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PATTERNS OF TIME SCALE DYNAMIC INEQUALITIES

SETTLED BY KANTOROVICH’S RATIO

MUHAMMAD JIBRIL SHAHAB SAHIR

Abstract. In this research article, we present an interesting generalization of

dynamic Kantorovich’s inequality and investigate the additive versions of some

dynamic inequalities on time scales. The time scale dynamic inequalities extend

and unify some continuous inequalities and their corresponding discrete versions.

1. Introduction

We consider the Kantorovich’s ratio defined by

(1.1) K(h) :=
(h + 1)2

4h
, h > 0.

The function K is decreasing on (0, 1) and increasing on [1,+∞), K(h) ≥ 1 for

any h > 0 and K(h) = K
(

1
h

)

for any h > 0.

Further, we note that

(1.2)
(κ1 + 1)2

4κ1
≤ (κ2 + 1)2

4κ2
,

where 1 ≤ κ1 ≤ κ2.

The following multiplicative refinement and reverse of Young’s inequality in terms

of Kantorovich’s ratio holds

(1.3) Kr
(a

b

)

a1−vbv ≤ (1− v)a+ vb ≤ KR
(a

b

)

a1−vbv,
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where a, b > 0, v ∈ [0, 1], r = min{1− v, v} and R = max{1− v, v}.
The first inequality in (1.3) was obtained by Zou et al. in [19] while the second by

Liao et al. [10].

An interesting generalization of Kantorovich’s inequality was given by Hao [12, p.

122], which follows:

Let xk ∈ (0,+∞), yk ∈ (0,+∞) and wk ∈ [0,+∞) for k = 1, 2, . . . , n. Suppose

that 0 < m1 ≤ xk ≤ M1 and 0 < m2 ≤ yk ≤ M2, k = 1, 2, . . . , n for some constants

m1, m2, M1 and M2. Further, let 0 < 1
q
≤ 1

p
< 1 and 1

p
+ 1

q
= 1. Then

(1.4)

(

n
∑

k=1

wkxk

)
1

p
(

n
∑

k=1

wk

xk

)
1

q

≤
1
p
M1 +

1
q
m1

(M1m1)
1

q

(

n
∑

k=1

wk

)

,

and

(1.5)

(

n
∑

k=1

wkx
2
k

)
1

p
(

n
∑

k=1

wky
2
k

)
1

q

≤
1
p
(M1M2) +

1
q
(m1m2)

(M1m1)
1

q (M2m2)
1

p

(

n
∑

k=1

wkxkyk

)

.

Now, we consider the following two additive versions of Cassels’ inequality as given

in [6].

Let xk ∈ (0,+∞), yk ∈ (0,+∞) and wk ∈ [0,+∞) for k = 1, 2, . . . , n. Suppose

that m = min
1≤k≤n

{

xk

yk

}

and M = max
1≤k≤n

{

xk

yk

}

. Then

(1.6) 0 ≤
(

n
∑

k=1

wkx
2
k

n
∑

k=1

wky
2
k

)
1

2

−
n
∑

k=1

wkxkyk ≤

(√
M −√

m
)2

2
√
Mm

n
∑

k=1

wkxkyk,

and

(1.7) 0 ≤
n
∑

k=1

wkx
2
k

n
∑

k=1

wky
2
k −

(

n
∑

k=1

wkxkyk

)2

≤ (M −m)2

4Mm

(

n
∑

k=1

wkxkyk

)2

.

We will prove these results from (1.4) to (1.7) on time scales. The calculus of

time scales was initiated by Hilger as given in [8]. A time scale is an arbitrary

nonempty closed subset of the real numbers. In time scales calculus, results are
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unified and extended. The theory of time scales is applied to unify discrete and

continuous analysis and to combine them in one comprehensive form. The three

most popular examples of calculus on time scales are differential calculus, difference

calculus, and quantum calculus, i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0}
where q > 1. The time scales calculus is studied as delta calculus, nabla calculus

and diamond–α calculus. This hybrid theory is also widely applied on dynamic

inequalities. Basic dynamic inequalities on time scales are given in [1]. Basic work on

dynamic inequalities is done by Agarwal, Anastassiou, Bohner, Peterson, O’Regan,

Saker and many other authors.

