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A GENERALIZATION OF JACOBSTHAL AND

JACOBSTHAL-LUCAS NUMBERS

ALA’A AL-KATEEB

Abstract. In this paper, we study a generalization of Jacobsthal and Jacobsthal-

Lucas numbers. We describe their distinct properties also we give the related matrix

representation and sum of terms of the sequences.

1. Introduction

Fibonacci and Lucas sequences and their generalizations/extensions have many

interesting, pretty and amazing properties and applications in many fields of science

and arts [1, 10, 11, 12, 13, 15]. The Fibonacci and Lucas numbers are defined by the

following two recurrence relations

Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2

where n ≥ 2, F0 = 0, F1 = 1, L0 = 2 and L1 = 1. These sequences are special cases of

the Lucas sequences [18].

Un(P,Q) and Vn(P,Q)

given by the recurrence relation

xn = Pxn−1 −Qxn−2
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where P andQ are fixed integers and initial values U0(P,Q) = 0, U0(P,Q) = 1, V0(P,Q) =

2 and V1(P,Q) = P . There are other famous examples of Lucas sequences such as

([4, 9, 16, 17]).

• Pell and Pell-Lucas numbers:

Pn = 2Pn−1 + Pn−2 and Qn = 2Qn−1 +Qn−2

where n ≥ 2, P0 = 0, P1 = 1, Q0 = Q1 = 1.

• Jacobsthal and Jacobsthal-Lucas numbers:

Jn = Jn−1 + 2Jn−2 and jn = jn−1 + 2jn−2

where n ≥ 2, J0 = 0, J1 = 1, j0 = j1 = 2.

The sequences mentioned above satisfy many common properties and identities for

example Binet formulas, Catalan identities and matrix representation. Recently,

these sequences were generalized or extended for example see [2, 3, 5, 6, 7, 8, 19]. In

[14] a new one-parameter generalization of Pell and Pell-Lucas numbers numbers is

given and its properties and related matrix representation are studied.

In this paper we introduce and study a generalization of the Jacobsthal and

Jacobsthal-Lucas numbers. This paper is structured as follows in section 2, we in-

troduce the generalized Jacobsthal and Jacobsthal-Lucas numbers and derive their

generating functions and binet formulas. In section 3, we find the matrices of the

generalized Jacobsthal and Jacobsthal-Lucas numbers. In section 4, we find many

properties of the sequences like the Cassini, Catalan and d’Ocagne’s formulas. In

section 5, we find the sum of terms formulas of the generalized sequences.
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2. Definition, generating functions and Binet formulas

Definition 2.1. Let k ≥ 2, n ≥ 0 be two integers. The generalized Jacobsthal and

Jacobsthal-Lucas numbers respectively are defined by:

Jk,n = (k − 1)Jk,n−1 + kJk,n−2 and jk,n = (k − 1)jk,n−1 + kjk,n−2

where Jk,0 = 0, Jk,1 = 1 and jk,0 = jk,1 = 2.

When k = 2, we have the classical Jacobsthal and Jacobsthal-Lucas numbers. These

sequences can be extended to negative indices as follows, for n ≥ 1

Jk,−n = (−1)n+1Jk,n and jk,−n = (−1)n+1jk,n

which satisfy the recurrence relations

Jk,−n = kJk,2−n − (k − 1)Jk,1−n and jk,−n = kjk,2−n − (k − 1)jk,1−n

Example 2.1. The following two tables present the values of Jk,n and jk,n for some

selected k and n values.

Table 1. Generalized Jacobsthal numbers

n -5 -4 -3 -2 -1 0 1 2 3 4 5

J2,n 11 -5 3 -1 1 0 1 1 3 5 11

J3,n 161 -20 7 -2 1 0 1 2 7 20 161

J4,n 205 -51 13 -3 1 0 1 3 13 51 205

Table 2. Generalized Jacobsthal-Lucas numbers

n -5 -4 -3 -2 -1 0 1 2 3 4 5

j2,n 42 -22 10 -6 2 2 2 6 10 22 42

j3,n 242 -82 26 -10 2 2 2 10 26 82 242

j4,n 818 -206 50 -14 2 2 2 14 50 206 818
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In the following theorem we derive the generating functions for the sequences Jk,n

and jk,n.

Theorem 2.1 (Generating functions). The generating functions of the sequences Jk,n

and jk,n respectively are

(1)

J(x) =
x

1− (k − 1)x− kx2

(2)

j(x) =
2(x+ 2− k)

1− (k − 1)x− kx2

Proof. Let J(x) and j(x) represents the generating functions of Jk,n and jk,n respec-

tively.

