 06D6.

Key words and phrases. Posets, direct product, semi-ideals, prime semi-ideals, weakly prime semi-ideals.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. Received: June 15, 2020 Accepted: Dec. 23, 2020.

Many researchers studied various properties of a poset P (see [5], [8], [9]). Following [2], a semi-ideal K of P is weakly n-prime if for $d_1, d_2, ..., d_n \in P$, $(d_1, d_2, ..., d_n)^l \subseteq K$, then either $(d_2, ..., d_n)^l \subseteq K$ or $(d_1, d_3, ..., d_n)^l \subseteq K$, ..., or $(d_1, d_2, ..., d_{n-1})^l \subseteq K$. It is evident that every prime semi-ideal of P is weakly n-prime but a weakly n-prime semi-ideal of P.

For example, consider the set $X = \{u', v', w'\}$. Then $(P(X), \subseteq)$ is a poset. Here $K = \{\phi\}$ is weakly 3-prime semi-ideal of P but not prime as $(u', v')^l \subseteq K$ with $u', v' \notin K$.

Following [3], we defined the direct product of two posets P_1 and P_2 in [6] and studied various properties. The direct product of two posets P_1 and P_2 is defined as $P_1 \times P_2 = \{(u', v') : u' \in P_1, v' \in P_2\}$ such that $(u', v') \leq (u'', v'')$ in $P_1 \times P_2$ if $u' \leq u''$ in P_1 and $v' \leq v''$ in P_2 . It is clear that the direct product of semi-ideals is a semi-ideal, and the direct product of prime semi-ideals need not be prime. Also, the direct product of two weakly 3-prime semi-ideals of posets need not be a weakly 3-prime semi-ideal as shown in Example 1.1.

Example 1.1. Let $P_1 = \{1, 2, 3, 6\}$ and $P_2 = \{1, 3, 5\}$ be posets under the relation division. Then the Hasse diagram of $P_1 \times P_2$ is given below.

Here $I_1 = \{1\}$ and $I_2 = \{1\}$ are weakly 3-prime semi-ideals of P_1 and P_2 respectively, and $I_1 \times I_2 = \{(1,1)\}$ is not weakly 3-prime as $((2,3),(3,3),(6,1))^l \subseteq I_1 \times I_2$, but $((2,3),(3,3))^l \nsubseteq I_1 \times I_2$, $((2,3),(6,1))^l \nsubseteq I_1 \times I_2$ and $((3,3),(6,1))^l \nsubseteq I_1 \times I_2$.

For basic terminology in poset we refer to [4].

2. Direct product of weakly 3-prime semi-ideals of posets

We study some properties of weakly prime semi-ideals of P. We also find an equivalence condition for a semi-ideal to be weakly prime. Further we show that the extension of a weakly 3-prime semi-ideal K by $x \in P \setminus K$ is a weakly 3-prime semi-ideal of P.

Theorem 2.1. [2] If K is a weakly n-prime semi-ideal of P, then it is also weakly (n+1)-prime for all $n \geq 2$.

Theorem 2.2. [2] Let K be a semi-ideal of P and $n \geq 3$. If (K : x) is a weakly (n-1)-prime for every $x \in P \setminus K$, then K is a weakly n-prime semi-ideal of P.

Lemma 2.1. If K is a weakly 3-prime semi-ideal of P, then $(K : d_1)$ is a weakly 3-prime semi-ideal for each $d_1 \in P \setminus K$.

