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COMMON FIXED POINT FOR A SEQUENCE OF MULTIVALUED
(G, θ)-PREŠIĆ TYPE MAPS IN SYMMETRIC SPACES ENDOWED

WITH A GRAPH

SAADIA BENCHABANE (1) AND SMAÏL DJEBALI (2)

Abstract. We have obtained some new common fixed point results for a sequence

of multivalued (G, θ)-Prešić type mappings in a symmetric space equipped with a

graph. An example of application is provided. Some results from the literature are

extended or improved.

1. Introduction and preliminaries

Since its proof by Banach in 1922, the fixed point contraction principle has been

the subject of intensive research for the quest of generalization and/or improvements.

The extensions obtained so far concern either the structure of the metric space in

consideration or the involved self-mapping. We first quote Wilson [26] who introduced

in 1931 the concept of a symmetric space (or semi-metric) as a generalization of a

metric space. In a symmetric space, the triangular inequality is missing. Yet, several

fixed point results have been obtained in the setting of such spaces. The recent paper

[5] gives a unified approach to the theory. We also refer to [13], [15], [19], [23] and

references therein.
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In 2004, Ran and Reurings [22] proved an existence and uniqueness result for some

continuous order preserving mappings that satisfy the contraction condition only for

comparable ordered pairs in a complete metric space.

In 2008, another important direction of research was initiated by Jachymski [12]

who replaced the order contraction condition by another one on the edges of the

graph. For this purpose, he employed the concept of G-contraction. Then, many

authors extended the Banach G-contraction in different ways. We refer to [1]-[4], [6],

[9], and references therein.

In connection with the recent results in the literature, we are interested in Prešić’s

results [20, 21, 25] for mappings defined from the cartesian product Xk, for some

positive integer k into the metric space X . Prešić proved the following theorem.

Theorem 1.1. Let (X, d) be a complete metric space, k a positive integer, and T :

Xk → X a contraction on a product of metric spaces:

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤
i=k∑

i=1

αid(xi, xi+1),

for every x1, x2, . . . , xk+1 ∈ X, where α1, α2, . . . , αk are nonnegative constants such

that α1 + α2 + . . . + αk < 1. Then there exists a unique point x ∈ X such that

T (x, x, . . . , x) = x. Moreover, if x1, x2, . . . , xk are arbitrary points in X and for

n ∈ N, xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence (xn)n is convergent and

lim
n→∞

xn = T ( lim
n→∞

xn, lim
n→∞

xn, . . . , lim
n→∞

xn).

We also mention Jleli and Samet results in [14], where the definition of a θ-

contraction is introduced and where a generalization of the Banach contraction prin-

ciple is proved. They denoted by Θ the set of all functions θ : [0,∞) → [1,∞) which

satisfy the following conditions:

(Θ1) θ is non-decreasing,
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(Θ2) for each sequence (tn)n ⊂ [0,∞), lim
n→∞

θ(tn) = 1 if and only if lim
n→∞

tn = 0+,

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that lim
t→0+

θ(t)−1
tr

= l.

Our aim in this paper is to prove a common fixed point theorem for a sequence of

multivalued (G, θ)-Prešić type mappings in a symmetric space endowed with a graph.

The main existence theorem is presented in Section 2 together with an example of

application. Three corollaries are then given in Section 3. We first collect some basic

notions and primary results we need to develop subsequent results. N will refer to

the set of positive integers.

Definition 1.1. [26] For a nonempty set X , a function D : X ×X → [0,∞) is said

to be semi-metric on X if for any x1, x2 ∈ X, the following conditions are satisfied:

(W1) D(x1, x2) = 0 if and only if x1 = x2,

(W2) D(x1, x2) = D(x2, x1).

(X,D) is known as a symmetric space. For a semi-metric D on a set X with r∗ > 0

and x0 ∈ X, we set

B(x0, r
∗) = {x ∈ X : D(x0, x) < r∗}.