In this paper, it is assumed that all considerable integrals exist and are finite and

T is a time scale, a, b ∈ T with a < b and an interval [a, b]T means the intersection of

a real interval with the given time scale.

2. Preliminaries

We need here basic concepts of delta calculus. The results of delta calculus are

adopted from monographs [4, 5].

For t ∈ T, the forward jump operator σ : T → T is defined by

σ(t) := inf{s ∈ T : s > t}.

The mapping µ : T → R
+
0 = [0,+∞) such that µ(t) := σ(t)− t is called the forward

graininess function. The backward jump operator ρ : T → T is defined by

ρ(t) := sup{s ∈ T : s < t}.

The mapping ν : T → R
+
0 = [0,+∞) such that ν(t) := t− ρ(t) is called the backward

graininess function. If σ(t) > t, we say that t is right–scattered, while if ρ(t) < t, we

say that t is left–scattered. Also, if t < supT and σ(t) = t, then t is called right–dense,

and if t > inf T and ρ(t) = t, then t is called left–dense. If T has a left–scattered

maximum M , then T
k = T− {M}, otherwise T

k = T.
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For a function f : T → R, the delta derivative f∆ is defined as follows:

Let t ∈ T
k. If there exists f∆(t) ∈ R such that for all ǫ > 0, there is a neighborhood

U of t, such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ǫ|σ(t)− s|,

for all s ∈ U , then f is said to be delta differentiable at t, and f∆(t) is called the

delta derivative of f at t.

A function f : T → R is said to be right–dense continuous (rd–continuous), if it is

continuous at each right–dense point and there exists a finite left–sided limit at every

left–dense point. The set of all rd–continuous functions is denoted by Crd(T,R).

The next definition is given in [4, 5].

Definition 2.1. A function F : T → R is called a delta antiderivative of f : T → R,

provided that F∆(t) = f(t) holds for all t ∈ T
k. Then the delta integral of f is

defined by
∫ b

a

f(t)∆t = F (b)− F (a).

The following results of nabla calculus are taken from [3, 4, 5].

If T has a right–scattered minimum m, then Tk = T− {m}, otherwise Tk = T. A

function f : Tk → R is called nabla differentiable at t ∈ Tk, with nabla derivative

f∇(t), if there exists f∇(t) ∈ R such that given any ǫ > 0, there is a neighborhood

V of t, such that

|f(ρ(t))− f(s)− f∇(t)(ρ(t)− s)| ≤ ǫ|ρ(t)− s|,

for all s ∈ V .

A function f : T → R is said to be left–dense continuous (ld–continuous), provided

it is continuous at all left–dense points in T and its right–sided limits exist (finite)

at all right–dense points in T. The set of all ld–continuous functions is denoted by

Cld(T,R).
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The next definition is given in [3, 4, 5].

Definition 2.2. A function G : T → R is called a nabla antiderivative of g : T → R,

provided that G∇(t) = g(t) holds for all t ∈ Tk. Then the nabla integral of g is

defined by
∫ b

a

g(t)∇t = G(b)−G(a).

Now we present short introduction of diamond–α derivative as given in [1, 18].

Definition 2.3. Let T be a time scale and f(t) be differentiable on T in the ∆ and

∇ senses. For t ∈ T
k
k, where T

k
k = T

k ∩Tk, the diamond–α dynamic derivative f ⋄α(t)

is defined by

f ⋄α(t) = αf∆(t) + (1− α)f∇(t), 0 ≤ α ≤ 1.

Thus f is diamond–α differentiable if and only if f is ∆ and ∇ differentiable.

The diamond–α derivative reduces to the standard ∆–derivative for α = 1, or the

standard ∇–derivative for α = 0. It represents a weighted dynamic derivative for

α ∈ (0, 1).