Proof. Assume that $(s',t',w')^l \subseteq (K:d_1)$ for each $d_1 \in P \setminus K$ and $s',t',w' \in P$. Then $(s',t',w',d_1)^l \subseteq K$ and any one of the set $(s',t',w')^l$, $(s',t',d_1)^l$, $(s',w',d_1)^l$, $(t',w',d_1)^l$ is contained in K. If $(s',t',w')^l \subseteq K$, then we get either $(s',t')^l \subseteq K$ or $(t',w')^l \subseteq K$ or $(s',w')^l \subseteq K$ which gives $(K:d_1)$ is weakly 3-prime semi-ideal as $K \subseteq (K:d_1)$. If $(s',t',d_1)^l \subseteq K$, then we get either $(s',t')^l \subseteq K$ or $(t',d_1)^l \subseteq K$ or $(s',d_1)^l \subseteq K$ which gives $(K:d_1)$ is weakly 3-prime semi-ideal as $K \subseteq (K:d_1)$. If $(s',w',d_1)^l \subseteq K$, then either $(s',d_1)^l \subseteq K$ or $(d_1,w')^l \subseteq K$ or $(s',w')^l \subseteq K$ which gives $(K:d_1)$ is weakly 3-prime semi-ideal as $K \subseteq (K:d_1)$. If $(t',w',d_1)^l \subseteq K$, then either $(d_1,t')^l \subseteq K$ or $(t',w')^l \subseteq K$ or $(d_1,w')^l \subseteq K$ which gives $(K:d_1)$ is weakly 3-prime semi-ideal as $K \subseteq (K:d_1)$.

The below example shows that the direct product of prime semi-ideals of a poset P need not be a prime semi-ideal of P.

Example 2.1. Let $P_1 = \{1, 5, 25\}$ and $P_2 = \{1, 3, 27\}$. Then $(P_1, /)$ and $(P_2, /)$ are posets, and the Hasse diagram of $P_1 \times P_2$ is given below.

Here $I' = \{1\}$ and $J' = \{1\}$ are prime semi-ideals of P_1 and P_2 respectively, and $I = I' \times J'$ is a semi-ideal of $P_1 \times P_2$ but not prime as $((1,3),(5,1))^l = \{(1,1)\} \subseteq I' \times J'$ with $(1,3) \nsubseteq I' \times J'$ and $(5,1) \nsubseteq I' \times J'$.

In general, the intersection of prime semi-ideals of P need not be prime but we can have the following.

Lemma 2.2. Suppose that $\{I_i\}_{i=1}^n$ are distinct prime semi-ideals of P. Then $\bigcap_{i=1}^n I_i$ is a weakly (n+1)-prime semi-ideal of P.

Proof. Clearly $\bigcap_{i=1}^{n} I_i$ is a semi-ideal of P. Let $(a_1, a_2, a_3, ..., a_{n+1})^l \subseteq \bigcap_{i=1}^{n} I_i$ for $a_1, ..., a_{n+1} \in P$. Then $a_i \in I_j$ for some $1 \le i \le n+1$, $1 \le j \le n$ which implies any one of $(a_1, a_2, a_3, ..., a_n)^l$, $(a_1, a_2, a_3, ..., a_{n-1}, a_{n+1})^l$, ..., $(a_2, a_3, ..., a_{n+1})^l$ is a subset of $\bigcap_{i=1}^{n} I_i$ and so $\bigcap_{i=1}^{n} I_i$ is a weakly (n+1)-prime semi-ideal of P.

The following example shows that the intersection of n distinct prime semi-ideals need not be weakly n-prime semi-ideal of P.

Example 2.2. Let $X = \{a, b, c\}$ be a set. Then $(P(X), \subseteq)$ is a poset. Here $I_1 = \{\{\phi\}, \{a\}, \{b\}, \{a, b\}\}\}$, $I_2 = \{\{\phi\}, \{b\}, \{c\}, \{b, c\}\}\}$ and $I_3 = \{\{\phi\}, \{a\}, \{c\}, \{a, c\}\}\}$ are prime semi-ideals of P. Also $\bigcap_{i=1}^{3} I_i = \{\phi\}$ is not weakly 3-prime semi-ideal as $(\{a, b\}, \{b, c\}, \{a, c\})^l \subseteq \bigcap_{i=1}^{3} I_i$ with $(\{a, b\}, \{b, c\})^l \nsubseteq \bigcap_{i=1}^{3} I_i$, $(\{a, b\}, \{a, c\})^l \nsubseteq \bigcap_{i=1}^{3} I_i$.

Theorem 2.3. If I and J are weakly 3-prime semi-ideals of P and if $I \cup J$ is a u-semi-ideal of P, then the intersection and union of I and J is a weakly 3-prime semi-ideal of P.