The topology τD = {U} on (X,D) is defined as follows: for every x0 ∈ U, there is

a r∗ > 0 with B(x0, r
∗) ⊂ U . Then U is called an open neighborhood of x0. Note

that a symmetric space need not be a Hausdorff space [7]. However the notion of

D-convergence of sequences can be defined as in metric spaces:

lim
n→∞

xn = x ⇐⇒ lim
n→∞

D(xn, x) = 0.

For a symmetric space (X,D), some changes are used with regards to the missing

triangle inequality. Let (xn)n, (yn)n, and (zn)n be given sequences in a symmetric

space (X,D) and x0, y0 elements of X . Consider the following properties:

(W3) lim
n→∞

D(xn, x0) = 0 and lim
n→∞

D(xn, y0) = 0 imply x0 = y0,

(W4) lim
n→∞

D(xn, x0) = 0 and lim
n→∞

D(xn, yn) = 0 imply lim
n→∞

D(yn, x0) = 0,
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(W) lim
n→∞

D(xn, yn) = 0 and lim
n→∞

D(yn, zn) = 0 imply lim
n→∞

D(xn, zn) = 0,

(JMS) lim
n→∞

D(xn, yn) = 0 and lim
n→∞

D(yn, zn) = 0 implies lim
n→∞

D(xn, zn) 6= ∞,

(CC) lim
n→∞

D(xn, x0) = 0 imply lim
n→∞

D(xn, y0) = D(x0, y0),

(SC) lim
n→∞

D(xn, x0) = 0 imply lim
n→∞

D(xn, y0) ≤ D(x0, y0).

Remark 1. Properties (W3) and (W4) were given in Wilson [26], (W) in Miheţ [16],

(JMS) was introduced by Jachymski et al. [13], (CC) in Cho et al. [8] (see, also

[7]), and (SC) was suggested by Aranelovic and Keckic in [5]. If the topology τD is a

Hausdorff space induced by the semi-metric, then (W3) is satisfied.

Definition 1.2. [11, 13] In a symmetric space (X,D), a given sequence (xn) is said

to be a D-Cauchy sequence whenever for every ε > 0, there exists nε ∈ N such

that D(xn, xm) < ε, for m,n ≥ nε. The symmetric space (X,D) is called D-Cauchy

complete if every D-Cauchy sequence (xn)n in X is D-convergent.

Definition 1.3. [10] A symmetric space (X,D) is calledD-complete if
∞∑
n=1

D(xn+1, xn) <

+∞ implies the D-convergence of (xn).

Definition 1.4. [17] Assume that (X,D) is a symmetric space and Y is a nonempty

subset of X . We say that

(i) Y is D-closed if Y = Y , where

Y = {x ∈ X : D(x, Y ) = 0} and D(x, Y ) = inf{D(x, y) : y ∈ Y }.

(ii) Y is D-bounded if δD(Y ) < +∞, where

δD(Y ) = sup{D(y1, y2) : y1, y2 ∈ Y }.

The definition given below is that of a generalized Hausdorff distance.
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Definition 1.5. [17] Assume that (X,D) is a given symmetric space and CD(X) is

a nonempty collection of closed subsets of X and CBD(X) is a nonempty collection

of closed bounded subsets of X . For X1, X2 in CBD(X), define

δD(X1, X2) = sup{D(x1, X2) : x1 ∈ X1}

and

HD(X1, X2) = max{δD(X1, X2), δD(X2, X1)}.

HD is known as the Pompeiu-Hausdorff semi-metric on CBD(X).

The second part of this introduction concerns graph and fixed point theories. A

graph G is a pair (V,E), where V is a nonempty set and E is a subset of a given

binary relation on V . Elements of E are called edges and are denoted E(G) and

elements of V , denoted V (G), are called vertices. If the direction is imposed on E,

that is when the edges are directed, we get a directed graph, shortened as a digraph.

