
Jordan Journal of Mathematics and Statistics (JJMS), 14(4), 2021, pp 809 - 830

DOI: https://doi.org/10.47013/14.4.13

COMPUTING CERTAIN TOPOLOGICAL INDICES OF

INDU-BALA PRODUCT OF GRAPHS

SHREEKANT PATIL (1) AND B. BASAVANAGOUD (2)

Abstract. The Indu-Bala product G1HG2 of graphs G1 and G2 is obtained from

two disjoint copies of the join G1 ∨ G2 of G1 and G2 by joining the corresponding

vertices in the two copies of G2. In this paper we obtain the explicit formulae

for certain degree and distance based topological indices viz. first Zagreb index,

second Zagreb index, third Zagreb index, F-index, hyper-Zagreb index, harmonic

index, first multiplicative Zagreb index, second multiplicative Zagreb index, mod-

ified first multiplicative Zagreb index, Wiener index, Harary index, sum-degree

distance index, product-degree distance index, reciprocal sum-degree distance in-

dex and reciprocal product-degree distance index of Indu-Bala product of graphs.

Also, we present the exact value of the distance based topological indices of graph

G in terms of its order, size and Zagreb indices, when diam(G) ≤ 2.

1. Introduction

Let G be a graph with vertex set V (G), |V (G)| = n, and edge set E(G), |E(G)| = m.

As usual, n is order and m is size of G. If u and v are two adjacent vertices of G, then

the edge connecting them will be denoted by uv. The degree of a vertex w ∈ V (G) is

the number of vertices adjacent to w and is denoted by dG(w). The distance between

two vertices u and v in G, denoted by dG(u, v) is the length of the shortest path
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between the vertices u and v in G. The shortest u− v path is often called geodesic.

The diameter diam(G) of a connected graph G is the length of any longest geodesic.

Any unexplained graph theoretical terminology and notation may be found in [2].

In structural chemistry and biology, molecular structure descriptors are utilized for

modeling information of molecules, which are known as topological indices. Many

topological indices are introduced to explain the physical and chemical properties of

molecules (See [18]). We represent the selected degree-based topological indices in

the following form [14].

TI(G) =
∑

uv∈E(G)

F (dG(u), dG(v))

where the summation goes over all pairs of adjacent vertices u, v of the molecular

graph G, and where F = F (x, y) is an appropriately chosen function. In particular,

F (x, y) = x+ y

F (x, y) = xy

for the first Zagreb index M1(G) and second Zagreb index M2(G), respectively [17].

F (x, y) = x2 + y2

F (x, y) = |x− y|

for the forgotten topological index F (G) (or F-index) [13, 17] and the third Zagreb

index M3(G) [11], respectively.

F (x, y) =
2

x+ y

F (x, y) = (x+ y)2

for the harmonic index H(G) [12] and hyper-Zagreb index HM(G) [29], respectively.

Also, the logarithms of the three multiplicative Zagreb indices can be represented as
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follows:

F (x, y) = 2

(

ln x

x
+

ln y

y

)

F (x, y) = lnx+ ln y

F (x, y) = ln(x+ y)

for first multiplicative Zagreb index
∏

1(G), second multiplicative Zagreb index
∏

2(G)

and modified first multiplicative Zagreb index
∏∗

1(G), respectively [10, 15, 31, 32].

The oldest molecular index is the one put forward in 1947 by H. Wiener [34], nowadays

referred to as the Wiener index and denoted byW . It is defined as the sum of distance

between all pairs of vertices of a graph. Symbolically,

W (G) =
∑

u,v∈V (G)

dG(u, v).

In 1993, Plavs̆ić et al. [28] and Ivanciuc et al. [23] independently introduced the

Harary index, named in honor of Frank Harary on the occasion of his 70th birthday.

Actually, the Harary index was first defined in 1992 by Mihalić and Trinajstić [26]

as:

H∗(G) =
∑

u,v∈V (G)

1

dG(u, v)
.

The invariant sum-degree distance denoted by DD+(G) was first time introduced by

Dobrynin and Kochetova [8], later the same quantity was examined under the name

Schultz index [16] and defined as

DD+(G) =
∑

u,v∈V (G)

[dG(u) + dG(v)]dG(u, v).

In [16], Gutman introduced another invariant named product-degree distance index

and is defined as

DD∗(G) =
∑

u,v∈V (G)

dG(u)dG(v)dG(u, v).
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Hua and Zhang [21] introduced a new graph invariant named reciprocal degree dis-

tance, which can be seen as a degree-weight version of Harary index, that is

RDD+(G) =
∑

u,v∈V (G)

dG(u) + dG(v)

dG(u, v)
.