Theorem 2.1 ([18]). Let f, g : T → R be diamond–α differentiable at t ∈ T and we

write fσ(t) = f(σ(t)), gσ(t) = g(σ(t)), f ρ(t) = f(ρ(t)) and gρ(t) = g(ρ(t)). Then

(i) f ± g : T → R is diamond–α differentiable at t ∈ T, with

(f ± g)⋄α(t) = f ⋄α(t)± g⋄α(t).

(ii) fg : T → R is diamond–α differentiable at t ∈ T, with

(fg)⋄α(t) = f ⋄α(t)g(t) + αfσ(t)g∆(t) + (1− α)f ρ(t)g∇(t).

(iii) For g(t)gσ(t)gρ(t) 6= 0, f

g
: T → R is diamond–α differentiable at t ∈ T, with

(

f

g

)⋄α

(t) =
f ⋄α(t)gσ(t)gρ(t)− αfσ(t)gρ(t)g∆(t)− (1− α)f ρ(t)gσ(t)g∇(t)

g(t)gσ(t)gρ(t)
.
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Definition 2.4 ([18]). Let a, t ∈ T and h : T → R. Then the diamond–α integral

from a to t of h is defined by
∫ t

a

h(s) ⋄α s = α

∫ t

a

h(s)∆s + (1− α)

∫ t

a

h(s)∇s, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.

Theorem 2.2 ([18]). Let a, b, t ∈ T, c ∈ R. Assume that f(s) and g(s) are ⋄α–
integrable functions on [a, b]T. Then

(i)
∫ t

a
[f(s)± g(s)] ⋄α s =

∫ t

a
f(s) ⋄α s±

∫ t

a
g(s) ⋄α s;

(ii)
∫ t

a
cf(s) ⋄α s = c

∫ t

a
f(s) ⋄α s;

(iii)
∫ t

a
f(s) ⋄α s = −

∫ a

t
f(s) ⋄α s;

(iv)
∫ t

a
f(s) ⋄α s =

∫ b

a
f(s) ⋄α s+

∫ t

b
f(s) ⋄α s;

(v)
∫ a

a
f(s) ⋄α s = 0.

Lemma 2.1 ([2]). Let T be a time scale, a, b ∈ T with a < b. Assume that f(x) and

g(x) are ⋄α–integrable functions on [a, b]T.

(i) If f(x) ≥ 0 for all x ∈ [a, b]T, then
∫ b

a
f(x) ⋄α x ≥ 0.

(ii) If f(x) ≤ g(x) for all x ∈ [a, b]T, then
∫ b

a
f(x) ⋄α x ≤

∫ b

a
g(x) ⋄α x.

(iii) If f(x) ≥ 0 for all x ∈ [a, b]T, then f(x) = 0 if and only if
∫ b

a
f(x) ⋄α x = 0.

3. Main Results

In this section, we give an extension of dynamic Kantorovich’s inequality.

Theorem 3.1. Let w, f, g ∈ C([a, b]T,R) be ⋄α–integrable functions and neither f ≡ 0

nor g ≡ 0. If p, q ∈ R, 0 < 1
q
≤ 1

p
< 1 and 1

p
+ 1

q
= 1, then

(3.1)

(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)

1

p
(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)

1

q

≤
[

1
p
(M1M2) +

1
q
(m1m2)

(M1m1)
1

q (M2m2)
1

p

]

(
∫ b

a

|w(x)||f(x)g(x)| ⋄α x

)

,
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with some positive constants m1, m2, M1 and M2 such that m1

M2

≤ |f(x)|
|g(x)|

≤ M1

m2

on the

set [a, b]T.

Proof. We have

(

1

p

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

− 1

q

m1

M2

)(∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

− M1

m2

)

≤ 0

⇒ 1

p

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

2

−
(

1

p

M1

m2
+

1

q

m1

M2

) ∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

+
1

q

M1m1

M2m2
≤ 0

⇒ 1

p

∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

2

+
1

q

M1m1

M2m2
≤
(

1

p

M1

m2
+

1

q

m1

M2

)∣

∣

∣

∣

f(x)

g(x)

∣

∣

∣

∣

.