Suppose that any two vertices of G cannot be connected by more than one edge.

Then G is denoted by the pair (V (G), E(G)). If there exists an edge between each

pair of vertices, then the graph G is said to be complete. For any two vertices x and y,

we say that there is a path in G between x to y if there exists a finite sequence (xn)n,

n ∈ {1, 2, . . . , k} of vertices such that x = x1, x2, . . . , xk = y and (xn−1, xn) ∈ E(G),

where n ∈ {1, 2, . . . , k}. G is said to be connected if there is a path connecting every

two vertices. G̃ stands for the undirected graph of G when the direction of edges is

ignored. G is called weakly connected when G̃ is connected. G−1 refers to the reverse

direction graph of G. We have

E(G−1) = {(x1, x2) ∈ X ×X : (x2, x1) ∈ E(G)}.

Let G be a directed graph with symmetric edges and G̃ its undirected graph. Then

E(G̃) = E(G−1) ∪ E(G).
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The following definition of G-Hd-Prešić contraction is given by Shahzad and Shukla

[24].

Definition 1.6. Let (X, d) be a metric space endowed with a graph, k a positive

integer, and T : Xk → CB(X) a mapping. Suppose that for every path (xi)
i=k+1
i=1 of

k + 1 vertices in G, the following conditions are verified:

(GP1) There exist nonnegative constants αi’s such that
∑i=k

i=1 αi < 1 and

H(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤
i=k∑

i=1

αid(xi, xi+1).

(GP2) If xk+1 ∈ T (x1, x2, . . . , xk) and xk+2 ∈ T (x2, x3, . . . , xk+1) are such that

d(xk+1, xk+2) < max{d(xi, xi+1) : i = 1, 2, . . . , k}, then (xk+1, xk+2) ∈ E(G).

Then the mapping T is called a set-valued G-Prešić operator.

Throughout this paper, we assume that (X,D) is a symmetric space. Let G =

(V (G), E(G)) be a directed graph without parallel edges such that V (G) = X and

let the diagonal of X ×X be contained in E(G).

2. Main result

The authors of [2, 3] discussed Definition 1.6 and found that condition (GP2) is

not appropriate. Here is a counter-example inspired from [4, Example 1.6].

Example 2.1. Let X = R
2 endowed with the Euclidean distance d and k = 2. The

graph G = (V (G), E(G)) is defined by V (G) = X and

E(G) = {((u1, u2), (v1, v2)) ∈ R
2 × R

2, u1 + u2 ≤ v1 + v2}.

Let T : X2 → CB(X) be a multivalued mappings defined by

T (x, y) = {(u, v) ∈ R
2,
√
u2 + v2 ≤ 5}, ∀x, y ∈ R

2.
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Since T is a constant multivalued mapping, then it is a set-valued Prešić type con-

traction. Therefore, T must be a set-valued G-Prešić operator but the condition

(GP2) fails. Indeed, if (x1, x2, x3, x4) = ((0, 3), (3, 3), (4, 2), (3, 1)), then (xi)
i=3
i=1 is

a path of 3 vertices in G, x3 ∈ T (x1, x2), x4 ∈ T (x2, x3) and
√
2 = d(x3, x4) <

max{d(x1, x2), d(x2, x3)} = max{3,
√
2} = 3 while (x3, x4) /∈ E(G).

Therefore we suggest the following definition as an alternative for Definition 1.6.

Definition 2.1. Let (X,D) be a symmetric space endowed with a graph G, k a

positive integer, and (Tn)n a sequence of multivalued mappings of Xk into CD(X).

Then the sequence (Tn)n is called (G, θ)-Prešić sequence if for every path (xi)
i=k+1
i=1

of k + 1 vertices in G, the following conditions hold:

(i) if xk+1 ∈ Tp(x1, x2, . . . , xk), there exists xk+2 ∈ Tq(x2, x3, . . . , xk+1) such that

(xk+1, xk+2) ∈ E(G),

(ii) θ(D(xk+1, xk+2)) ≤ θ(max{D(xi, xi+1) : 1 ≤ i ≤ k})λ,
for p, q = 1, 2, . . ., where λ ∈ (0, 1) and θ ∈ Θ.

