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UNIQUENESS AND TWO SHARED SET PROBLEMS OF
L-FUNCTION AND CERTAIN CLASS OF MEROMORPHIC

FUNCTION

ABHIJIT BANERJEE (1) AND ARPITA KUNDU (2)

Abstract. Starting with a question of Yuan-Li-Yi [Value distribution of L-functions

and uniqueness questions of F. Gross, Lithuanian Math. J., 58(2)(2018), 249-262]

we have studied the uniqueness of a meromorphic function f and an L-function L

sharing two finite sets. At the time of execution of our work, we have pointed out

a serious lacuna in the proof of a recent result of a of Sahoo-Halder [ Some results

on L-functions related to sharing two finite sets, Comput. Methods Funct. Theo.,

19(2019), 601-612] which makes most of the part of the Sahoo-Halder’s paper under

question. In context of our choice of sets, we have rectified Sahoo-Halder’s result

in a convenient manner.

1. Introduction

By a meromorphic function we shall always mean a meromorphic function in the

complex plane. We adopt the standard notations of Nevanilinna theory of meromor-

phic functions as explained in [7]. Let C = C∪ {∞}, C∗ = C \ {0} and N = N∪ {0},

where C and N, respectively, denote the set of all complex numbers and natural num-

bers and by Z we denote the set of all integers. For any non-constant meromorphic
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function h(z) we define S(r, h) = o(T (r, h)), (r −→ ∞, r 6∈ E) where E denotes any

set of positive real numbers having finite linear measure.

Let for a non-constant meromorphic function f and S ⊂ C, Ef (S) =
⋃

a∈S{(z, p)

∈ C×N : f(z) = a with multiplicity p}
(

Ef(S) =
⋃

a∈S{(z, 1) ∈ C× N : f(z) = a}
)

.

Then we say f , g share the set S Counting Multiplicities or CM (Ignoring Multiplici-

ties or IM) if Ef(S) = Eg(S)
(

Ef(S) = Eg(S)
)

. When S contains only one element

the definition coincides with the classical definition of value sharing.

This paper deals with the uniqueness problems of set sharing related to L-functions

and an arbitrary meromorphic function in C. In 1989, Selberg [18] found new class

of Dirichlet series, called as Selberg class, which in course of time made a significant

impact on the realm of research in analytic number theory. Throughout this paper an

L-function means actually a Selberg class function with the Riemann zeta function

as the prototype. The Selberg class S of L-functions is the set of all Dirichlet series

L(s) =
∑

∞

n=1 a(n)n
−s of a complex variable s that satisfies the following axioms (see

[18]):

(i) Ramanujan hypothesis: a(n) ≪ nǫ for every ǫ > 0.

(ii) Analytic continuation: There is a nonnegative integer k such that (s − 1)kL(s)

is an entire function of finite order.

(iii) Functional equation: L satisfies a functional equation of type

ΛL(s) = ωΛL(1− s),

where

ΛL(s) = L(s)Qs

K
∏

j=1

Γ(λjs+ νj)

with positive real numbers Q, λj and complex numbers νj , ω with Reνj ≥ 0 and

|ω| = 1.
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(iv) Euler product hypothesis : L can be written over prime as

L(s) =
∏

p

exp

(

∞
∑

k=1

b(pk)/pks

)

with suitable coefficients b(pk) satisfying b(pk) ≪ pkθ for some θ < 1/2 where the

product is taken over all prime numbers p.

The Ramanujan hypothesis implies that the Dirichlet series L converges absolutely

in the half-plane Re(s) > 1 and then is extended meromorphically. The degree dL of

an L-function L is defined to be

dL = 2
K
∑

j=1

λj,

where λj and K, respectively, be the positive real number and the positive integer as

in axiom (iii) above.

For the last few years, the researchers have found an increasing interest on the value

distributions of L-functions. Readers can make a glance over the references ([5], [12],

[14], [19]). Like meromorphic function, for some c ∈ C ∪ {∞}, the value distribution

of an L-function L is actually the scattering of the roots of the equation L(s) = c.

By the sharing of sets of an L-function, we mean the same notion as mentioned in

the first and second paragraph of this paper where all the definitions discussed also

applicable to an L-function.

In 2007, in connection to Nevanlinna 5 point uniqueness theorem for meromorphic

function, Steuding [p. 152, [19] ] first studied the same problem of two L functions

and obtained a remarkable result. In [19] it was shown that under certain hypothesis,

only one shared value is enough to determine an L function. The result was as follows:

Theorem A. [19] If two L-functions L1 and L2 with a(1) = 1 share a complex value

c 6= ∞ CM, then L1 = L2.

Hu-Li [8] found a counterexample to show that Theorem A is not true when c = 1.
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Since L-functions possess meromorphic continuations, researchers presumed that

there might be an intimate relationship between L-function and arbitrary mero-

morphic function under sharing of values. In 2010, Li [12] exhibited the following

example to show that for an L-function and a meromorphic function Theorem 1.1

cease to hold.