Multiplying by |w(x)||g(x)|2, we get

(3.2)
1

p
|w(x)||f(x)|2 + 1

q

M1m1

M2m2

|w(x)||g(x)|2 ≤
(

1

p

M1

m2

+
1

q

m1

M2

)

|w(x)||f(x)g(x)|.

Now, we note that

(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)

1

p
(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)

1

q

=

(

M2m2

M1m1

)
1

q
(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)

1

p
(
∫ b

a

(

M1m1

M2m2

)

|w(x)||g(x)|2 ⋄α x

)

1

q

≤
(

M2m2

M1m1

)
1

q
(
∫ b

a

(

1

p
|w(x)||f(x)|2 + 1

q

M1m1

M2m2
|w(x)||g(x)|2

)

⋄α x

)

≤
(

M2m2

M1m1

)
1

q
∫ b

a

(

1

p

M1

m2

+
1

q

m1

M2

)

|w(x)||f(x)g(x)| ⋄α x,

where we have used the well-known Young’s inequality ζ
1

pη
1

q ≤ ζ

p
+ η

q
, valid for

nonnegative real numbers ζ and η, and then (3.2). Thus,

(3.3)

(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)

1

p
(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)

1

q

≤
(

M2m2

M1m1

)
1

q
(

1

p

M1

m2
+

1

q

m1

M2

)
∫ b

a

|w(x)||f(x)g(x)| ⋄α x.

Thus, (3.1) follows from (3.3). �
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Remark 1. If we set α = 1, T = Z, a = 1, b = n + 1, w(k) = wk ∈ [0,+∞),

f(k) = xk ∈ (0,+∞) and g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n, then (3.1) reduces

to (1.5).

Further, if we replace wk by wk

xk
and set m2 = yk = M2 = 1 for k = 1, 2, . . . , n, then

(1.5) reduces to (1.4).

Remark 2. We obtain the following results.

(1) If we set α = 1, T = Z, a = 1, b = n+1, xk > 0, w(k) = wk =
1
xk
, f(k) = xk

for k = 1, 2, . . . , n, m2 = g = M2 = 1 and p = q = 2, then (3.1) reduces to

the inequality given by P. Schweitzer [17] such that

(3.4)

(

1

n

n
∑

k=1

xk

)(

1

n

n
∑

k=1

1

xk

)

≤ (M1 +m1)
2

4M1m1

.

(2) If we set T = R, 0 < m1 ≤ f(x) ≤ M1, w(x) =
1

f(x)
, m2 = g = M2 = 1 and

p = q = 2, then (3.1) reduces to the inequality given by P. Schweitzer [17]

such that

(3.5)

∫ b

a

f(x)dx

∫ b

a

1

f(x)
dx ≤ (M1 +m1)

2

4M1m1
(b− a)2,

where f(x) and 1
f(x)

are integrable functions on [a, b].

(3) If we set α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ (0,+∞),

g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n and p = q = 2, then (3.1) reduces to

the inequality given by Pólya–Szegö [13] such that

(3.6)

(

n
∑

k=1

x2
k

)(

n
∑

k=1

y2k

)

(

n
∑

k=1

xkyk

)2 ≤







√

M1M2

m1m2

+
√

m1m2

M1M2

2







2

,

where 0 < m1 ≤ xk ≤ M1 and 0 < m2 ≤ yk ≤ M2 for k = 1, 2, . . . , n.

(4) If we set α = 1, T = Z, a = 1, b = n+ 1, xk > 0, yk ∈ R, w(k) = wk =
1
xk
y2k,

f(k) = xk for k = 1, 2, . . . , n, m2 = g = M2 = 1 and p = q = 2, then (3.1)



PATTERNS OF TIME SCALE DYNAMIC INEQUALITIES BY ... 405

reduces to the inequality given by L. V. Kantorovich [9] such that

(3.7)

(

n
∑

k=1

xky
2
k

)(

n
∑

k=1

1

xk

y2k

)

≤ 1

4

(

√

M1

m1
+

√

m1

M1

)2( n
∑

k=1

y2k

)2

,

and he pointed out that inequality (3.7) is a particular case of (3.6).