Remark 2. If (Tn)n is a (G, θ)-Prešić sequence, then (Tn)n is both a (G−1, θ)-Prešić

sequence and a (G̃, θ)-Prešić sequence.

Let us recall the property (A⋆) which is similar to the property that was given in

[12].

Definition 2.2. Let (X,D) be a symmetric space endowed with a directed graph G.

We say that the triplet (X,D,G) has property (A⋆) if for any sequence (xn)n in X , if

xn → x in τD and (xn, xn+1) ∈ E(G) for all n ∈ N, then (xn, x) ∈ E(G) for all n ∈ N.

We state and prove the existence results of common fixed points for a (G, θ)-Prešić

sequence of multivalued mappings.
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Theorem 2.1. Let (X,D) be a D-complete symmetric space endowed with a directed

graph G satisfying (W4) and such that the triple (X,D,G) has the property (A⋆). Let

k be a positive integer and (Tn)n a (G, θ)-Prešić sequence of multivalued mappings

of Xk into CD(X). Suppose that there exists a path (xi)
i=k+1
i=1 of k + 1 vertices in G

such that xk+1 ∈ T1(x1, x2, . . . , xk). Then (Tn)n has a common fixed point, i.e., there

exists x ∈ X such that x ∈
⋂
n∈N

Tn(x, . . . , x).

Proof.

(a) Construction of a convergent sequence in (X,D) . Suppose that there is a

path (xi)
i=k+1
i=1 of k+1 vertices in G such that xk+1 ∈ T1(x1, x2, . . . , xk). Since (Tn)n is

a (G, θ)-Prešić sequence of multivalued mappings, there exists xk+2 ∈ T2(x2, x3, . . . , xk+1)

such that (xk+1, xk+2) ∈ E(G) and

θ(D(xk+1, xk+2)) ≤ θ(max{D(xi, xi+1) : 1 ≤ i ≤ k})λ.

Since (xi)
k+2
i=2 is a path of k + 1 vertices in G, xk+2 ∈ T2(x2, x3, . . . , xk+1), and

(Tn)n∈N is a (G, θ)-Prešić sequence of multivalued mappings, there exists xk+3 ∈
T3(x3, x4, . . . , xk+2) such that (xk+2, xk+3) ∈ E(G) and

θ(D(xk+2, xk+3)) ≤ θ(max{D(xi+1, xi+2) : 1 ≤ i ≤ k})λ.

By induction, we construct a sequence (xn)n such that (xn, xn+1) ∈ E(G), xn+k ∈
Tn(xn, xn+1, . . . , xn+k−1) for all n ∈ N and

(2.1) θ(D(xn+k, xn+k+1)) ≤ θ(max{D(xn+i−1, xn+i) : 1 ≤ i ≤ k})λ, ∀n ∈ N.

Let ν = max{θ(D(xi, xi+1))
λ

−i
k : 1 ≤ i ≤ k}. We show that

(2.2) θ(D(xn, xn+1)) ≤ νλ
n
k , ∀n ∈ N.
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By the definition of ν, it is clear that inequality (2.2) holds for n = 1, . . . , k. Let the

k inequalities

θ(D(xn, xn+1)) ≤ νλ
n
k , θ(D(xn+1, xn+2)) ≤ νλ

n+1
k , . . . , θ(D(xn+k−1, xn+k)) ≤ νλ

n+k−1
k

be the induction hypothesis. By (2.1) and the definition of θ, we obtain that for all