Example 1.1. For an entire function g, the functions ζ and ζeg share 0 CM, but

ζ 6= ζeg.

However, corresponding to two distinct complex values, Li [12] was able to obtain the

following uniqueness result.

Theorem B. [12] Let f be a meromorphic function in C having finitely many poles

and let a and b be any two distinct finite complex values. If f and a non constant

L-function L share a CM and b IM, then f = L.

For three IM shared values, Li-Yi [14] obtained the following theorem.

Theorem C. [14] Let f be a transcendental meromorphic function in C having finitely

many poles in C, and let b1, b2, b3 be three distinct finite complex values. If f and a

non-constant L-function L shares b1, b2, b3 IM, then L ≡ f .

Inspired by the question of Gross [6], Yuan-Li-Yi [20] proposed the following question:

Question 1.1. What can be said about the relationship between a meromorphic func-

tion f and an L-function L if f and L share one or two finite sets?

In response to their own question Yuan-Li-Yi [20] proved the following uniqueness

result.

Theorem D. [20] Let S = {a1, a2, . . . , al}, where a1, a2, . . . , al are all distinct roots

of the algebraic equation wn + awm + b = 0. Here l is a positive integer satisfying
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1 ≤ l ≤ n, n and m are relatively prime positive integers with n ≥ 5 and n > m,

and a, b, c are three nonzero finite constants, where c 6= αj for 1 ≤ j ≤ l. Let f be a

meromorphic function having finitely many poles in C, and let L be a non constant

L-function. If f and L share S CM and c IM, then f ≡ L.

In the mean time, considering the sharing of two finite sets Lin-Lin [13] proved the

following theorem.

Theorem E. [13] Let f be a meromorphic function in C with finitely many poles,

S1, S2 ⊂ C be two distinct sets such that S1 ∩ S2 = φ and #(Si) ≤ 2, i = 1, 2,

where #(S) denotes the cardinality of the set S. Suppose for a finite set S = {ai |

i = 1, 2, . . . , n}, C(S) is defined by C(S) = 1
n

∑n

i=1 ai. If f and a non-constant L-

function L share S1 CM and S2 IM, then (i) L = f when C(S1) 6= C(S2) and (ii)

L = f or L+ f = 2C(S1) when C(S1) = C(S2).

In the same paper Lin-Lin [13], asked the following question:

Question 1.2. What can be said about the conclusions of Theorem E if

max {#(S1),#(S2)} ≥ 3?

To provide an answer to the question of Lin-Lin [13], Sahoo-Halder [16] obtained the

following result which is also pertinent to Question 1.1.

Theorem F. [16] Let f be a meromorphic function in C with finitely many poles,

and m(≥ 3) be a positive integer. Suppose that S1 = {a1, a2, . . . , am}, S2 = {b1, b2}

be two subsets of C such that S1 ∩ S2 = φ and (b1 − a1)
2(b1 − a2)

2 . . . (b1 − am)
2 6=

(b2 − a1)
2(b2 − a2)

2 . . . (b2 − am)
2. If f and a non-constant L-function L share S1 IM

and S2 CM, then L = f .

The above theorem is one of the salient result in [16] and the proof of the same

contains the major portion of the paper.
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Remark 1. In the proof of Theorem 1.2 [16] [see p. 608, before (3.3) ], the authors

concluded that if f and L share S1 = {a1, a2, . . . , am} IM and S2 = {b1, b2} CM, then

P (f) = (f − a1)(f − a2) . . . (f − am) and P (L) = (L− a1)(L− a2) . . . (L− am) share

the set S3 = {c1, c2} CM, where c1 = (b1 − a1)(b1 − a2) . . . (b1 − am) and c2 = (b2 −

a1)(b2 − a2) . . . (b2 − am)}, with c21 6= c22. With the help of this argument subsequently

(see (3.4), under Case 2.1, in the proof of Theorem 1.2 [16]) they set up an entire

function V = eu and for some rational function H, they obtained T (r, eu/H) = O(r).

Next using this, they proved the remaining part of the theorem.

In general, from the basic definition of sharing of sets this argument is not true for

any arbitrary f and L. Below we are explaining the facts:

We first note that whenever f and L share the set S2 = {b1, b2} CM, we have any b1

(b2) point of f (L) of order say p becomes a bi (i = 1, 2) point of L (f) of order p.