Note,

J(x) =

∞
∑

n=0

Jk,nx
n

= Jk,0 + Jk,1x+

∞
∑

n=2

Jk,nx
n

= x+
∞
∑

n=2

((k − 1)Jk,n−1 + kJk,n−2)x
n

= x+ (k − 1)x

∞
∑

n=2

Jk,n−1x
n−1 + kx2

∞
∑

n=2

Jk,n−2x
n−2

= x+ (k − 1)x
∞
∑

n=0

Jk,nx
n + kx2

∞
∑

n=0

Jk,nx
n , Jk,0 = 0

= x+ (k − 1)xJ(x) + kx2J(x)
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Thus, x = (1 + (1− k)x− kx2)J(x) and J(x) = x
1−(k−1)x−kx2 .

Similarly,

j(x) =

∞
∑

n=0

jk,nx
n = 2 + 2x+

∞
∑

n=2

((k − 1)jk,n−1 + kjk,n−2)x
n

= 2 + 2x+ (k − 1)x
∞
∑

n=2

jk,n−1x
n−1 + kx2

∞
∑

n=2

jk,n−2x
n−2

= 2− 2kx+ 4x+ (k − 1)x
∞
∑

n=0

jk,nx
n + kx2

∞
∑

n=0

jk,nx
n

by adding and subtracting 2(k − 1)x

Thus, 2− 2kx+ 4x = (1− (k − 1)x− kx2)j(x) and j(x) = 2(2x−kx+1)
1−(k−1)x−kx2 . �

Theorem 2.2 (Binet formulas). The n−th terms of the generalized Jacobsthal and

Jacobsthal-Lucas sequences are given by

(2.1) Jk,n =
kn − (−1)n

k + 1
,

and

(2.2) jk,n =
4kn + 2(k − 1)(−1)n

k + 1

Proof. We will use mathematical induction to prove the formulas above. To prove

equation 2.1.

• For n = 0: Jk,0 =
1−1
k+1

= 0.

• Assume that Jk,n = kn−(−1)n

k+1

• Note

Jk,n+1 = (k − 1)Jk,n + kJk,n−1

= (k − 1)(
kn − (−1)n

k + 1
) + k(

kn−1 − (−1)n−1

k + 1
)

=
kn+1 − k(−1)n − kn + (−1)n

k + 1
+

kn − k(−1)n−1

k + 1
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=
kn+1 − (−1)n+1

k + 1

Similarly, we prove equation 2.2.

• For n = 0: jk,0 =
4k0+(2k−2)(−1)0

k+1
= 2.

• Assume that jk,n = 4kn+(2k−2)(−1)n

k+1

• Note

jk,n+1 = (k − 1)jk,n + kjk,n−1

= (k − 1)(
4kn + (2k − 2)(−1)n

k + 1
) + k(

4kn−1 + (2k − 2)(−1)n−1

k + 1
)

=
4kn+1 + (2k − 2)(−1)n+1

k + 1

as desired �

3. Matrix representation

As we know classical Jacobsthal numbers can be derived from the matrix F =




1 2

1 0



 for which F n =





Jn+1 2Jn

Jn 2Jn−1



 (the Jacobsthal F-matrix). Also the Jacobsthal-

Lucas numbers can be derived from the matrix R =





1 4

2 −1



 (the Jacobsthal-Lucas

R-matrix) for which we can define Rn = RF n =





jn+1 2jn

jn 2jn−1



, these matrices

were introduced and studied in [7, 8]. In this section we derive the Jacobsthal Fk

and the Jacobsthal-Lucas Rk matrices that generates the generalized Jacobsthal and

Jacobsthal-Lucas numbers.
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Lemma 3.1 (Matrix of generalized Jacobsthal numbers). Let Fk =





k − 1 k

1 0



.

Then for n ≥ 2 we have

F n
k =





Jk,n+1 kJk,n

Jk,n kJk,n−1





Proof. We will use mathematical induction:

• For n = 2:

F 2
k =





(k − 1)2 + k k(k − 1)

k − 1 k



 =





Jk,2+1 kJk,2

Jk,2 kJk,1





• Assume that F n
k =





Jk,n+1 kJk,n

Jk,n kJk,n−1





• Note

F n+1
k = FkF

n
k

= Fk





Jk,n+1 kJk,n

Jk,n kJk,n−1



 by induction

=





k − 1 k

1 0









Jk,n+1 kJk,n

Jk,n kJk,n−1





=





(k − 1)Jk,n+1 + kJk,n k(k − 1)Jk,n + k2Jk,n−1

Jk,n+1 kJk,n





=





Jk,n+2 kJk,n+1

Jk,n+1 kJk,n





as desired �

Lemma 3.2. For n ≥ 1,





jk,n+1

jk,n



 = Fk





jn

jn−1





Proof. Immediate �
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Proposition 3.1. For n ≥ 1 we have