n ∈ N

θ(D(xn+k, xn+k+1))) ≤ θ(max{D(xn+i−1, xn+i) : 1 ≤ i ≤ k})λ

= max{θ(D(xn+i−1, xn+i)) : 1 ≤ i ≤ k}λ

≤ max{νλ
n+i−1

k : 1 ≤ i ≤ k}λ

= (νλ
n
k )λ

= νλ
n+k
k ,

which completes the inductive proof of (2.2). Taking the limit as n → ∞ in (2.2), we

get θ(D(xn, xn+1)) → 1. By definition of θ, D(xn, xn+1) → 0, as n → ∞. By (Θ3),

there exist r ∈ (0, 1) and l ∈ (0,+∞] such that

lim
n→∞

θ(D(xn, xn+1))− 1

[D(xn, xn+1)]r
= l.

• Let l < ∞ and B = l
2
. By the definition of the limit, there exists a positive integer

n0 such that for all n ≥ n0

∣∣∣
θ(D(xn, xn+1))− 1

[D(xn, xn+1)]r
− l

∣∣∣ ≤ B.

This implies

θ(D(xn, xn+1))− 1

[D(xn, xn+1)]r
≥ B.

Then

n[D(xn, xn+1)]
r ≤ An[θ(D(xn, xn+1))− 1],

where A = 1
B
.

• Let l = ∞ and B > 0 be an arbitrary positive number. By the definition of the
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limit, there exists n0 ∈ N such that, for all n ≥ n0

θ(D(xn, xn+1))− 1

[D(xn, xn+1)]r
≥ B.

Then for all n ≥ n0

n[D(xn, xn+1)]
r ≤ An[θ(D(xn, xn+1))− 1],

where A = 1
B
.

Thus, in all cases, there exist A > 0 and n0 ∈ N such that

n[D(xn, xn+1)]
r ≤ An[θ(D(xn, xn+1))− 1].

By (2.2), we obtain

n[D(xn, xn+1)]
r ≤ An

[
[νλ

n
k − 1

]
,

for all n ≥ n0. Taking the limit as n → ∞, we get

lim
n→+∞

n[D(xn, xn+1)]
r = 0.

From the definition of the limit, there exists n1 ∈ N such that, for all n ≥ n1

n[D(xn, xn+1)]
r ≤ 1.

Therefore, for all n ≥ n1

D(xn, xn+1) ≤
1

n
1

r

·

Hence,

∞∑
n=1

D(xn, xn+1) ≤
n1−1∑
n=1

D(xn, xn+1) +
∞∑

n=n1

1

n
1
r
< ∞.

Since (X,D) is a D-complete symmetric space, there exists x ∈ X such that

lim
n→∞

D(xn, x) = 0 in τD.
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(c) x is a common fixed point of (Tn)n∈N. We show that x ∈
⋂
n∈N

Tn(x, . . . , x). Sup-

pose that x /∈
⋂
n∈N

Tn(x, . . . , x), i.e., there exists m ∈ N such that x /∈ Tm(x, . . . , x).

By Property (A⋆), (xn, x) ∈ E(G), for each n ∈ N. Since (Tn)n is a (G, θ)-Prešić se-

quence of multivalued mappings and xn+k ∈ Tn+k(xn, xn+1, . . . , xn+k−1), there exists

y1n ∈ Tm(xn+1, xn+2, . . . , xn+k−1, x) such that (xn+k, y
1
n) ∈ E(G) and

θ(D(xn+k, y
1
n)) ≤ θ(max{D(xn, xn+1), D(xn+1, xn+2), . . . , D(xn+k−1, x)})λ.

Taking the limit as n → ∞, we obtain lim
n→+∞

θ(D(xn+k, y
1
n)) = 1. By definition of θ,

D(xn+k, y
1
n) → 0, as n → ∞. By (W4), D(y1n, x) → 0, as n → ∞.