Then noting the definition of CM sharing of sets we know P (f) and P (L) will share

the set S3 CM only when the left hand side of the following equation

P 2(h)− (c1 + c2)P (h) + c1c2 = 0

can be factorized in the form (h− b1)
m(h− b2)

m, where h = f or L with c21 6= c22. But

this is not always possible for any arbitrary choice of ai’s, (i = 1, 2, . . . , m) and bi’s,

(i = 1, 2). When S1 contains one element say a1 6=
b1+b2

2
then P 2(h)−(c1+c2)P (h)+

c1c2 = (h− a1)
2 − (b1 + b2 − 2a1)(h− a1) + (b1 − a1)(b2 − a1) = (h− b1)(h− b2). If

S1 contains two elements say a1, a2, then it is easy to verify

P 2(h)− (c1 + c2)P (h) + c1c2 = (h− b1)(h− a1 − a2 + b1)(h− b2)(h− a1 − a2 + b2)

and so in this case also the arguments in [16] does not hold. Next when m = 3 that

is S1 contains 3 elements, say a1 = i, a2 = −i, a3 = −1, then considering b1 = 1,

b2 = 0 it is easy to verify that c1 = 4 and c2 = 1. But

P 2(h)− 5P (h) + 4 6= h3(h− 1)3.
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In fact, it is easy to verify that 1 and 0 are the simple roots of the equation (t2 +

1)2(t + 1)2 − 5(t2 + 1)(t + 1) + 4 = 0. So one can observe a big gap in the proof of

Theorem 1.2 [16] and the theorem cease to hold. Actually the condition c21 6= c22 is not

sufficient enough to factorize the expression P 2(t)− (c1+ c2)P (t)+ c1c2 into the form

(t− b1)
m(t− b2)

m except for the case m = 1 with a1 6=
b1+b2

2
.

As the entire analysis of Theorem 1.2 [16] is depending upon the statement that if

f and L share S1 IM and S2 CM, then P (f) and P (L) share S3 = {c1, c2} CM,

Theorem 1.2 [16] is not valid.

2. Motivation and Main results

In this paper though our prime intention is to provide an answer to the question

of Yuan-Li-Yi [20], but at the same time we have somehow been able to present the

corrected form of Theorem F concerning a special set introduced in [17] which in turn

answer Question 1.2.

We require the following definitions for the main results of the paper.

Definition 2.1. [11] Let k be a nonnegative integer or infinity. For a ∈ C we denote

by Ek(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted

m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g

share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly,

if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note

that f , g share a value a IM or CM if and only if f , g, respectively, share (a, 0) or

(a,∞).

Definition 2.2. [10] For S ⊂ C we define Ef (S, k) = ∪a∈SEk(a; f), where k is a non-

negative integer a ∈ S or infinity. Clearly, Ef(S) = Ef (S,∞) and Ef(S) = Ef (S, 0).

If Ef (S, k) = Eg(S, k), we say that f and g share the set S with weight k.
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Definition 2.3. [9] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting

function of simple a-points of f . For a positive integer m we denote by N(r, a; f ≤

m)(N(r, a; f ≥ m)) the counting function of those a-points of f whose multiplicities

are not greater(less) than m where each a-point is counted according to its multiplic-

ity. N(r, a; f |≤ m) and N(r, a; f |≥ m) are defined similarly, where in counting the

a-points of f we ignore the multiplicities.

Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and N(r, a; f |> m) are defined

analogously.

Definition 2.4. [1] Let f and g be two non-constant meromorphic functions such

that f and g share (a, 0). Let z0 be an a-point of f with multiplicity p, an a-point

of g with multiplicity q. We denote by NL(r, a; f) the reduced counting function

of those a-points of f and g where p > q, by N
1)
E (r, a; f) the counting function of

those a-points of f and g where p = q = 1, by N
(2

E (r, a; f) the reduced counting

function of those a-points of f and g where p = q ≥ 2. In the same way we can define

NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). In a similar manner we can define NL(r, a; f)

and NL(r, a; g) for a ∈ C ∪ {∞}.

When f and g share (a,m), m ≥ 1, then N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 2.5. [10, 11] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the

reduced counting function of those a-points of f whose multiplicities differ from the

multiplicities of the corresponding a-points of g.

Clearly, N∗(r, a; f, g) = N∗(r, a; g, f) = NL(r, a; f) +NL(r, a; g)

Definition 2.6. [4] Let P (z) be a polynomial such that P
′

(z) has mutually k distinct

zeros given by d1, d2, . . . , dk with multiplicities, q1, q2, . . . , qk, respectively. Then P (z)

is said to be a critically injective polynomial if P (di) 6= P (dj) for i 6= j, where

i, j ∈ {1, 2, · · ·, k} .
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From the definition it is obvious that P (z) is injective on the set of distinct zeros

of P ′(z) which are known as the critical points of P (z). Thus a critically injective

polynomial has at-most one multiple zero. We first invoke the following polynomial

used in [17].

We denote by P (z) = zn + azn−m + bzn−2m + c and βi = −
(

cni + acn−m
i + bcn−2m

i

)

,

where n,m ∈ N and a, b, c ∈ C∗ be such that a2 6= 4b, gcd(m,n) = 1, n > 2m and ci

be the roots of the equation

(2.1) nz2m + a(n−m)zm + b(n− 2m) = 0,

for i = 1, 2, . . . , 2m. Note that when a2

4b
= n(n−2m)

(n−m)2
, then (2.1) reduces to the equation

n

(

zm +
a(n−m)

2n

)2

−
a2(n−m)2

4n
+ b(n− 2m) = 0;

i.e.,

(2.2) n

(

zm +
a(n−m)

2n

)2

= 0.