In [30], Su et al. introduced the reciprocal product-degree distance of graphs, which

can be seen as a product-degree-weight version of Harary index, that is

RDD∗(G) =
∑

u,v∈V (G)

dG(u)dG(v)

dG(u, v)
.

The join G1 ∨G2 of graphs G1 and G2 is a graph with the vertex set V (G1)∪ V (G2)

and edge set E(G1)∪E(G2)∪{uv : u ∈ V (G1) and v ∈ V (G2)}. Recently, Indulal and
Balakrishnan [22] introduced a new graph operation named it as Indu-bala product

of graphs and is defined as follows:

The Indu-Bala product G1HG2 of graphs G1 and G2 is obtained from two disjoint

copies of the join G1 ∨G2 of G1 and G2 by joining the corresponding vertices in the

two copies of G2. Hence the number of vertices and edges in G1HG2 is given by,

respectively, |V (G1HG2)| = 2(n1 + n2) and |E(G1HG2)| = 2(m1 +m2 + n1n2) + n2.

If u is a vertex of G1HG2 then

dG1HG2
(u) =







dG1
(u) + n2 if u ∈ V (G1)

dG2
(u) + n1 + 1 if u ∈ V (G2).

The Fig. 1 depicts an example of G1HG2. Motivated by the work on Indu-Bala prod-

Figure 1. Graphs P3, P4 and their P3HP4

uct graphs [22, 27], we study the degree and distance based topological indices of this
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graph. The paper is organized as follows: In section 2, we compute the degree based

topological indices viz. first Zagreb index, second Zagreb index, third Zagreb in-

dex, F-index, hyper-Zagreb index, harmonic index, first multiplicative Zagreb index,

second multiplicative Zagreb index, modified first multiplicative Zagreb index and

in section 3, we compute the distance based topological indices viz. Wiener index,

Harary index, sum-degree distance index, product-degree distance index, reciprocal

sum-degree distance index and reciprocal product-degree distance index of Indu-Bala

product of graphs. Also, we present the exact value of the distance based topological

indices of graph G in terms of its order, size and Zagreb indices, when diam(G) ≤ 2.

Readers interested in more information on computing topological indices of graph

operations can be referred to [1, 3, 4, 5, 6, 7, 18, 20, 24, 25].

The following lemmas are useful for proving our results.

Lemma 1.1. (AM-GM inequality) Let x1, x2, ..., xn be nonnegative numbers. Then

x1 + x2 + · · ·+ xn

n
≥ n

√
x1x2 · · ·xn

holds with equality if and only if all the xk’s are equal.

Lemma 1.2. [19, 33] Let G be a graph of order n and size m. Then W (G) =

n2 − n−m if and only if diam(G) ≤ 2.

2. Degree Based Topological Indices

Operation considered is binary, hence we deal with two finite and simple graphs, G1

and G2. For a given graph Gi, its vertex and edge sets will be denoted by V (Gi) and

E(Gi), and their cardinalities by ni and mi, respectively, where i = 1, 2.
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Theorem 2.1. Let G1 and G2 be two graphs. Then

∑

u∈V (G1HG2)

dα+1
G1HG2

(u) = 2

[

∑

u∈V (G1)

dα+1
G1

(u)

+
∑

v∈V (G2)

dα+1
G2

(v) +

(

α + 1

1

)[

∑

u∈V (G1)

dαG1
(u) · n2

+
∑

v∈V (G2)

dαG2
(v) · (n1 + 1)

]

+

(

α + 1

2

)[

∑

u∈V (G1)

dα−1
G1

(u) · n2
2

+
∑

v∈V (G2)

dα−1
G2

(v) · (n1 + 1)2
]

+ · · ·+ n1n
α+1
2 + n2(n1 + 1)α+1

]

.

Proof. Since G1HG2 has 2(n1 + n2) vertices, then we have

∑

u∈V (G1HG2)

dα+1
G1HG2

(u) = 2

[

∑

u∈V (G1)

(dG1
(u) + n2)

α+1 +
∑

v∈V (G2)

(dG2
(v) + (n1 + 1))α+1

]

.

Using binomial theorem, expanding each term in right hand side of above equation,

we get the following.

∑

u∈V (G1HG2)

dα+1
G1HG2

(u) = 2

[

∑

u∈V (G1)

dα+1
G1

(u) +

(

α + 1

1

)

∑

u∈V (G1)

dαG1
(u) · n2

+

(

α+ 1

2

)

∑

u∈V (G1)

dα−1
G1

(u) · n2
2 + · · ·+ n1n

α+1
2

+
∑

v∈V (G2)

dα+1
G2

(v) +

(

α + 1

1

)

∑

v∈V (G2)

dαG2
(v) · (n1 + 1)

+

(

α+ 1

2

)

∑

v∈V (G2)

dα−1
G2

(v) · (n1 + 1)2 + · · ·+ n2(n1 + 1)α+1

]

.