Proof. Let $I \cup J$ be a u-semi-ideal of P. We now claim that $I \cap J$ is a weakly 3-prime semi-ideal of P. Suppose $(a,b,c)^l \subseteq I \cap J$. If $(a,b)^l \subseteq I$ and $(a,b)^l \subseteq J$, then $I \cap J$ is a weakly 3-prime semi-ideal of P. If $(b,c)^l \subseteq I$ and $(b,c)^l \subseteq J$, then $I \cap J$ is a weakly 3-prime semi-ideal of P. If $(a,c)^l \subseteq I$ and $(a,c)^l \subseteq J$, then $I \cap J$ is a weakly 3-prime semi-ideal of P. Suppose $(a,b)^l \subseteq I \setminus J$ and $(b,c)^l \subseteq J \setminus I$. Then there exist $s \in (a,b)^l \setminus J$ and $t \in (b,c)^l \setminus I$. Since $I \cup J$ is a u-semi-ideal of P, we have $(s,t)^u \cap (I \cup J) \neq \phi$. Let $k \in (s,t)^u \cap (I \cup J)$. If $k \in I$, then $t \in I$, a contradiction. If $k \in J$, then $s \in J$, a contradiction. Similarly, we can also prove the other cases. Thus $I \cap J$ is a weakly 3-prime semi-ideal of P.

We now claim that $I \cup J$ is a weakly 3-prime semi-ideal of P. Suppose $(a,b,c)^l \subseteq I \cup J$. If $(a,b,c)^l \subseteq I$, then $I \cup J$ is a weakly 3-prime semi-ideal of P. If $(a,b,c)^l \subseteq J$, then $I \cup J$ is a weakly 3-prime semi-ideal of P. Otherwise $(a,b,c)^l \nsubseteq I$ and $(a,b,c)^l \nsubseteq J$. Then there exist $v,w \in (a,b,c)^l$ such that $v \notin I$ and $w \notin J$. Since $I \cup J$ is a u-semi-ideal of P, we have $(w,v)^u \cap (I \cup J) \neq \phi$. Let $k \in (v,w)^u \cap (I \cup J)$. If $k \in I$, then $v \in I$, a contradiction. If $k \in J$, then $v \in I$, a contradiction. Thus $I \cup J$ is a weakly 3-prime semi-ideal of P.

The following examples shows that the condition $I \cup J$ is a u-semi-ideal is not superficial in Theorem 2.3.

Example 2.3. Let $P = \{1, 2, 3, 5, 6, 10, 15\}$. Then P is a poset under the relation division. Here $I = \{1, 2\}$ and $J = \{1, 3\}$ are weakly 3-prime semi-ideals of P. Clearly $I \cup J$ is not u-semi-ideal of P. Also, $I \cap J$ is not weakly 3-prime semi-ideal as $(6, 10, 15)^l \subseteq I \cap J$ with $(6, 10)^l \nsubseteq I \cap J$, $(10, 15)^l \nsubseteq I \cap J$ and $(6, 15)^l \nsubseteq I \cap J$.

Example 2.4. Let $P = \{1, 2, 3, 4, 5, 9, 10, 36, 60, 90\}$. Then P is a poset under the relation division. Here $I = \{1, 2\}$ and $J = \{1, 3\}$ are weakly 3-prime semi-ideals of P. Clearly $I \cup J$ is not a u-semi-ideal of P. Also, $I \cup J$ is not a weakly 3-prime semi-ideal as $(36, 60, 90)^l \subseteq I \cup J$ with $(36, 60)^l \not\subseteq I \cup J$, $(60, 90)^l \not\subseteq I \cup J$ and $(36, 90)^l \not\subseteq I \cup J$.

The following theorem shows the equivalent condition for a weakly 3-prime semi-ideal.

Theorem 2.4. Let P_1 and P_2 be two posets and K_1 be a proper semi-ideal of P_1 . Then the assertions given below are equivalent:

- (i) $K_1 \times P_2$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$.
- (ii) K_1 is a weakly 3-prime semi-ideal of P_1 .

