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SOLVING THE OPTIMAL CONTROL OF VOLTERRA-FREDHOLM

INTEGRO-DIFFERENTIAL EQUATION VIA MÜNTZ

POLYNOMIALS

NEDA NEGARCHI (1) AND SAYYED YAGHOUB ZOLFEGHARIFAR (2)

Abstract. The main goal of the current paper is to present a direct numeri-

cal method for solving optimal control problem for systems governed by Volterra-

Fredholm integro-differential equation. This method is based upon a new form of or-

thogonal Müntz-Legendre polynomials, and collocation method to transform the op-

timal control problem to a nonlinear programming problem with finite-dimensional.

The accuracy and efficiency of the proposed method are examined with illustrative

examples.

1. Introduction

One of the most radical theoretical methods in mathematics is optimal control. Its

history dates back to the middle of the last century. By introducing optimal control

in the 1960s, various approaches have been proposed for solving optimal control

problem (OCP). The aim of all these techniques is to provide efficient algorithms

for calculating the exact solution. Belbas studied several numerical methods for

solving the OCP governed by Volterra integral equations (VIE) [2]. Schmidt has used

direct and indirect approaches to calculate the OCP governed by VIE and differential
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equations [29] Also, another numerical technique in [24, 8] based on the discretization

of the OCP and its transformation into an optimization problem. Among all of

the techniques for solving OCPs, orthogonal functions and polynomials have been

considered by a large number of researchers. Tohidi and Samadi [33] used Legendre

polynomials to solve OCP governed by VIE and integro-differential equations. More

research can be found in Razzaghi and Elnagar [25] and Ross and Fahroo [27] and

other researchers [11, 15, 17, 31, 34, 16]. This method is based on the approximation

of the state and control functions in terms of the basic functions and orthogonal

polynomials. In here, new form of the Müntz-Legendre polynomial is introduced,

which are a family of orthogonal polynomials. The orthogonal Müntz systems were

introduced by the Armenian mathematicians Badalyan [3] and Taslakyan [32]. Next,

they were assessed by Mc Carthy, Sayre and Shawye [18] and then reassessed by

Borwein and Erdelyi [6]. For more details see [19, 30, 20]. In this work, we consider

a class of OCP governed by Volterra-Fredholm integro-differential equation (VFIDE)

which is described by the following minimization problem.

Problem 1:

(1.1)

Min Q(y, u) =
∫ T

0
G(t, y(t), u(t))dt,

s.t x′(t) = f(t) + ϑ1(t)x(t) + ϑ2(t)u(t) + λ1
∫ t

0
k1(t, τ, x(τ), u(τ))dτ+

λ2
∫ T

0
k2(t, τ, x(τ), u(τ))dτ,

x(0) = x0, t ∈ [0, T ],

where f(x) is continuous and known, λ1 and λ2 are real constants. x(t) and u(t) are

real-valued function and continuous. Also both belong to Sobolev space W r,∞ with

r ≥ 2 (see [1, 9]).

The OCP is usually expressed by two types of function, namely the state and control

functions (x(t),u(t)). The control function directs the evolution of the system from



SOLVING THE OPTIMAL CONTROL OF VOLTERRA-FREDHOLM ... 455

one step to the next, and the state function describes the behavior of the system.

In optimal control, the state and control functions are both unknown. Due to the

simplicity and efficiency of the orthogonal polynomials, we use the Müntz-Legender

polynomials to determine x(t) and u(t).

The rest of work is organized as follows: In section 2, respectively, Müntz-Legendre

polynomial, and some of their properties are expressed. In section 3, the description

of the method is performed for solving control problem 1. Then, in the next section,

the convergence of the method is expressed under several lemma and theorem. Also,

the proposed method is applied to some examples to show the accuracy and efficiency

of the method in section 5. The conclusion of this work is given in section 6.

2. Orthogonal Müntz-Legendre polynomials

In this research, the Müntz polynomials and their basic properties recalled. Ini-

tially, the orthogonal Müntz systems were introduced by the Armenian mathemati-

cians Badalyan [3] and Taslakyan [32]. Next, they were assessed by Mc Carthy, Sayre

and Shawyer [18], and then reassessed by Borwein and Erdélyi [6]. For more details

see [19, 20, 21, 30].