�

As a application of the above theorem, taking α = 1 and α = 2 leads to the expressions

for the first Zagreb index and forgotten topological index of G1HG2, which are given

in following corollaries.
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Corollary 2.1. Let G1 and G2 be two graphs. Then M1(G1HG2) = 2[M1(G1) +

n1n
2
2 + 4n2m1 +M1(G2) + n2(n1 + 1)2 + 4m2(n1 + 1)].

Corollary 2.2. Let G1 and G2 be two graphs. Then F (G1HG2) = 2[F (G1) +n1n
3
2 +

3n2M1(G1) + 6n2
2m1 + F (G2) + n2(n1 + 1)3 + 3(n1 + 1)M1(G2) + 6m2(n1 + 1)2].

Theorem 2.2. Let G1 and G2 be two graphs. Then M2(G1HG2) = 2[M2(G1) +

n2M1(G1) +m1n
2
2 +M2(G2) + (n1 +1)M1(G2) +m2(n1 +1)2+4m1m2 +2m1n2(n1 +

1) + 2m2n1n2 + n2
2n1(n1 + 1)] +M1(G2) + n2(n1 + 1)2 + 4m2(n1 + 1).

Proof. By definition of second Zagreb index, we have

M2(G1HG2)

=
∑

uv∈E(G1HG2)

dG1HG2
(u)dG1HG2

(v)

= 2

[

∑

uv∈E(G1)

(dG1
(u) + n2)(dG1

(v) + n2)

+
∑

uv∈E(G2)

(dG2
(u) + n1 + 1)(dG2

(v) + n1 + 1)

+
∑

u∈V (G1)

∑

v∈V (G2)

(dG1
(u) + n2)(dG2

(v) + n1 + 1)

]

+
∑

v∈V (G2)

(dG2
(v) + n1 + 1)2

= 2

[

∑

uv∈E(G1)

(dG1
(u)dG1

(v) + n2(dG1
(u) + dG1

(v)) + n2
2)

+
∑

uv∈E(G2)

(dG2
(u)dG2

(v) + (n1 + 1)(dG2
(u) + dG2

(v)) + (n1 + 1)2)

+
∑

u∈V (G1)

∑

v∈V (G2)

(dG1
(u)dG2

(v) + (n1 + 1)dG1
(u) + n2dG2

(v) + n2(n1 + 1))

]

+
∑

v∈V (G2)

(d2G2
(v) + (n1 + 1)2 + 2dG2

(v)(n1 + 1)).

�
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Theorem 2.3. Let G1 and G2 be two graphs. Then

M3(G1HG2) ≤ 2[M3(G1) +M3(G2) + 2m1n2 + n1n
2
2 + 2m2n1 + n1n2(n1 + 1)].

Proof. Using the definition of third Zagreb index, we have

M3(G1HG2) =
∑

uv∈E(G1HG2)

| dG1HG2
(u)− dG1HG2

(v) |

= 2

[

∑

uv∈E(G1)

| dG1
(u) + n2 − dG1

(v)− n2 |

+
∑

uv∈E(G2)

| dG2
(u) + n1 + 1− dG2

(v)− n1 − 1 |

+
∑

u∈V (G1)

∑

v∈V (G2)

| dG1
(u) + n2 − dG2

(v)− n1 − 1 |
]

+
∑

v∈V (G2)

| dG2
(v) + n1 + 1− dG2

(v)− n1 − 1 |

≤ 2[M3(G1) +M3(G2) + 2m1n2 + n1n
2
2 + 2m2n1 + n1n2(n1 + 1)].

�

Theorem 2.4. Let G1 and G2 be two graphs. Then HM(G1HG2) = 2[HM(G1) +

4n2
2m1 + 4n2M1(G1) + HM(G2) + 4(n1 + 1)2m2 + 4(n1 + 1)M1(G2) + n2M1(G1) +

n1M1(G2)+8m1m2+n1n2(n1+n2+1)+2(n1+n2+1)(2m1n2+2m2n1)]+4[M1(G2)+

(n1 + 1)2n2 + 4m2(n1 + 1)].