(5) If we set α = 1, T = Z, a = 1, b = n + 1, zk ∈ R, w(k) = wk = z2k,

f(k) = xk ∈ (0,+∞), g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n and p = q = 2,

then (3.1) reduces to the inequality given by Greub–Rheinboldt [7] such that

(3.8)

(

n
∑

k=1

x2
kz

2
k

)(

n
∑

k=1

y2kz
2
k

)

≤ (M1M2 +m1m2)
2

4M1M2m1m2

(

n
∑

k=1

xkykz
2
k

)2

,

where 0 < m1 ≤ xk ≤ M1 < ∞ and 0 < m2 ≤ yk ≤ M2 < ∞ for k =

1, 2, . . . , n.

Now, we give here the following two additive versions of dynamic Cassels’ inequal-

ity.

Corollary 3.1. Let w, f, g ∈ C([a, b]T,R) be ⋄α–integrable functions and neither

f ≡ 0 nor g ≡ 0. Then

(3.9) 0 ≤
{(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)}

1

2

−
∫ b

a

|w(x)||f(x)g(x)| ⋄α x ≤ (
√
M −√

m)2

2
√
Mm

∫ b

a

|w(x)||f(x)g(x)| ⋄α x

and

(3.10) 0 ≤
(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)

−
(
∫ b

a

|w(x)||f(x)g(x)| ⋄α x

)2

≤ (M −m)2

4Mm

(
∫ b

a

|w(x)||f(x)g(x)| ⋄α x

)2

,

where 0 < m ≤ |f(x)|
|g(x)|

≤ M on the set [a, b]T.
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Proof. Let p = q = 2, m = m1

M2

and M = M1

m2

. Subtracting
∫ b

a
|w(x)||f(x)g(x)| ⋄α x on

both sides of the inequality (3.1), we get the desired inequality (3.9).

Further, if p = q = 2, m = m1

M2

and M = M1

m2

, then inequality (3.1) reduces to

(3.11) 1 ≤

(

∫ b

a
|w(x)||f(x)|2 ⋄α x

)
1

2

(

∫ b

a
|w(x)||g(x)|2 ⋄α x

)
1

2

∫ b

a
|w(x)||f(x)g(x)| ⋄α x

≤ M +m

2
√
Mm

.

By taking the square and subtracting 1 on both sides of the inequality (3.11), respec-

tively, we get the desired inequality (3.10). �

Remark 3. If we set α = 1, T = Z, a = 1, b = n + 1, w(k) = wk ∈ [0,+∞),

f(k) = xk ∈ (0,+∞) and g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n, then (3.9) reduces

to (1.6) and (3.10) reduces to (1.7).

Next, we give the following two additive versions of the dynamic Pólya–Szegö

inequality.

Corollary 3.2. Let w, f, g ∈ C([a, b]T,R) be ⋄α–integrable functions and neither

f ≡ 0 nor g ≡ 0. Then

(3.12) 0 ≤
{(∫ b

a

|w(x)||f(x)|2 ⋄α x

)(∫ b

a

|w(x)||g(x)|2 ⋄α x

)}

1

2

−
∫ b

a

|w(x)||f(x)g(x)| ⋄α x ≤
(√

M1M2 −
√
m1m2

)2

2
√
M1M2m1m2

∫ b

a

|w(x)||f(x)g(x)| ⋄α x

and

(3.13) 0 ≤
(
∫ b

a

|w(x)||f(x)|2 ⋄α x

)(
∫ b

a

|w(x)||g(x)|2 ⋄α x

)

−
(
∫ b

a

|w(x)||f(x)g(x)| ⋄α x

)2

≤ (M1M2 −m1m2)
2

4M1M2m1m2

(
∫ b

a

|w(x)||f(x)g(x)| ⋄α x

)2

,

where 0 < m1 ≤ |f(x)| ≤ M1 < ∞ and 0 < m2 ≤ |g(x)| ≤ M2 < ∞ on the set [a, b]T.
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Proof. Setting p = q = 2 and subtracting
∫ b

a
|w(x)||f(x)g(x)| ⋄α x on both sides of

the inequality (3.1), we get the desired inequality (3.12).