Let Λ = {λi}
∞
i=0 be a sequence of distinct non negative real with 0 ≤ λ0 < λ1 <

... → ∞ for which the Müntz space Mn(Λ) = span
{

xλ0 , xλ1 , ..., xλn
}

is dense in

C[0, 1]. The celebrated Müntz theorem asserts that for the sequence Λ = {λi}
∞
i=0,

the elements of the form
n
∑

i=0

aix
λi as the Müntz polynomials are dense in L2[0, 1] if

and only if
∞
∑

i=0

λ−1
i = ∞. (see[5, 7]) In the following, the orthogonal Müntz-Legendre

polynomials introduced on [0, 1] with respect to weight function w(x) = 1. In the

case λi > −1/2 for all i, and λi 6= λv for all i 6= v,

(2.1) Ln(x) =
n

∑

i=0

cn,ix
λi , cn,i =

n−1
∏

v=0

(λi + λv + 1)

n
∏

v=0,v 6=i

(λi − λv)
.
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The Müntz-Legendre polynomials satisfy the following relations: (see [21, 22, 23])

(2.2) xL′
j(x)− xL′

j−1(x) = αjLj(x) + (1 + ᾱj−1)Lj−1(x), j = 1, 2, 3, . . . ,

(2.3) xL′′
j (x) = (αj − 1)L′

j(x) +

j−1
∑

k=0

(αk + αk + 1)L′
k(x), j = 0, 1, 2, . . . .

3. Description of method

In this section, we present the discretization process of Problem (1).

Consider the dynamic system of the Problem (1) as follows:

(3.1)

x′(t) = f(t) + ϑ1(t)x(t) + ϑ2(t)u(t)+

λ1
∫ t

0
k1(t, τ, x(τ), u(τ))dτ + λ2

∫ T

0
k2(t, τ, x(τ), u(τ))dτ,

t ∈ [0, T ].

The transformation of an integral differential equation to the integral equation is

done by integrating. So, integrating from Eq. (3.1) on [0, T ] leads to:

(3.2)

x(t) = x0 +
∫ t

0
(ϑ1(τ)u(τ) + ϑ2(τ)u(τ) + p(τ))dτ,

p(t) = f(t) + λ1
∫ t

0
k1(t, τ, x(τ), u(τ))dτ + λ2

∫ T

0
k2(t, τ, x(τ), u(τ))dτ, t ∈ [0, T ],

In the following, the dynamic system is discretized using the set of shifted LGL points

(ξi, i = 0, 1, .., N) as:

(3.3)

x(ξi) = x0 +
∫ ξi

0
(ϑ1(τ)x(τ) + ϑ2(τ)u(τ) + p(τ))dτ,

p(ξi) = f(ξi) + λ1
∫ ξi

0
k1(ξi, τ, x(τ), u(τ))dτ + λ2

∫ T

0
k2(ξi, τ, x(τ), u(τ))dτ.
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Now, using linear transformation τ = τ̂i(η) = ξi
2
(η + 1) and τ = τ̃i(η) = T

2
(η +

1) transform the interavels [0, T ] and [0, ξi] into [−1, 1].

Then, the Legendre-Gauss-Lobatto (LGL) quadrature applied for approximating

Eq. (3.4) as:

x(ξi) ≈ x0 + ( ξi
2
)

N
∑

j=0

ωj(ϑ1(τ̂i(ηj)) x(τ̂i(ηj)) + ϑ2(τ̂i(ηj)) u(τ̂i(ηj))+p(τ̂i(ηj))),

(3.4)

p(ξi) = f(ξi) + λ1(
ξi
2
)

N
∑

j=0

ωjk1(ξi, τ̂i(τj), x(τ̂i(τj)), u(τ̂i(τj)))+

λ2(
T
2
)

N
∑

j=0

ωjk2(ξi, τ̃i(τj), x(τ̃i(τj)), u(τ̃i(τj))),

where η0 = −1, ηN = 1 and τj, j = 1, 2, ..., N − 1 are the LGL nodes and the LGL

weights are

ωj = 2/(N(N + 1)(pN(ξj))
2), j = 0, 1, ..., N. Notice that pN(x) is the Legendre

polynomial of Nth degree.

Also,

(3.5)
∫ T

0
G(t, x(t), u(t))dt = (T

2
)
∫ 1

−1
G(T

2
(ξ + 1)), xN(

T
2
(ξ + 1)), uN(

T
2
(ξ + 1))dξ

≈ (T
2
)

N
∑

j=0

ωjG(
T
2
(ξj + 1), xN(

T
2
)(ξj + 1)), uN(

T
2
(ξj + 1)) =

N
∑

j=0

γjG(ζj, xNζj, uNζj).