Proof. (i) ⇒ (ii) Let $(d_1, d_2, d_3)^l \subseteq K_1$ for some $d_1, d_2, d_3 \in P_1$. Then $((d_1, l_1), (d_2, l_2), (d_3, l_3))^l \subseteq K_1 \times P_2$ for any $l_1, l_2, l_3 \in P_2$ which implies either $((d_1, l_1), (d_2, l_2))^l \subseteq K_1 \times P_2$ or $((d_1, l_1), (d_3, l_3))^l \subseteq K_1 \times P_2$ or $((d_2, l_2), (d_3, l_3))^l \subseteq K_1 \times P_2$, and so $(d_1, d_2)^l \subseteq K_1$ or $(d_1, d_3)^l \subseteq K_1$ or $(d_2, d_3)^l \subseteq K_1$. (ii) ⇒ (i) Let $((s_1, u_1), (s_2, u_2), (s_3, u_3))^l \subseteq K_1 \times P_2$ for some $s_1, s_2, s_3 \in P_1$ and $u_1, u_2, u_3 \in P_2$. Then $(s_1, s_2, s_3)^l \subseteq K_1$ which implies either $(s_1, s_2)^l \subseteq K_1$ or $(s_1, s_3)^l \subseteq K_1$ or $(s_2, s_3)^l \subseteq K_1$. So either $((s_1, u_1), (s_2, u_2))^l \subseteq K_1 \times P_2$ or $((s_1, u_1), (s_3, u_3))^l \subseteq K_1 \times P_2$ or $((s_1, u_1), (s_3, u_3))^l \subseteq K_1 \times P_2$ or $((s_2, u_2), (s_3, u_3))^l \subseteq K_1 \times P_2$. □

Corollary 2.1. Let P_1 and P_2 be two posets and K be a proper semi-ideal of P_1 . If $K \times P_2$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$, then $(K : d_1)$ is a weakly 3-prime semi-ideal of P_1 for each $d_1 \in P_1 \setminus K$.

Proof. It is evident from Lemma 2.1 and Theorem 2.4.

Corollary 2.2. Let P_1 and P_2 be two posets and K be a proper semi-ideal of P_1 . If $(K:d_1)$ is a weakly 3-prime semi-ideal of P_1 for each $d_1 \in P_1 \setminus K$, then $K \times P_2$ is a weakly 4-prime semi-ideal of $P_1 \times P_2$.

Proof. It is evident from Theorem 2.2 and Theorem 2.4.

The equivalent condition of weakly 3-prime semi-ideal of direct product of posets is given below.

Theorem 2.5. Let P_1 and P_2 be two posets with greatest elements e'_1 and e'_2 respectively. Let E'_1 be a proper semi-ideal of E'_1 and E'_2 be a semi-ideal of E'_2 . Then the given assertions are equivalent:

- (i) $K \times L$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$.
- (ii) $L = P_2$ and K is a weakly 3-prime semi-ideal of P_1 or L is a prime semi-ideal of P_2 and K is a prime semi-ideal of P_1 .

Proof. (i) \Rightarrow (ii) Assume that $K \times L$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$. If $L = P_2$, then by Theorem 2.4, K is a weakly 3-prime semi-ideal of P_1 . Suppose that $L \neq P_2$. We show that L is a prime semi-ideal of P_2 . Let $a, b \in P_2$ such that $(a, b)^l \subseteq L$ and $i(\neq 0) \in K$. Then $((i, e_2), (e_1, a), (e_1, b))^l \subseteq K \times L$. Since $((e_1, a), (e_1, b))^l \not\subseteq K \times L$, we have either $((i, e_2), (e_1, a))^l \subseteq K \times L$ or $((i, e_2), (e_1, b))^l \subseteq K \times L$ which implies $a \in L$ or $b \in L$ and so L is prime. Let $c, d \in P_1$ such that $(c, d)^l \subseteq K$ and $j(\neq 0) \in L$. Then $((c, e_2), (d, e_2), (e_1, j))^l \subseteq K \times L$. Since $((c, e_2), (d, e_2))^l \not\subseteq K \times L$, we conclude that either $((c, e_2), (e_1, j))^l \subseteq K \times L$ or $((d, e_2), (e_1, j))^l \subseteq K \times L$ which implies $c \in K$ or $c \in K$, and so $c \in K$ is a prime semi-ideal of $c \in K$.