Proof. By definition of hyper-Zagreb index, we have HM(G1HG2) = F (G1HG2) +

2M2(G1HG2). Hence the result follows from Corollary 3.3 and Theorem 3.4. �

Theorem 2.5. Let G1 and G2 be two graphs. Then

H(G1HG2) ≥ 4

[

m1

m1 + 2n2 + 1
+

m2

m2 + 2n1 + 3
+

n1n2

2n1 + 2n2 − 1

]

+
n2

n1 + n2

.
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Proof. By definition of harmonic index, we have

H(G1HG2) =
∑

uv∈E(G1HG2)

2

dG1HG2
(u) + dG1HG2

(v)

= 2

[

∑

uv∈E(G1)

2

dG1
(u) + n2 + dG1

(v) + n2

+
∑

uv∈E(G2)

2

dG2
(u) + n1 + 1 + dG2

(v) + n1 + 1

+
∑

u∈V (G1)

∑

v∈V (G2)

2

dG1
(u) + n2 + dG2

(v) + n1 + 1

]

+
∑

v∈V (G2)

2

2(dG2
(v) + n1 + 1)

.

For a graph G, we have dG(u) + dG(v) ≤ |E(G)| + 1 for uv ∈ E(G) and dG(u) ≤
|V (G)| − 1 for u ∈ V (G).

H(G1HG2) ≥ 2

[

∑

uv∈E(G1)

2

m1 + 2n2 + 1
+

∑

uv∈E(G2)

2

m2 + 2(n1 + 1) + 1

+
∑

u∈V (G1)

∑

v∈V (G2)

2

n1 − 1 + n2 + n2 − 1 + n1 + 1

]

+
∑

v∈V (G2)

1

n2 − 1 + n1 + 1

= 2

[

2m1

m1 + 2n2 + 1
+

2m2

m2 + 2n1 + 3
+

2n1n2

2n1 + 2n2 − 1

]

+
n2

n1 + n2
.

�

Theorem 2.6. Let G1 and G2 be two graphs. Then

∏

1

(G1HG2) ≤
[

M1(G1) + n1n
2
2 + 4n2m1

n1

]2n1

(2.1)

×
[

M1(G2) + n2(n1 + 1)2 + 4(n1 + 1)m2

n2

]2n2

.

The equality holds in (2.1) if and only if G1 and G2 are regular graphs.
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Proof. Using the definition of first multiplicative Zagreb index, we have
∏

1

(G1HG2) =
∏

u∈V (G1HG2)

d2G1HG2
(u)

=

[

∏

u∈V (G1)

(dG1
(u) + n2)

2
∏

u∈V (G2)

(dG2
(u) + n1 + 1)2

]2

=

[

∏

u∈V (G1)

(d2G1
(u) + n2

2 + 2n2dG1
(u))

×
∏

u∈V (G2)

(d2G2
(u) + (n1 + 1)2 + 2(n1 + 1)dG2

(u))

]2

.

By Lemma 1.1, we have

≤
[

∑

u∈V (G1)

(d2G1
(u) + n2

2 + 2n2dG1
(u))

n1

]2n1

×
[

∑

u∈V (G2)

(d2G2
(u) + (n1 + 1)2 + 2(n1 + 1)dG2

(u))

n2

]2n2

=

[

M1(G1) + n1n
2
2 + 4n2m1

n1

]2n1
[

M1(G2) + n2(n1 + 1)2 + 4(n1 + 1)m2

n2

]2n2

.

Moreover, the above equality holds if and only if d2G1
(u)+n2

2+2n2dG1
(u) = d2G1

(v)+

n2
2 + 2n2dG1

(v) for u, v ∈ V (G1) and d2G2
(r) + (n1 + 1)2 + 2(n1 + 1)dG2

(r) = d2G2
(s) +

(n1 +1)2 +2(n1 +1)dG2
(s) for r, s ∈ V (G2) by Lemma 1.1. Hence the equality holds

in (2.1) if and only if both G1 and G2 are regular graphs. �

Theorem 2.7. Let G1 and G2 be two graphs. Then

∏

2

(G1HG2) ≤
[

M2(G1) + n2M1(G1) +m1n
2
2

m1

]2m1

(2.2)

×
[

M2(G2) + (n1 + 1)M1(G2) +m2(n1 + 1)2

m2

]2m2

×
[

4m1m2 + 2n1n2m2 + 2m1n2(n1 + 1) + n1n
2
2(n1 + 1)

n1n2

]2n1n2

×
[

M1(G2) + 4m2(n1 + 1) + n2(n1 + 1)2

n2

]n2

.
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The equality holds in (2.2) if and only if G1 and G2 are regular graphs.