Then, nonlinear programming (NLP) problem is given by:

Problem 2:

(3.6)

Min JN(X,U)

s.t Ri(X,U) +Wi(P ) = −x0,

Hi(X,U)− p̂i = −f(ξi ), i = 0, 1, ..., N,

where X = (x̂0, x̂1, ..., x̂N ), U = (û0, û1, ..., ûN) and P = (p̂0, p̂1, ..., p̂N) are the un-

known parameters, and
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JN (X,U) :=
T
2

N
∑

j=0

ωjG(
T
2
(ξj+1), xN (

T
2
(ξj+1)), uN(

T
2
(ξj+1))) =

N
∑

j=0

γjG(ζj, x̂j , ûj),

Ri(X,U) := −x(ξi) + ( ξi
2
)

N
∑

j=0

ωj(ϑ1(τ̂i(ηj) x(τ̂i(ηj)) + ϑ2(τ̂i(ηj))u(τ̂i(ηj)),

Wi(P ) := ( ξi
2
)

N
∑

j=0

ωjp(τ̂i(ηj)),

Hi(X,U) := λ1(
ξi
2
)

N
∑

j=0

ωjk1(ξi, τ̂i(ηj), x(τ̂i(ηj)), u(τ̂i(ηj)))+

λ2(
T
2
)

N
∑

j=0

ωjk2(ξi, τ̃i(ηj), x(τ̃i(ηj)), u(τ̃i(ηj))).

By using the following relaxation the feasibility of NLP problem can be guaranteed.

(3.7)

Ri(X,U) +Wi(P ) + x0 ≤ (N − 1)
3

2
−r, Hi(X,U)− p̂i + f(ξi) ≤ (N − 1)

3

2
−r.

When N tends to infinity and r ≥ 2, the difference between Eq. (3.8) and the

constrains of the NLP problem vanishes [13].

For convenience,x(t) and u(t) considered as follows:

(3.8) x(t) ≈ xN (t) =
N
∑

m=0

xN (tm)gm(t), u(t) ≈ uN(t) =
N
∑

m=0

uN(tm )gm(t).

4. Theoretical analysis

In this section, convergence of the proposed method provide for problem (1).

Definition 4.1. [9] A function ψ : [0, T ] → R belong to Sobolev space W z,l, if its

jth weak derivative ψ(j) , lies in Ll[0, T ] for all 0 ≤ j ≤ z with the norm‖ψ‖W z,l =
z
∑

j=0

∥

∥, ψ(j)
∥

∥

Ll

where ‖ψ‖Ll denotes the usual Lebesgue norm defined for1 ≤ l <∞ as follows

‖ψ‖Ll = (

∫ T

0

|ψ(t)|ldt)
1

l
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Lemma4.1 Given any function ψ ∈ W z,∞, t ∈ [0, T ] there is a polynomial gN(t)

of degree N or less, such that

(4.1) |ψ(t)− gN(t)| ≤ CC0N
−z, ∀t ∈ [0, T ],

where C is a constant independent of N , z is the order of smoothness of ψ and

C0 = ‖ψ‖W z,∞ (gN(t) with the smallest norm ‖ψ(t)− gN(t)‖L∞ is called the N th

order best polynomial approximation of ψ(t) in the norm of L∞.)

Proof. Proof. see [9]. �

Theorem 4.1. Given any feasible solution (x(t), u(t)) for problem (1), suppose x(t), u(t)

belong to W z,∞ with z ≥ 2. Then, there is a positive integer N1 such that for any

N > N1, the problem (2) has a feasible solution (x̂i, ûi) such that, the feasible solution

satisfies

(4.2) |x(ti)− x̂i| ≤ d1(N − 1)1−z, |u(ti)− ûi| ≤ d2(N − 1)1−z, i = 0, ..., N.

Note that, ti are the shifted LGL nodes and d1, d2 > 0 are constant and independent

of N .

Proof. Proof. see [14, 22, 23]. �

In the next theorem, the convergence of the following sequence is discussed.

(4.3) {(x∗N (ti), u
∗
N(ti)), 0 ≤ i ≤ N}∞N=N•

Theorem 4.2. Assume that {(x∗N (ti), u
∗
N(ti)), 0 ≤ i ≤ N}∞N=N• be a sequence of

optimal solutions to the problem (2) . If the function sequence has a subsequence that

uniformly converges to the continuous function {(p1(t), p2(t))} on interval [0, T ] then,

x̂(t) =
∫ t

t0
p1(ν)dν + x̂0 and û(t) =

∫ t

t0
p2(ν)dν + û0 are the optimal solution to the

problem (1).

Proof. Proof. see [21]. �
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5. Numerical examples

In this section, three examples are given to demonstrate the applicability efficiency

of the Müntz-Legendre collocation method (MLCM). All computations are carried

out in Mathematica version 10 software. In order to analyze the errors of the present

method, the following notations are introduced

(5.1) EJ = |J∗− J̄∗|, ‖Ex
N‖∞ = max |Ex

N(ti)| and ‖Eu
N‖∞ = max |Eu

N (ti)|, for

i = 0, 1, ..., N , where {ti}
N
i=0 are the shifted LGL nodes.