Hence in this case (2.1) has m distinct roots ci, i = 1, 2, . . . , m each being repeated

twice.

In view of the above discussion, we have following theorems which are the main results

of the paper.

Theorem 2.1. Let S = {z : zn + azn−m + bzn−2m + c = 0}, S ′ = {0, c1, c2, . . . , cm},

where n ≥ 2m + 3, gcd(m,n) = 1, a2

4b
= n(n−2m)

(n−m)2
and a, b, c ∈ C∗ be such that

c 6= βi,
βiβj

βi+βj
. Let f be a non constant meromorphic function with finitely many poles

and L be a non constant L-function such that Ef(S, 0) = EL(S, 0), Ef (S
′,∞) =

EL(S
′,∞). Then for n ≥ max{2m+ 3, 7} we get f = L.

Corollary 2.1. Putting a = − 2n
n−1

, b = n
n−2

, c = 2c′

(n−1)(n−2)
and m = 1 in Theorem

2.1 we have S = {z : zn− 2n
n−1

zn−1+ n
n−2

zn−2+ 2c′

(n−1)(n−2)
(c′ 6= 0,−1)} and S ′ = {0, 1}.

Clearly, if a nonconstant meromorphic function f with finitely many poles and a non
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constant L-function L, such that Ef(S, 0) = EL(S, 0), Ef(S
′,∞) = EL(S

′,∞) then

for n ≥ 7 we will get f = L. Hence for m = 1 we get a particular case of Theorem

F.

Theorem 2.2. Let S and S ′ be defined as in Theorem 2.1. Let f be a non constant

meromorphic function with finitely many poles and L be a non constant L-function

such that Ef(S, s) = EL(S, s), and Ef ({α}, 0) = EL({α}, 0) for some α ∈ S ′. For

(I) α = 0 and

(i) s ≥ 2, n ≥ 2m+ 2 or

(ii) s = 1, n ≥ 2m+ 3 or

(iii) s = 0, n ≥ 2m+ 5; we have f = L.

Next suppose

(II) α 6= 0. If

(i) s ≥ 1 and n ≥ 2m+ 4 or

(ii) s = 0 and n ≥ 2m+ 7; then we have f = L.

3. lemmas

Next, we present some lemmas that will be needed in the sequel. Henceforth, we

denote by H , Φ the following functions:

H =

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G− 1

)

(3.1)

and

Φ =
F ′

F − 1
−

G′

G− 1
.(3.2)

Let f and g be two non-constant meromorphic functions and for an integer n ≥ 2m+1

(3.3) F =
fn−2m(f 2m + afm + b)

−c
, G =

gn−2m(g2m + agm + b)

−c
.
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Lemma 3.1. [21] Let F and G share 1 IM and H 6≡ 0. Then,

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r, G).

Lemma 3.2. [15] Let P (f) =
∑n

k=0 akf
k/
∑m

j=0 bjf
j, be an irreducible polynomial in

f , with constants coefficient {ak} and {bj} where an 6= 0 and bm 6= 0. Then

T (r, P (f)) = dT (r, f) + S(r, f),

where d = max{m,n}.

Lemma 3.3. [2] If F and G share (1, s), 0 ≤ s < ∞, then

N(r, 1;F )+N(r, 1;G)+

(

s−
1

2

)

N∗(r, 1;F,G)−N
1)
E (r, 1;F ) ≤

1

2

(

N(r, 1;F )+N(r, 1;G)
)

.

Lemma 3.4. Let F , G be given by (3.3) and Ef(S, s) = Eg(S, s) where S is given

as in Theorem 2.1 and H 6≡ 0. Then we have

N(r,∞;H) ≤ N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G)

+N

(

r, 0; fm +
a(n−m)

2n

)

+N

(

r, 0; gm +
a(n−m)

2n

)

+N0(r, 0; f
′

)

+N 0(r, 0; g
′

) + S(r, f) + S(r, g),

where N 0(r, 0; f
′

) is the reduced counting function of those zeros of f
′

which are not

the zeros of f(nf 2m + (n−m)afm + b(n − 2m))(F − 1) and N0(r, 0; g
′

) is similarly

defined.

Proof. Since Ef(S, s) = Eg(S, s), clearly, F and G share (1, s).