 $(ii) \Rightarrow (i)$ If $L = P_2$ and K is a weakly 3-prime semi-ideal of P_1 , then $K \times L$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$ by Theorem 2.4. Assume that K and L are prime semi-ideals of P_1 and P_2 respectively. Suppose $((s_1, v_1), (s_2, v_2), (s_3, v_3))^l \subseteq K \times L$ for some $s_1, s_2, s_3 \in P_1$ and $v_1, v_2, v_3 \in P_2$. Then $(s_1, s_2, s_3)^l \subseteq K$ and $(v_1, v_2, v_3)^l \subseteq L$ which imply that at least one of s_1, s_2, s_3 is in K and v_1, v_2, v_3 is in L. If $s_1 \in K$ and $v_1 \in L$, then $((s_1, v_1), (s_2, v_2))^l \subseteq K \times L$. Similarly, we can check the other cases. So $K \times L$ is a weakly 3-prime semi-ideal of $P_1 \times P_2$.

The example given below shows that one cannot drop the condition greatest elements in Theorem 2.5.

Example 2.5. Let $P_1 = \{1, 3, 9\}$ and $P_2 = \{1, 2, 3\}$. Then $(P_1, /)$ and $(P_2, /)$ are posets. Here $U = \{1\}$ and $V = \{1\}$ are semi-ideals of P_1 and P_2 respectively and $U \times V = \{(1, 1)\}$ is a weakly 3-prime semi-ideal but V is not a prime semi-ideal of P_2 as well as $V \neq P_2$.

Theorem 2.6. Let P_1, P_2 and P_3 be posets with greatest elements e_1 , e_2 and e_3 respectively. Let K_1, K_2 and K_3 be proper semi-ideals of P_1, P_2 and P_3 respectively. Then the following assertions holds:

- (i) If $I = K_1 \times K_2 \times K_3$ is a weakly 3-prime semi-ideal of $P_1 \times P_2 \times P_3$, then K_1, K_2 and K_3 are prime semi-ideals of P_1, P_2 and P_3 respectively.
- (ii) If $K_1 \times K_2 \times K_3$ is a weakly 3-prime semi-ideals of $P_1 \times P_2 \times P_3$, then $K_1 \times K_2 \times P_3$, $K_1 \times P_2 \times K_3$ and $P_1 \times K_2 \times K_3$ are weakly 3-prime semi-ideals of $P_1 \times P_2 \times P_3$.

Proof. (i) Let $(a',b')^l \subseteq K_1$ for some $a',b' \in P_1$.

Then $((a', e_2, e_3), (e_1, i, i), (b', e_2, e_3))^l \subseteq I$. Since I is a weakly 3-prime semi-ideal and $((a', e_2, e_3), (b', e_2, e_3))^l \nsubseteq I$, we have either $((a', e_2, e_3), (e_1, i, i))^l \subseteq I$ or $((e_1, i, i), (b', e_2, e_3))^l \subseteq I$ which implies $a' \in K_1$ and $b' \in K_1$ and so K_1 is a prime semi-ideal of P_1 .

Suppose that $(s',t')^l \subseteq K_2$ for some $s',t' \in P_2$. Then $((e_1,s',e_3),(e_1,i,i),(e_1,t',e_3))^l \subseteq I$. Since I is a weakly 3-prime semi-ideal and $((e_1,s',e_3),(e_1,t',e_3))^l \nsubseteq I$, we have either $((e_1,s',e_3),(e_1,i,i))^l \subseteq I$ or $((e_1,i,i),(e_1,t',e_3))^l \subseteq I$ which implies $s' \in K_2$ and $t' \in K_2$ and so K_2 is a prime semi-ideal of P_2 . Similarly, we can show that K_3 is prime.