Example 5.1. Consider the following OCP governed by VFIDE [16, 22]

Min J(x, u) =
∫ 1

0
((x(t)− et)2 + (u(t)− e3t)2)dt

s.t x′(t)− 3
2
x(t) + 1

2
u(t)−

∫ t

0
(et−τx3(τ))dτ = 0,

x(0) = 1, 0 ≤ t ≤ 1.

Trivially, the optimal value of the cost function is J∗ = 0. The exact solutions

of state and control function are x∗(t) = et and u∗(t) = e3t. Table 1. shows the

numerical results of the proposed method for this example for N = 4, 8, 13, 20 with

α = 0.75, 0.9. Figure 1. (a) and (b) show respectively the approximate and exact so-

lutions of state and control function using mentioned method for N = 20, α = 0.75.
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Table 1. Numerical results for Example 1.

MLCM for α = 0.9 MLCM for α = 0.75

N ‖Ex

N
‖∞ ‖Eu

N
‖∞ EJ ‖Ex

N
‖∞ ‖Eu

N
‖∞ EJ

4 1.23633E-3 4.36113E-2 1.42109E-14 1.34949E-3 1.13054E-1 3.55271E-14

8 1.85662E-4 5.10768E-4 1.33227E-14 1.33029E-4 2.09748E-4 1.50990E-14

13 2.84700E-5 8.30347E-5 1.14908E-14 9.66820E-6 2.85761E-5 1.06581E-14

20 8.21672E-7 2.04315E-6 2.19581E-15 6.62876E-8 1.97616E-7 7.94850E-15

0.2 0.4 0.6 0.8 1.0
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*
*

*
*

*
*

*
*

*
*

*
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*
*

*
*

*
*

*

*

*

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5 * Approximate Solution

(a) Exact and Approximate solutionsx(t).

0.2 0.4 0.6 0.8 1.0

5

10

15

20
Exact

* * * * * * * * * *
*

*
*

*
*

*

*

*

*

*

*

0.2 0.4 0.6 0.8 1.0

5

10

15

20

* Approximate Solution

(b) Exact and Approximate solutions u(t).

Figure 1. Numerical results of Example 1 for N = 20, α = 0.75.

Example 5.2. Consider the following OCP governed by VFIDE [16, 22]

Min J(x, u) =
∫ 1

0
(x(t)− et

2

)
2
+ (u(t)− (1 + 2t))2dt

s.t x′(t) + x(t)− u(t) =
∫ t

0
(t(1 + 2t)eτ(t−τ)x(τ))dτ,

x(0) = 1, 0 ≤ t ≤ 1.

Where x∗(t) = et
2

and u∗(t) = 1 + 2t are the optimal state and control functions

and the optimal value of the cost function is J∗ = 0.

Table 2. shows the numerical results of the proposed method for this example for

N = 4, 8, 13, 20 with α = 0.75, 0.9. Figure 2. (a) and (b) show respectively the ap-

proximate and exact solutions of state and control function using mentioned method
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(a) Exact and Approximate solutions of x(t).
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(b) Exact and Approximate solutions of u(t).

Figure 2. Numerical results of Example 2 for N = 20, α = 0.75.

for N = 20, α = 0.75.

Table 2. Numerical results for Example 2.

MLCM for α = 0.9 MLCM for α = 0.75

N ‖Ex

N
‖∞ ‖Eu

N
‖∞ EJ ‖Ex

N
‖∞ ‖Eu

N
‖∞ EJ

4 4.67859E-03 2.92454E-03 4.99600E-15 1.13277E-02 3.92490E-03 5.55112E-15

8 1.76410E-05 3.84116E-04 9.12736E-16 4.47961E-05 2.71483E-04 1.96067E-15

13 8.54377E-07 5.77768E-05 5.60322E-16 1.35063E-07 1.94819E-05 1.18438E-15

20 1.15468E-08 1.65478E-06 1.83958E-16 4.15699E-10 1.32991E-07 1.86017E-16

6. Conclusion

In this study, a robust numerical technique was used for solving a class of OCPs

governed by VFIDE. The optimal solution of the OCP is determined by a direct

method based upon orthogonal function set. The method reduces the OCP to NLP.

Illustrative examples have been presented to demonstrate the validity and effective-

ness of MLCM, although it should be noted that the choice of coefficient α plays an

important role in the results of the MLCM but with increasing N , approximate solu-

tions with different choices of α approach each other. Numerical results given in the
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tables show the high precision of the proposed method, with increasing the N , errors

are decreased more rapidly. In future research, the method can extend for solving

the OCP governed by a system partial differential equation. Also, the method men-

tioned can develop for solving the OCP with control and state functions of the vector.
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