Again from (3.3) and from the condition a2

4b
= n(n−2m)

(n−m)2
mentioned in Theorem 2.1 we

get that

F
′

=
fn−2m−1(nf 2m + (n−m)afm + b(n− 2m))f ′

−c
=

nfn−2m−1(fm + a(n−m)
2n

)2f
′

−c
,
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G
′

=
gn−2m−1(ng2m + a(n−m)gm + b(n− 2m))g′

−c
=

ngn−2m−1(gm + a(n−m)
2n

)2g
′

−c
.

then

N(r, 0;nf 2m + a(n−m)fm + b(n− 2m)) = N(r, 0; fm +
a(n−m)

2n
),

Similar result holds for g. Then, clearly, from the definition of H we have

N(r,H) ≤ N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g) +N ∗(r, 1;F,G)

+N

(

r, 0; fm +
a(n−m)

2n

)

+N

(

r, 0; gm +
a(n−m)

2n

)

+N 0(r, 0; f
′

)

+N0(r, 0; g
′

) + S(r, f) + S(r, g).

Hence the proof is complete. �

Lemma 3.5. Let F , G be given by (3.3) and Ef (S, 0) = Eg(S, 0), Ef (S
′,∞) =

Eg(S
′,∞), where S, S ′ be given as in Theorem 2.1. Suppose H 6≡ 0. Then for

a2

4b
= n(n−2m)

(n−m)2
, we have

N(r,∞;H) ≤ χn

(

N(r, 0; f) +N

(

r, 0; fm +
a(n−m)

2n

))

+N(r,∞; f)

+N(r,∞; g) +N ∗(r, 1;F,G) +N0(r, 0; f
′

) +N0(r, 0; g
′

),

where N 0(r, 0; f
′

) is the reduced counting function of those zeros of f
′

which are not

the zeros of f(nf 2m+(n−m)afm+b(n−2m))(F −1), N0(r, 0; g
′

) is similarly defined

and χn = 1 when n 6= 2m+ 3 and χn = 0 when n = 2m+ 3.

Proof. We omit this proof since it can be easily obtained from the proof of Lemma

2.2 [17]. �

Lemma 3.6. Let S, S ′ be defined as in Theorem 2.1 and F , G be given by (3.3).

Suppose for two non-constant meromorphic functions f and g, Ef(S, 0) = Eg(S, 0),
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Ef(S
′,∞) = Eg(S

′,∞), and Φ 6≡ 0. Then for a2

4b
= n(n−2m)

(n−m)2
with n ≥ 2m+3, we have

N (r, 0; f) +N

(

r, 0; fm +
a(n−m)

2n

)

≤
1

2

(

N∗(r, 1;F,G) +N(r,∞; f) +N(r,∞; g)
)

+ S(r, f) + S(r, g).

Proof. We omit this proof since it can be easily obtained from the proof of Lemma

2.5 [17]. �

Lemma 3.7. [3] Let φ(z) = a2(zn−m −A)2 − 4b(zn−2m −A)(zn −A), where A, a, b ∈

C∗, a2

4b
= n(n−2m)

(n−m)2
, gcd(m,n) = 1, n > 2m. If ωl is the m-th root of unity for

l = 0, 1, . . . , m− 1, then

i) φ(z) has no multiple zero, when A 6= ωl.

ii) φ(z) has exactly one multiple zero, when A = ωl and that is of multiplicity 4.

In particular, when A = 1, then the multiple zero is 1.

Lemma 3.8. [3] Let P (z) = zn + azn−m + bzn−2m + c, where a, b ∈ C∗. Then the

followings hold.

i) βi’s are non-zero if a2 6= 4b.

ii) P (z) is critically injective polynomial if a2

4b
= n(n−2m)

(n−m)2
.

Lemma 3.9. Let F , G be given by (3.3), Ef (S, s) = Eg(S, s), where S is defined as

in Theorem 2.1. Then

NL(r, 1;F ) ≤
1

s + 1

(

N(r, 0; f) +N(r,∞; f)
)

+ S(r, f).

Similar inequality holds for G.

Proof. Since Ef (S, s) = Eg(S, s), clearly, F and G share (1, s). From the choice of c,

it is clear that the polynomial P (z) =: zn + azn−m + bzn−2m + c has no multiple zero,
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so we have

NL(r, 1;F ) ≤ N(r, 1;F |≥ s+ 2)

≤ N(r, 0;F ′ |≥ s + 1;F = 1)

≤
1

s+ 1
N(r, 0;F ′ |≥ s+ 1;F = 1)

≤
1

s+ 1

(

N(r, 0; f ′ | f 6= 0)−No(r, 0; f
′)
)

≤
1

s+ 1

(

N(r, 0;
f ′

f
)−No(r, 0; f

′)
)

≤
1

s+ 1

(

N(r,∞; f) +N(r, 0; f)−No(r, 0; f
′)
)

+ S(r, f)

≤
1

s+ 1

(

N(r, 0; f) +N(r,∞; f)−No(r, 0; f
′)
)

+ S(r, f).