Proof. By definition of second multiplicative Zagreb index, we have

∏

2

(G1HG2)

=
∏

uv∈E(G1HG2)

dG1HG2
(u)dG1HG2

(v)

=

[

∏

uv∈E(G1)

(dG1
(u) + n2)(dG1

(v) + n2)
∏

uv∈E(G2)

(dG2
(u) + n1 + 1)(dG2

(v) + n1 + 1)

×
∏

u∈V (G1)

∏

v∈V (G2)

(dG1
(u) + n2)(dG2

(v) + n1 + 1)

]2
∏

v∈V (G2)

(dG2
(v) + n1 + 1)2

=

[

∏

uv∈E(G1)

(dG1
(u)dG1

(v) + n2(dG1
(u) + dG1

(v)) + n2
2)

×
∏

uv∈E(G2)

(dG2
(u)dG2

(v) + (n1 + 1)(dG2
(u) + dG2

(v)) + (n1 + 1)2)

×
∏

u∈V (G1)

∏

v∈V (G2)

(dG1
(u)dG2

(v) + (n1 + 1)dG1
(u) + n2dG2

(v) + n2(n1 + 1))

]2

×
∏

v∈V (G2)

(d2G2
(v) + (n1 + 1)2 + 2dG2

(v)(n1 + 1)).

By Lemma 1.1, we have

≤
[

∑

uv∈E(G1)

(dG1
(u)dG1

(v) + n2(dG1
(u) + dG1

(v)) + n2
2)

m1

]2m1

×
[

∑

uv∈E(G2)

(dG2
(u)dG2

(v) + (n1 + 1)(dG2
(u) + dG2

(v)) + (n1 + 1)2)

m2

]2m2

×
[

∑

u∈V (G1)

∑

v∈V (G2)

(dG1
(u)dG2

(v) + (n1 + 1)dG1
(u) + n2dG2

(v) + n2(n1 + 1))

n1n2

]2n1n2

×
[

∑

v∈V (G2)

(d2G2
(v) + (n1 + 1)2 + 2dG2

(v)(n1 + 1))

n2

]n2
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=

[

M2(G1) + n2M1(G1) +m1n
2
2

m1

]2m1

×
[

M2(G2) + (n1 + 1)M1(G2) +m2(n1 + 1)2

m2

]2m1

×
[

4m1m2 + 2n1n2m2 + 2m1n2(n1 + 1) + n1n
2
2(n1 + 1)

n1n2

]2n1n2

×
[

M1(G2) + 4m2(n1 + 1) + n2(n1 + 1)2

n2

]n2

.

Furthermore, the above equality holds if and only if dG1
(u)dG1

(v) + n2(dG1
(u) +

dG1
(v)) + n2

2 = dG1
(r)dG1

(s) + n2(dG1
(r) + dG1

(s)) + n2
2 for any uv, rs ∈ E(G1),

dG2
(u)dG2

(v)+(n1+1)(dG2
(u)+dG2

(v))+(n1+1)2 = dG2
(r)dG2

(s)+(n1+1)(dG2
(r)+

dG2
(s))+(n1+1)2 for any uv, rs ∈ E(G2), dG1

(u)dG2
(v)+(n1+1)dG1

(u)+n2dG2
(v)+

n2(n1 + 1) = dG1
(r)dG2

(s) + (n1 + 1)dG1
(r) + n2dG2

(s) + n2(n1 + 1) for any u, r ∈
V (G1), v, s ∈ V (G2) and d2G2

(u) + (n1 + 1)2 +2dG2
(u)(n1 + 1) = d2G2

(v) + (n1 + 1)2 +

2dG2
(v)(n1 +1) for u, v ∈ V (G2) by Lemma 1.1. This implies that the equality holds

in (2.2) if and only if G1 and G2 must be regular graphs. �

Theorem 2.8. Let G1 and G2 be two graphs. Then

∗
∏

1

(G1HG2) ≤
[

M1(G1) + 2m1n2

m1

]2m1

×
[

M1(G2) + 2m2(n1 + 1)

m2

]2m2

(2.3)

×
[

2m1n2 + 2n1m2 + n1n2(n1 + n2 + 1)

n1n2

]2n1n2

×
[

2(2m2 + n2(n1 + 1))

n2

]n2

.

The equality holds in (2.3) if and only if G1 and G2 are regular graphs.

Proof. Using the definition of modified first multiplicative Zagreb index, we have

∗
∏

1

(G1HG2) =
∏

uv∈E(G1HG2)

(dG1HG2
(u) + dG1HG2

(v))
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=

[

∏

uv∈E(G1)

(dG1
(u) + n2 + dG1

(v) + n2)
∏

uv∈E(G2)

(dG2
(u) + n1 + dG2

(v) + n1 + 2)

×
∏

u∈V (G1)

∏

v∈V (G2)

(dG1
(u) + n2 + dG2

(v) + n1 + 1)

]2
∏

v∈V (G2)

2(dG2
(v) + n1 + 1).