(ii) Now by (i), K_1, K_2 and K_3 are prime semi-ideals of P_1, P_2 and P_3 respectively. Suppose $((u_1, v_1, c_1), (u_2, v_2, c_2), (u_3, v_3, c_3))^l \subseteq K_1 \times K_2 \times P_3$ for some $u_1, u_2, u_3 \in P_1, v_1, v_2, v_3 \in P_2, c_1, c_2, c_3 \in P_3$. Then $(u_1, u_2, u_3)^l \subseteq K_1$ and $(v_1, v_2, v_3)^l \subseteq K_2$ which implies any one of $u_1, u_2, u_3 \in K_1$ and $v_1, v_2, v_3 \in K_2$. Without loss of generality, let us take $u_1 \in K_1$ and $v_2 \in K_2$. Then $((u_1, v_1, c_1), (u_2, v_2, c_2))^l \subseteq K_1 \times K_2 \times P_3$ and hence $K_1 \times K_2 \times P_3$ is a weakly 3-prime semi-ideal of $P_1 \times P_2 \times P_3$. Similarly, we can prove that $K_1 \times P_2 \times K_3$ and $P_1 \times K_2 \times K_3$ are weakly 3-prime semi-ideals of $P_1 \times P_2 \times P_3$.

The following example shows that the converse of Theorem 2.6 fails.

Example 2.6. Let $P_1 = \{1, 2, 6\}$, $P_2 = \{1, 3, 9\}$ and $P_3 = \{1, 5, 10\}$ be posets under the relation division. Then the Hasse diagram of $P_1 \times P_2 \times P_3$ is given below.

Here $K_1 = \{1, 2\}, K_2 = \{1\}$ and $K_3 = \{1, 5\}$ are prime semi-ideals of P_1, P_2 and P_3 respectively. Also $K_1 \times K_2 \times K_3$ is not a weakly 3-prime semi-ideal of $P_1 \times P_2 \times P_3$ as $((2, 9, 10), (6, 1, 10), (6, 9, 5))^l \subseteq K_1 \times K_2 \times K_3$, but $((2, 9, 10), (6, 1, 10))^l \nsubseteq K_1 \times K_2 \times K_3$ and $((2, 9, 10), (6, 9, 5))^l \nsubseteq K_1 \times K_2 \times K_3$.

Acknowledgement

The authors are grateful to the referee for his/her valuable comments and suggestions for improving the paper.

References

- [1] M. Alizadeh, H. R. Maimani, M. R. Pournaki and S. Yassemi, An ideal theoretic approach to complete partite zero-divisor graphs of posets, *J.Algebra Appl.* **12**(2) (2013), 1250148.
- [2] J. Catherine Grace John and B. Elavarasan, Weakly n-prime ideal of posets, Int. J. Pure Appl. Math. 86(6) (2013), 905 – 910.
- [3] S. Ebrahimi Atani and M. Shajari, The diameter of a zero-divisor graph for finite direct product of commutative rings, *Sarajevo Journal of Mathematics* **3**(16) (2007), 149 156.
- [4] B. Elavarasan and K. Porselvi, An ideal based zero-divisor graph of posets, Commun. Korean Math. Soc. 28(1) (2013), 79 – 85.
- [5] K. Porselvi and B. Elavarasan, Poset properties determined by the ideal based zero-divisor graph, *Kyungpook Math. J.* **54** (2014), 197 –201.
- [6] K. Porselvi and B. Elavarasan, Diameters of semi-ideal based zero-divisor graphs for finite direct product of posets, *Ital. J. Pure Appl. Math.* 34 (2015), 113 – 122.
- [7] K. Porselvi and B. Elavarasan, Some properties of prime and z-semi-ideals in posets, Khayyam J. Math. 6 (2020), 46 – 56.
- [8] Radomr Hala, On extensions of ideals in posets, Discrete Mathematics 308 (2008), 4972 4977.
- [9] P. V. Venkatanarasimhan, Semi-ideals in posets, Math. Ann. 185(4) (1970), 338 348.
- [10] Zhanjun Xue and Sanyang Liu, Zero-divisor graphs of partially ordered sets, Appl. Math. Letters 23 (2010), 449 – 452.
- (1) Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore 641 114, Tamilnadu, India.

Email address: porselvi94@yahoo.co.in

(2) Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India.

Email address: belavarasan@gmail.com