Here No(r, 0; f
′) = N(r, 0; f ′ | f 6= 0, α1, α2, . . . , αn), where α1, α2, . . . , αn are zeros of

the polynomial P (z). �

Lemma 3.10. Let F , G be given by (3.3) and Φ 6= 0. Also let Ef(S, s) = Eg(S, s),

where S is defined as in Theorem 2.1, and f and g share (0, 0) then,

N(r, 0; f) = N(r, 0; g) ≤
1

n− 2m− 1
(NL(r, 1;F ) +NL(r, 1;G) +N(r,∞;F )

+N(r,∞;G)) + S(r, F ) + S(r, G).

Proof. Since f , g share (0, 0), it follows that

N(r, 0; f) = N(r, 0; g) ≤
1

n− 2m− 1
N(r, 0; Φ)

≤
1

n− 2m− 1
T (r,Φ) +O(1)

≤
1

n− 2m− 1
N(r,∞; Φ) + S(r, F ) + S(r, G)

≤
1

n− 2m− 1

(

N∗(r, 1;F,G) +N(r,∞;F ) +N(r,∞;G)
)

+S(r, F ) + S(r, G).
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�

Lemma 3.11. Let f be a meromorphic function having finitely many poles in C and

S be defined as in Theorem 2.1 . If f and a non constant L-function L share the set

S IM, then ρ(f) = ρ(L) = 1.

Proof. Adopting the same procedure as done in Theorem 5, {p. 6, [20]} we can easily

obtain ρ(f) = ρ(L) = 1. �

Lemma 3.12. [13] If L is a non-constant L-function, then there is no generalized

Picard exceptional value of L in the complex plane.

4. Proofs of the theorems

Proof of Theorem 2.1. Let us consider

F =
fn−2m(f 2m + afm + b)

−c
, G =

Ln−2m(L2m + aLm + b)

−c
.

Clearly, F and G share (1, 0). Since f has finitely many poles and L has at most

one pole then N(r,∞; f) = N(r,∞;L) = O(log r). Also from Lemma 3.11 we have

ρ(f) = ρ(L) = 1. Therefore it is obvious that, S(r, f) = S(r,L) = O(log r).

Now from Lemmas 3.1, 3.2 3.5, 3.6 and putting s = 0 in Lemma 3.3 and by the

second fundamental theorem we have

(n +m)(T (r, f) + T (r,L))

≤ N(r, 1;F ) +N(r, 1;G) +

m
∑

i=0

N(r, ci; f) +

m
∑

i=0

N(r, ci;L) +N(r, 0; f) +N(r, 0;L)

+N(r,∞; f) +N(r,∞; g)−N0(r, 0; f
′)−N0(r, 0;L

′) + S(r, f) + S(r,L).
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i.e.,

n

2
(T (r, f) + T (r,L))(4.1)

≤ N(r, 0; f) +N(r, 0;L) +

(

3

2
+

χn

2

)

(NL(r, 1;F ) +NL(r, 1;G))

+O(log r)

≤ T (r) +

(

3

2
+

1

2

)

(NL(r, 1;F ) +NL(r, 1;G)) +O(log r),

where T (r) = T (r, f) + T (r,L).

Clearly, when n ≥ 7 in view of Lemma 3.9, from (4.1) we get a contradiction.

Therefore H ≡ 0 and so integrating both sides we get,

1

G− 1
=

A

F − 1
+B,(4.2)

where A 6= 0, B are two constants. From Lemma 3.2 and (4.2) we have,

T (r,L) = T (r, f) +O(1).(4.3)

We omit the rest of the proof of this theorem as it can be carried out in the line of

proof of Theorem 1.1 for H ≡ 0 [17]. Again if Φ ≡ 0 then on integrating we have

F −1 = C(G−1) and dealing exactly in the same way as in Subcase-II-2.1.1 - 2.2

of Theorem 2.2 we will get the result. �

Proof of Theorem 1.2. Let F and G be given as in the proof of Theorem 2.1. Since

Ef(S, s) = Eg(S, s) then, clearly, F andG share (1, s). Also it is given that Ef({α}, 0) =

EL({α}, 0) where α ∈ S ′. Next we consider the following cases.

Case-I. Let us take α = 0. Considering H 6≡ 0 and using the same argument as in

Lemma 3.4 we get

N(r,∞;H) ≤ N∗(r, 0; f,L) +N

(

r, 0; fm +
a(n−m)

2n

)

+N

(

r, 0;Lm +
a(n−m)

2n

)

+N(r,∞; f) +N(r,∞;L) +N∗(r, 1;F,G) +N 0(r, 0; f
′

) +N 0(r, 0;L
′

)

+S(r, f) + S(r,L).
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Now proceeding same as in (4.1) we have

n

2
T (r) ≤ mT (r) + 3N(r, 0; f) +

(

3

2
− s

)

N ∗(r, 1;F,G) +O(log r).(4.4)

Next in view of Definition 1.6, using Lemma 3.10 in (4.4) we get

n

2
T (r) ≤ mT (r) +

(

3

2
− s +

3

n− 2m− 1

)

N ∗(r, 1;F,G) +O(log r).(4.5)

Clearly, when

(i) s ≥ 2, n ≥ 2m+ 2 or when

(ii) s = 1, n ≥ 2m+ 3 or when

(iii) s = 0, n ≥ 2m+ 5,

using Lemma 3.9, from (4.5) we get a contradiction.