Since (Tn)n is a (G, θ)-Prešić sequence of multivalued mappings and

y1n ∈ Tm(xn+1, xn+2, . . . , xn+k−1, x),

there exists y2n ∈ Tm(xn+2, xn+3, . . . , xn+k−1, x, x) such that (y2n, y
1
n) ∈ E(G) and

θ(D(y2n, y
1
n)) ≤ θ(max{D(xn+1, xn+2), D(xn+2, xn+3), . . . , D(xn+k−1, x), D(x, x)})λ.

As n → ∞, we obtain lim
n→+∞

θ(D(y2n, y
1
n)) = 1. By definition of θ, D(y2n, y

1
n) → 0,

as n → ∞. By (W4), D(y2n, x) → 0, as n → ∞. We repeat the process until we

arrive at yk−1
n ∈ Tm(xn+k−1, x, . . . , x) and D(yk−1

n , x) → 0, as n → ∞. Since (Tn)n

is a (G, θ)-Prešić sequence of multivalued mappings and yk−1
n ∈ Tm(xn+k−1, x, . . . , x),

there exists ykn ∈ Tm(x, . . . , x) such that (yk−1
n , ykn) ∈ E(G) and

θ(D(yk−1
n , ykn)) ≤ θ(max{D(xn+k−1, x), D(x, x), . . . , D(x, x)})λ.

As n → ∞, we get lim
n→+∞

θ(D(yk−1
n , ykn)) = 1. By definition of θ, D(yk−1

n , ykn) → 0

as n → ∞. Using (W4), we get D(ykn, x) → 0, as n → ∞ which in turn im-

plies D(x, Tm(x, . . . , x)) = 0. Since T (x, . . . , x) is closed in τD, we deduce that

x ∈ Tm(x, . . . , x) which is a contradiction. Hence x ∈
⋂
n∈N

Tn(x, . . . , x) which shows

that x is a common fixed point of (Tn)n. �
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Example 2.2. Let X = { 1
2i

: i ∈ N} ∪ {0} be the set with the semi-metric D :

X ×X → [0,+∞) defined by

D(x, y) =






0, if x = y,

1
2i
, if x = 1

2i
, y = 0 or x = 0, y = 1

2i
,

1
2i+j , if x = 1

2i
, y = 1

2j
or x = 1

2j
, y = 1

2i
·

Note that the function D is not a metric. Indeed, for j > i+ 1, we have

1

2i
= D

(
1

2i
, 0

)
> D

(
0,

1

2j

)
+D

(
1

2j
,
1

2i

)
=

2i + 1

2i+j
·

The graph G = (V (G), E(G)) is defined by V (G) = X and

E(G) = {(x, x), x ∈ X} ∪
{(

1

2i
,

1

2i+1

)
,

(
1

2i
, 0

)
: i ∈ N

}
.

Let θ(t) = et
√
t and λ = 1

2
, and Tn : X2 → CD(X) be a sequence of multivalued

mappings defined by

Tn(x, y) =






{x}, if x = y ∈ {0, 1
2
},

{
1

2i+2 ,
1

2i+4 , . . . ,
1

2i+4+n

}
, if x = 1

2i
, y = 1

2i+1 ,
{

1
22

}
, if otherwise.

We claim that (Tn)n is (G, θ)-Prešić sequence. We distinguish four cases:

•Case 1. If (x1, x2, x3) =
(

1
2i
, 1
2i+1 ,

1
2i+2

)
, then

(i) x3 =
1

2i+2 ∈ Tp(x1, x2) = { 1
2i+2 ,

1
2i+4 , . . . ,

1
2i+4+p} and

Tq(x2, x3) = { 1
2i+3 ,

1
2i+4 , . . . ,

1
2i+5+q }. Let x4 =

1
2i+3 , then (x3, x4) ∈ E(G) and

(ii) e
1

22i+5

√

1

22i+5 ≤ e
1

22i+2

√

1

22i+1 .