By Lemma 1.1, we have

≤
[

∑

uv∈E(G1)

(dG1
(u) + dG1

(v) + 2n2)

m1

]2m1

×
[

∑

uv∈E(G2)

(dG2
(u) + dG2

(v) + 2(n1 + 1))

m2

]2m2

×
[

∑

u∈V (G1)

∑

v∈V (G2)

(dG1
(u) + n2 + dG2

(v) + n1 + 1)

n1n2

]2n1n2

×
[

∑

v∈V (G2)

2(dG2
(v) + n1 + 1)

n2

]n2

=

[

M1(G1) + 2m1n2

m1

]2m1

×
[

M1(G2) + 2m2(n1 + 1)

m2

]2m2

×
[

2m1n2 + 2n1m2 + n1n2(n1 + n2 + 1)

n1n2

]2n1n2

×
[

2(2m2 + n2(n1 + 1))

n2

]n2

.

Moreover, the above equality holds if and only if dG1
(u) + dG1

(v) + 2n2 = dG1
(r) +

dG1
(s) + 2n2 for any uv, rs ∈ E(G1), dG2

(u) + dG2
(v) + 2(n1 +1) = dG2

(r) + dG2
(s) +

2(n1+1) for any uv, rs ∈ E(G2), dG1
(u)+n2+dG2

(v)+n1+1 = dG1
(r)+n2+dG2

(s)+

n1 + 1 for any u, r ∈ V (G1), v, s ∈ V (G2) and dG2
(u) + n1 + 1 = dG2

(v) + n1 + 1 for

any u, v ∈ V (G2) by Lemma 1.1. Hence the equality holds in (2.3) if and only if both

G1 and G2 are regular graphs. �

3. Distance Based Topological Indices

In this section, we need two auxiliary coindices conceived by Došlić [9] namely first

and second Zagreb coindices and which are defined as
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M 1(G) =
∑

uv 6∈E(G)

[dG(u) + dG(v)] and M 2(G) =
∑

uv 6∈E(G)

dG(u)dG(v)

respectively.

Theorem 3.1. Let G1 and G2 be two graphs. Then W (G1HG2) = 2(n1+n2)(2(n1 +

n2)− 1)− 2(m1 +m2 + n1n2)− n2 + 3(n2
1 + n2(n2 − 1)− 2m2).

Proof. Since diam(G1HG2) = 3 and by Lemma 1.2, we have

W (G1HG2) = 2(n1 + n2)(2(n1 + n2)− 1)− 2(m1 +m2 + n1n2)− n2

+3[number of unordered pairs of vertices of distance 3 in G1HG2]

= 2(n1 + n2)(2(n1 + n2)− 1)− 2(m1 +m2 + n1n2)− n2

+3[n2
1 + 2(

n2(n2 − 1)

2
−m2)].

�

Lemma 3.1. Let G be a graph of order n and size m with diam(G) ≤ 2. Then

H∗(G) =
m

2
+

n(n− 1)

4
.

Proof. Suppose diam(G) ≤ 2. Then adjacent vertices of G are distance one and non

adjacent vertices of G are distance two. Therefore,

H∗(G) =
∑

u,v∈V (G)

1

dG(u, v)

=
∑

uv∈E(G)

1 +
∑

uv 6∈E(G)

1

2

= m+
1

2

(

n(n− 1)

2
−m

)

=
m

2
+

n(n− 1)

4
.

�
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Theorem 3.2. Let G1 and G2 be two graphs. Then

H∗(G1HG2) =
(m1 +m2 + n1n2) + n2

2
+

2(n1 + n2)(2(n1 + n2)− 1)

2

+
1

3
[n2

1 + n2(n2 − 1)− 2m2].

Proof. Since diam(G1HG2) = 3 and by Lemma 3.1, we have

H∗(G1HG2) =
(m1 +m2 + n1n2) + n2

2
+

2(n1 + n2)(2(n1 + n2)− 1)

2

+
1

3
[number of unordered pairs of vertices of distance 3 in G1HG2]

=
(m1 +m2 + n1n2) + n2

2
+

2(n1 + n2)(2(n1 + n2)− 1)

2

+
1

3
[n2

1 +
∑

v∈V (G2)

(n2 − 1− dG2
(u))].

�

Lemma 3.2. Let G be a graph of order n and size m with diam(G) ≤ 2. Then

DD+(G) = 4m(n− 1)−M1(G).

Proof. By definition of sum-degree distance index, we have

DD+(G) =
∑

u,v∈V (G)

[dG(u) + dG(v)]dG(u, v)

=
∑

uv∈E(G)

(dG(u) + dG(v)) + 2
∑

uv 6∈E(G)

(dG(u) + dG(v)) as diam(G) ≤ 2.