Therefore H ≡ 0. Integrating both sides we get (4.2) and so from Lemma 3.2 we

again have (4.3).

Case-I-1. Suppose B 6= 0. Then from (4.2) we get

(4.6) G− 1 ≡
F − 1

BF + A− B
.

Subcase-I-1.1 If A− B 6= 0, then noting that B−A
B

6= 0, 1,∞; from (4.1) we get

N(r,
B − A

B
;F ) = N(r,∞;G).

Therefore in view of Lemma 3.3 and (4.3) the second fundamental theorem yields

nT (r, f) = T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r,
B −A

B
;F ) + S(r, F )

≤ (2m+ 1)T (r, f) +N(r,∞; f) +N(r,∞;L) + S(r, f)

≤ (2m+ 1)T (r, f) +O(log r),
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which is a contradiction for n ≥ 2m+ 2.

Subcase-I-1.2. If A−B = 0, then from (4.6) we have

(4.7) G− 1 =
F − 1

BF
.

(4.7) implies that 0’s of f and (f 2m + afm + b) contributes to the poles of G. Since

a2

4b
= n(n−2m)

(n−m)2
; i.e., a2 6= 4b, it follows that all the zeros of z2m + azm + b are simple.

Since N(r,∞;G) = N(r,∞;L), L has at most one pole at z = 1 and m ≥ 2, we arrive

at a contradiction. When m = 1, let ηi (i = 1, 2) be the zeros of z2 + az + b and so

the {0, η1, η2} points of f will be the poles of L. First using the second fundamental

theorem, it is easy to verify that among these {0, η1, η2} points, f can not have two

exceptional values, so f may have only one exceptional value which implies L has

more than one pole. Hence we arrive at a contradiction again.

Case-I-2. Suppose B = 0. Then from (4.2) we get that

F − 1 = A(G− 1);

i.e.,

(4.8) fn + afn−m + bfn−2m ≡ A

(

Ln + aLn−m + bLn−2m + c
A− 1

A

)

and

(4.9) fn + afn−m + bfn−2m + c(1− A) ≡ A
(

Ln + aLn−m + bLn−2m
)

.

Since f and L share 0 IM and L has no exceptional value, from (4.8), (4.9) we get

A = 1.

Subcase-I-2.1. When A = 1. Then we get F ≡ G; i.e.,

(4.10) Ln−2m(L2m + aLm + b) ≡ fn−2m(f 2m + afm + b).
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From (4.10) we have f , L share 0 and ∞ CM. Then, clearly, h = L

f
has no zero and

no pole. Now putting L = fh in F ≡ G we get

(4.11) f 2m(hn − 1) + afm(hn−m − 1) + b(hn−2m − 1) = 0.

Subcase-I-2.1.1. If h is constant, then as f is non-constant so, hn = hn−m =

hn−2m = 1. Since gcd(m,n) = 1, so h = 1. Therefore f ≡ L.

Subcase-I-2.1.2. If h is non-constant, then from (4.11), in view of Lemma 3.7 we

get

(4.12)
(

fm +
a

2

hn−m − 1

hn − 1

)2

=
φ(h)

4(hn − 1)2
=

a2(h− 1)4(h− ν1)(h− ν2) . . . (h− ν2n−2m−4)

4(hn − 1)2
,

where νi’s are the distinct simple zeros of φ(h) and each νi points of h are of multi-

plicities at least 2. Therefore by the second fundamental theorem we get

(2n− 2m− 4)T (r, h) ≤
2n−2m−4
∑

i=1

N(r, νi; h) +N(r, 0; h) +N(r,∞; h) + S(r, h)

≤ (n−m− 2)T (r, h) + S(r, h),

which is a contradiction for n ≥ 2m+ 2.

Also if Φ ≡ 0 then integrating we will have F − 1 ≡ C(G− 1) and since f,L share 0

IM then we will have F ≡ G and hence f ≡ L.

Case-II. Let us consider α( 6= 0) ∈ S ′.
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Without loss of generality we may assume α = cm. Considering H 6≡ 0 and by the

same argument as in Lemma 3.4 we get

N(r,∞;H)

≤ N(r, 0; f) +N(r, 0;L) +
m−1
∑

i=0

N(r, ci; f) +
m−1
∑

i=0

N(r, ci;L) +N ∗(r, α; f,L)

+N(r,∞; f) +N(r,∞;L) +N ∗(r, 1;F,G) +N 0(r, 0; f
′

) +N 0(r, 0;L
′

)

+O(log r).