Further, if p = q = 2, then inequality (3.1) reduces to

(3.14) 1 ≤

(

∫ b

a
|w(x)||f(x)|2 ⋄α x

)
1

2

(

∫ b

a
|w(x)||g(x)|2 ⋄α x

)
1

2

∫ b

a
|w(x)||f(x)g(x)| ⋄α x

≤ M1M2 +m1m2

2
√
M1M2m1m2

.

By taking the square and subtracting 1 on both sides of the inequality (3.14), respec-

tively, we get the desired inequality (3.13). �

Remark 4. Let α = 1, T = Z, a = 1, b = n + 1, w ≡ 1, f(k) = xk ∈ (0,+∞) and

g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n. Then inequality (3.12) reduces to

(3.15) 0 ≤
(

n
∑

k=1

x2
k

n
∑

k=1

y2k

)
1

2

−
n
∑

k=1

xkyk ≤
(√

M1M2 −
√
m1m2

)2

2
√
M1M2m1m2

n
∑

k=1

xkyk

and inequality (3.13) reduces to

(3.16) 0 ≤
n
∑

k=1

x2
k

n
∑

k=1

y2k −
(

n
∑

k=1

xkyk

)2

≤ (M1M2 −m1m2)
2

4M1M2m1m2

(

n
∑

k=1

xkyk

)2

,

where 0 < m1 ≤ xk ≤ M1 < ∞ and 0 < m2 ≤ yk ≤ M2 < ∞ for k = 1, 2, . . . , n.

Inequalities (3.15) and (3.16) are given in [6].

Remark 5. Let α = 1, T = Z, a = 1, b = n+ 1, w(k) = wk ∈ [0,+∞), f(k) = xk ∈
(0,+∞) and g(k) = yk ∈ (0,+∞) for k = 1, 2, . . . , n. Then inequality (3.12) reduces

to

(3.17) 0 ≤
(

n
∑

k=1

wkx
2
k

n
∑

k=1

wky
2
k

)
1

2

−
n
∑

k=1

wkxkyk

≤
(√

M1M2 −
√
m1m2

)2

2
√
M1M2m1m2

n
∑

k=1

wkxkyk
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and inequality (3.13) reduces to

(3.18) 0 ≤
n
∑

k=1

wkx
2
k

n
∑

k=1

wky
2
k −

(

n
∑

k=1

wkxkyk

)2

≤ (M1M2 −m1m2)
2

4M1M2m1m2

(

n
∑

k=1

wkxkyk

)2

,

where 0 < m1 ≤ xk ≤ M1 < ∞ and 0 < m2 ≤ yk ≤ M2 < ∞ for k = 1, 2, . . . , n.

Inequalities (3.17) and (3.18) are two additive versions of the Greub–Rheinboldt in-

equality as given in [6].

Remark 6. If we set α = 1, then we get delta versions and if we set α = 0, then

we get nabla versions of diamond–α integral operator inequalities presented in this

article.

Also, if we set T = Z, then we get discrete versions and if we set T = R, then we

get continuous versions of diamond–α integral operator inequalities presented in this

article.

4. Conclusion and Future Work

In this research article, we have presented many well–known dynamic inequalities

on time scales via the diamond–α integral, which is defined as a linear combination

of the delta and nabla integrals.

In the future research, we will continue to investigate generalizations of dynamic in-

equalities on time scales. Using this technique, we can also present higher dimensional

inequalities and in the fractional setting by using Riemann–Liouville type fractional

integral and fractional derivatives. A functional generalization is another technique

which is used to generalize inequalities. Quantum calculus and α, β-symmetric quan-

tum calculus are also applied to yield inequalities.
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The first and second inequalities given in (1.3) may be used to find many dynamic

inequalities such as Rogers–Hölder’s inequality, Lyapunov’s inequality, Radon’s in-

equality, Bergström’s inequality, Schlömilch’s inequality, the weighted power mean

inequality and Bernoulli’s inequality on time scales. Motivated by the works of

[11, 14, 15, 16], we can explore further results in harmonized and reconciled form.
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