= M1(G) + 2M 1(G).

We know that from [1], M 1(G) = 2m(n− 1)−M1(G). Therefore we get the desired

result. �

Theorem 3.3. Let G1 and G2 be two graphs. Then DD+(G1HG2) = 4(2(m1+m2 +

n1n2) + n2)(2(n1 + n2) − 1) − 2[M1(G1) + n1n
2
2 + 4n2m1 +M1(G2) + n2(n1 + 1)2 +

4m2(n1 + 1)] + 3[4m1n1 + 2n2
1n2 + 2[M1(G2) + 2(n1 + 1)(n2(n2−1)

2
−m2)]].
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Proof. Since diam(G1HG2) = 3 and by Lemma 3.2, we have

DD+(G1HG2) = 4(2(m1 +m2 + n1n2) + n2)(2(n1 + n2)− 1)−M1(G1HG2)

+3
∑

v,u∈V (G1HG2)
dG1HG2

(u,v)=3

(dG1HG2
(u) + dG1HG2

(v))

= 4(2(m1 +m2 + n1n2) + n2)(2(n1 + n2)− 1)−M1(G1HG2)

+3

[

∑

u∈V (G1)

∑

u∈V (G1)

(dG1
(u) + dG1

(v) + 2n2)

+2
∑

uv 6∈E(G2)

(dG2
(u) + dG2

(v) + 2(n1 + 1))

]

.

Using Corollary 2.1 we get the required result. �

Lemma 3.3. Let G be a graph of order n and size m with diam(G) ≤ 2. Then

DD∗(G) = 4m2 −M1(G)−M2(G).

Proof. Using the definition of product-degree distance index, we have

DD∗(G) =
∑

u,v∈V (G)

dG(u)dG(v)dG(u, v)

=
∑

uv∈E(G)

dG(u)dG(v) + 2
∑

uv 6∈E(G)

dG(u)dG(v) as diam(G) ≤ 2.

= M2(G) + 2M 2(G).

From [1], we have M 2(G) = 2m2 −M2(G)− 1
2
M1(G). Therefore we get the desired

result. �

Theorem 3.4. Let G1 and G2 be two graphs. Then DD∗(G1HG2) = 4(2(m1 +m2 +

n1n2) + n2
2)

2 − 2[M1(G1) + n1n
2
2 + 4n2m1 +M1(G2) + n2(n1 + 1)2 + 4m2(n1 + 1)]−

2[M2(G1) + n2M1(G1) +m1n
2
2 +M2(G2) + (n1 +1)M1(G2) +m2(n1 +1)2 +4m1m2 +

2m1n2(n1 + 1) + 2m2n1n2 + n2
2n1(n1 + 1)]−M1(G2)− n2(n1 + 1)2 − 4m2(n1 + 1) +

3[4m2
1 + 4n2m1 + n2

1n
2
2 + 2(M 2(G2) + (n2 + 1)M 1(G2) + (n1 + 1)2(n2(n2−1)

2
−m2))].
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Proof. Since diam(G1HG2) = 3 and by Lemma 3.3, we have

DD∗(G1HG2) = 4(2(m1 +m2 + n1n2) + n2
2)

2 −M1(G1HG2)−M2(G1HG2)

+3
∑

v,u∈V (G1HG2)
dG1HG2

(u,v)=3

(dG1HG2
(u)dG1HG2

(v))

= 4(2(m1 +m2 + n1n2) + n2
2)

2 −M1(G1HG2)−M2(G1HG2)

+3

[

∑

u∈V (G1)

∑

u∈V (G1)

(dG1
(u) + n2)(dG1

(v) + n2)

+2
∑

uv 6∈E(G2)

(dG2
(u) + n1 + 1)(dG2

(v) + n1 + 1)

]

= 4(2(m1 +m2 + n1n2) + n2
2)

2 −M1(G1HG2)−M2(G1HG2)

+3[4m2
1 + 4n2m1 + n2

1n
2
2 + 2(M2(G2) + (n2 + 1)M1(G2)

+(n1 + 1)2(
n2(n2 − 1)

2
−m2))].

By substituting results of the Corollary 2.1 and Theorem 2.2 in above, we get the

required result. �

Lemma 3.4. Let G be a graph of order n and size m with diam(G) ≤ 2. Then

RDD+(G) = m(n− 1) + 1
2
M1(G).