•Case 2. If (x1, x2, x3) =
(

1
2i
, 1
2i
, 1
22

)
, i 6= 1, then

(i) x3 = 1
22

∈ Tp(x1, x2) = { 1
22
} and Tq(x2, x3) = { 1

22
}. Let x4 = 1

22
, then (x3, x4) ∈

E(G) and

(ii) 1 ≤ e
1

2i+3

√

1

2i+2 .

•Case 3. If (x1, x2, x3) = (1
2
, 1
2
, 1
2
), then

(i) x3 =
1
2
∈ Tp(x1, x2) = {1

2
} and Tq(x2, x3) = {1

2
}. Let x4 =

1
2
, then (x3, x4) ∈ E(G)
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and

(ii) 1 ≤ 1.

•Case 4. If (x1, x2, x3) = (0, 0, 0), then

(i) x3 = 0 ∈ Tp(x1, x2) = {0} and Tq(x2, x3) = {0}. Let x4 = 0, then (x3, x4) ∈ E(G)

and

(ii) 1 ≤ 1.

Appealing to Theorem 2.1, we conclude that (Tn)n has a common fixed point. Ac-

tually, we have 0 ∈
⋂
n∈N

Tn(0, 0) and
1
2
∈

⋂
n∈N

Tn(
1
2
, 1
2
).

3. Consequences

Taking Tn = T for all n ∈ N in Theorem 2.1, we obtain the following fixed point

result for set-valued (G, θ)-Prešić type which generalizes the results of Prešić [21],

Nadler [18], as well as the recent results of [14, 24] and several known results in

metric spaces.

Corollary 3.1. Let (X,D) be a D-complete symmetric space endowed with a directed

graph G satisfying (W4) and suppose that the triple (X,D,G) has the property (A⋆).

Let k be a positive integer and suppose that the mapping T : Xk → CD(X) satisfies

the following conditions:

for every path (xi)
i=k+1
i=1 of k + 1 vertices in G, we have

(i) if xk+1 ∈ T (x1, x2, . . . , xk), then there exists xk+2 ∈ T (x2, x3, . . . , xk+1) such that

(xk+1, xk+2) ∈ E(G) and

(ii) θ(D(xk+1, xk+2)) ≤ θ(max{D(xi, xi+1) : 1 ≤ i ≤ k})λ, where λ ∈ (0, 1) and

θ ∈ Θ.

If there exists a path (xi)
i=k+1
i=1 of k+1 vertices in G such that xk+1 ∈ T (x1, x2, . . . , xk),

then T has a fixed point, i.e., there exists x ∈ X such that x ∈ T (x, x, . . . , x).

Let θ(t) = e
√
t and λ =

√
α in Corollary 3.1. Then we obtain
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Corollary 3.2. Let (X,D) be a D-complete symmetric space endowed with a directed

graph G satisfying (W4) and suppose that the triple (X,D,G) has the property (A⋆).

Let k be a positive integer and suppose that the mapping T : Xk → C(X) satisfies

the following conditions:

for every path (xi)
i=k+1
i=1 of k + 1 vertices in G, we have

(i) if xk+1 ∈ T (x1, x2, . . . , xk) there exists xk+2 ∈ T (x2, x3, . . . , xk+1) such that

(xk+1, xk+2) ∈ E(G) and

(ii) D(xk+1, xk+2) ≤ αmax{D(xi, xi+1) : 1 ≤ i ≤ k}, where α ∈ (0, 1).

If there exists a path (xi)
i=k+1
i=1 of k+1 vertices in G such that xk+1 ∈ T (x1, x2, . . . , xk),

then T has a fixed point.

The following result is an immediate consequence of Corollary 3.2.

Corollary 3.3. Let (X,D) be a D-complete symmetric space satisfying (W4), k a

positive integer, and T : Xk → CBD(X) a mapping satisfying the following condition:

HD(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤ αmax{D(xi, xi+1) : 1 ≤ i ≤ k},

for every x1, x2, . . . , xk+1 ∈ X, where α < 1. Then T has a fixed point.
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