Now proceeding same as in (4.1) we have

n

2
T (r)(4.13)

≤ (m− 1)T (r) + 2(N(r, 0; f) +N(r, 0;L)) +

(

3

2
− s

)

(NL(r, 1;F )

+NL(r, 1;G)) +N ∗(r, α; f,L) +O(log r).

Now using Lemma 3.9 in (4.13) we get

n

2
T (r)(4.14)

≤ (m+ 1)T (r) +
3− 2s

2(s+ 1)

(

N(r, 0; f) +N(r, 0;L)
)

+N(r, α; f) +O(log r).

Clearly, when

(i) s ≥ 1, n ≥ 2m+ 4 or when

(iii) s = 0, n ≥ 2m+ 7;

from (4.14) we get a contradiction.

Therefore H ≡ 0 and so integration again yields (4.2).

Case-II-1. Suppose B 6= 0. Then we again get (4.6). So we have

N(r,
B − A

B
;F ) = N(r,∞;G),



UNIQUENESS AND TWO SHARED SET PROBLEMS OF L-FUNCTION.... 751

where A, A− B 6= 0. Now we consider the following sub cases:

Subcase-II-1.1 Suppose that B−A
B

= βm

c
where α = cm. Since a2

4b
= n(n−2m)

(n−m)2
, then

we have

(4.15) F
′

= n

fn−2m−1

(

m
∏

i=1

(f − ci)

)2

−c
f

′

.

Again a2

4b
= n(n−2m)

(n−m)2
6= 1 implies a2 6= 4b. Therefore by Lemma 3.8 we get βm 6= 0

and P (z) is critically injective. Since any critically injective polynomial can have at

most one multiple zero, it follows that

(4.16) fn + afn−m + bfn−2m + βm = (f − cm)
3
n−3
∏

j=1

(f − ξj),

where ξj’s are (n−3) distinct zeros of zn+azn−m+ bzn−2m+βm such that ξj 6= cm, 0,

j = 1, 2, . . . , n− 3. Then from (4.6) and (4.16) we have

(4.17) B(G− 1) ≡
−c(F − 1)

(f − cm)3
n−3
∏

j=1

(f − ξj)

.

Since Ef ({cm}, 0) = Eg({cm}, 0), so cm points of f are not poles of G and hence cm

is an e.v.P. of f and hence an e.v.P. of L. Therefore from Lemma 3.12 we arrive at

a contradiction.

Subcase-II-1.2 Next suppose B−A
B

6= βm

c
. Since A and A − B are non zero then

adopting the same procedure as done in Subcase-I-1.1 of this theorem again we can

get a contradiction.

Subcase-II-1.3 If A−B = 0 then by Subcase-I-1.2 we arrived at a contradiction.

Subcase-II-2 Assuming B = 0 we get

F − 1 = A(G− 1)

and subsequently we can obtain (4.8), (4.9).

Subcase-II-2.1. Let A 6= 1. Then as c 6= 0, so c (A−1)
A

6= 0 and at the same time by
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Lemma 3.8 we have βi 6= 0. Therefore we have the following subcases.

Subcase-II-2.1.1. Suppose c (A−1)
A

= βi for some i ∈ {1, 2, . . . , m}. Then we claim

that c(1 − A) 6= βj for any j ∈ {1, 2, . . . , m}. For if c(1 − A) = βj; then A =
c−βj

c

and since it is given that c (A−1)
A

= βi; i.e., A = c
c−βi

, it follows that
c−βj

c
= c

c−βi
;

i.e., c =
βiβj

βi+βj
, a contradiction. Thus zn + azn−m + bzn−2m + c(1 − A) = 0 has only

simple roots say γi for i = 1, 2, . . . , n. So from (4.9), (4.3) and by using the second

fundamental theorem we get

(n− 1)T (r, f) ≤

n
∑

i=1

N(r, γi; f) +N(r,∞; f) + S(r, f)

≤ (2m+ 1)T (r,L) +O(log r),

gives a contradiction for n ≥ 2m+ 3.

Subcase-II-2.1.2. Suppose c (A−1)
A

6= βi for all i ∈ {1, 2, . . . , m}. So, zn + azn−m +

bzn−2m + c (A−1)
A

= 0 has only simple roots say µi for i = 1, 2, . . . , n. Therefore from

(4.8), (4.3) and by the second fundamental theorem we have

(n− 1)T (r,L) ≤
n
∑

i=1

N(r, µi;L) +N(r,∞;L) + S(r,L)

≤ (2m+ 1)T (r, f) +O(log r),

gives a contradiction for n ≥ 2m+ 3.

Subcase-II-2.2. Suppose A = 1. Then we get F = G and hence we obtain (4.10).

Putting L = fh in (4.10) we get (4.11).

Now proceeding the same way as done in Subcase-I-2.1.1-Case-I-2.1.2 of this

theorem, we will get f ≡ L, for n ≥ 2m+ 4.

�
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