Proof. By definition of RDD+(G) and since diam(G) ≤ 2, we have

RDD+(G) =
∑

uv∈E(G)

(dG(u) + dG(v)) +
1

2

∑

uv 6∈E(G)

(dG(u) + dG(v))

= M1(G) +
1

2
M 1(G).

We know that from [1], M 1(G) = 2m(n− 1)−M1(G). Therefore we get the desired

result. �
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Theorem 3.5. Let G1 and G2 be two graphs. Then RDD+(G1HG2) = (2(m1+m2+

n1n2) + n2)(2(n1 + n2) − 1) + M1(G1) + n1n
2
2 + 4n2m1 + M1(G2) + n2(n1 + 1)2 +

4m2(n1 + 1) + 1
3
[4n1m1 + 2n2

1n2 + 2[M 1(G2) + 2(n1 + 1)(n2(n2−1)
2

−m2)]].

Proof. Since diam(G1HG2) = 3 and by Lemma 3.4, we have

RDD+(G1HG2) = (2(m1 +m2 + n1n2) + n2)(2(n1 + n2)− 1) +
1

2
M1(G1HG2)

+
1

3

∑

v,u∈V (G1HG2)
dG1HG2

(u,v)=3

(dG1HG2
(u) + dG1HG2

(v))

= (2(m1 +m2 + n1n2) + n2)(2(n1 + n2)− 1) +
1

2
M1(G1HG2)

+
1

3

[

∑

u∈V (G1)

∑

u∈V (G1)

(dG1
(u) + dG1

(v) + 2n2)

+2
∑

uv 6∈E(G2)

(dG2
(u) + dG2

(v) + 2(n1 + 1))

]

= (2(m1 +m2 + n1n2) + n2)(2(n1 + n2)− 1) +
1

2
M1(G1HG2)

+
1

3
[4n1m1 + 2n2

1n2 + 2[M 1(G2) + 2(n1 + 1)(
n2(n2 − 1)

2
−m2)]].

Using Corollary 2.1 in above, we get the required result. �

Lemma 3.5. Let G be a graph of order n and size m with diam(G) ≤ 2. Then

RDD∗(G) = m2 + 1
2
M2(G)− 1

4
M1(G).

Proof. Using the definition of RDD∗(G) and since diam(G) ≤ 2, we have

RDD∗(G) =
∑

uv∈E(G)

dG(u)dG(v) +
1

2

∑

uv 6∈E(G)

dG(u)dG(v)

= M2(G) +
1

2
M2(G).

From [1], we have M 2(G) = 2m2 −M2(G)− 1
2
M1(G). Therefore we get the desired

result. �
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Theorem 3.6. Let G1 and G2 be two graphs. Then RDD∗(G1HG2) = (2(m1+m2+

n1n2) + n2)
2 +M2(G1) + n2M1(G1) +m1n

2
2 +M2(G2) + (n1 + 1)M1(G2) +m2(n1 +

1)2 + 4m1m2 + 2m1n2(n1 + 1) + 2m2n1n2 + n2
2n1(n1 + 1) + 1

2
[M1(G2) + n2(n1 +1)2 +

4m2(n1 + 1)]− 1
2
[M1(G1) + n1n

2
2 + 4n2m1 +M1(G2) + n2(n1 + 1)2 + 4m2(n1 + 1)] +

1
3
[4m2

1 + 4n2m1 + n2
1n

2
2 + 2(M2(G2) + (n2 + 1)M1(G2) + (n1 + 1)2(n2(n2−1)

2
−m2))].

Proof. Since diam(G1HG2) = 3 and by Lemma 3.5, we have

RDD∗(G1HG2) = (2(m1 +m2 + n1n2) + n2) +
1

2
M2(G1HG2)−

1

4
M1(G1HG2)

+
1

3

∑

v,u∈V (G1HG2)
dG1HG2

(u,v)=3

(dG1HG2
(u)dG1HG2

(v))

= (2(m1 +m2 + n1n2) + n2) +
1

2
M2(G1HG2)−

1

4
M1(G1HG2)

+
1

3

[

∑

u∈V (G1)

∑

u∈V (G1)

(dG1
(u) + n2)(dG1

(v) + n2)

+2
∑

uv 6∈E(G2)

(dG2
(u) + n1 + 1)(dG2

(v) + n1 + 1)

]

= (2(m1 +m2 + n1n2) + n2)
2 +

1

2
M2(G1HG2)−

1

4
M1(G1HG2)

+
1

3
[4m2

1 + 4n2m1 + n2
1n

2
2 + 2(M2(G2) + (n2 + 1)M1(G2)

+(n1 + 1)2(
n2(n2 − 1)

2
−m2))].

By substituting results of the Corollary 2.1 and Theorem 2.2 in above, we get the

required result. �
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