(1) jk,n = 2(Jk,n + kJk,n−1)

(2) jk,n−1 = 2(Jk,n + (2− k)Jk,n−1)

Proof. From the Binet formula we have:

(1)

Jk,n + kJk,n−1 =
kn − (−1)n

k + 1
+ k

kn−1 − (−1)n−1

k + 1

=
2kn − k(−1)n−1 − (−1)n

k + 1

=
2kn + (k − 1)(−1)n

k + 1

=
1

2
jk,n

(2)

2(Jk,n + (2− k)Jk,n−1) = 2

(

kn − (−1)n

k + 1
+ (2− k)

kn−1 − (−1)n−1

k + 1

)

= 2

(

2kn−1 + k(−1)n−1 − (−1)n−1

k + 1

)

= 2

(

2kn−1 + (k − 1)(−1)n−1

k + 1

)

= jk,n−1

�

Lemma 3.3 (Matrix of generalized Jacobsthal-Lucas numbers ). Let n > 0 and

Rk =





1 k

1 2− k



. Then RkF
n
k = 1

2





jk,n+1 kjk,n

jk,n kjk,n−1





Proof.

RkF
n
k = Rk





Jk,n+1 kJk,n

Jk,n kJk,n−1



 from Lemma 3.1



A GENERALIZATION OF JACOBSTHAL AND ... 475

=





1 k

1 2− k









Jk,n+1 kJk,n

Jk,n kJk,n−1





=





Jk,n+1 + kJk,n k2Jk,n−1 + kJk,n

Jk,n+1 + (2− k)Jk,n kJk,n + (2− k)kJk,n−1





=
1

2





jk,n+1 kjk,n

jk,n kjk,n−1



 from Proposition 3.1

�

Remark 1. RkFk = FkRk.

4. More properties and identities

In this section, we derive some identities for the generalized Jacobsthal and Jacobsthal-

Lucas sequences.

Theorem 4.1 (Catalan’s Identities).

(1) Jk,n+rJk,n−r − J2
k,n = (−1)n−rkn−rJ2

k,r

(2) jk,n+rjk,n−r − j2k,n = 8(−1)n−rkn(k − 1)J2
k,r

Proof.

(1) Note

Jk,n+rJk,n−r − J2
k,n =

kn+r + (−1)n+r

k + 1
·
kn−r + (−1)n−r

k + 1
−

(

kn + (−1)n

k + 1

)2

=
k2n + (−1)n+rkn−r + (−1)n−rkn+r + 1

(k + 1)2
−

(

kn + (−1)n

k + 1

)2

=
(−1)n+rkn−r + (−1)n−rkn+r + 2(−1)nkn

(k + 1)2

= (−1)nkn

(

2 + (−1)rk−r + (−1)rkr

(k + 1)2

)
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=
(−1)n−rkn

kr

(

2(−1)r(k)r + 1 + k2r)

(k + 1)2

)

= (−1)n−rkn−rJ2
k,r

(2) Note

jk,n+rjk,n−r − j2k,n =
4kn+r + 2(k − 1)(−1)n+r

k + 1
·
4kn−r + 2(k − 1)(−1)n−r

k + 1
− j2k,n

=
16k2n + 8kn−r(k − 1)(−1)n+r + 8kn+r(k − 1)(−1)n−r + 4(k − 1)2

(k + 1)2
− j2k,n

=
8kn−r(k − 1)(−1)n+r + 8kn+r(k − 1)(−1)n−r − 16(k − 1)kn(−1)n

(k + 1)2

= 8(−1)nkn(k − 1) ·
(k−r(−1)r + kr(−1)−r − 2)

(k + 1)2

= 8(−1)nkn(k − 1) ·
(−2 + k−r(−1)r + kr(−1)−r)

(k + 1)2

= 8(−1)n−rkn(k − 1) ·
k2r − 2(−1)rkr + 1

(k + 1)2

= 8(−1)n−rkn(k − 1)J2
k,r

�

Theorem 4.2 (Cassini’s identities). We have

(1) Jk,n+1Jk,n−1 − J2
k,n = (−1)nkn−1

(2) jk,n+1jk,n−1 − j2k,n = 8(−1)nkn−1(1− k)

Proof. Immediate from Lemma 3.1 and Lemma 3.3 �

Theorem 4.3 (d’Ocagne’s Identity identities). Let n,m be two integers. Then

(1) Jk,nJk,m+1 − Jk,n+1Jk,m = (−1)mkmJk,n−m

(2) jk,njk,m+1 − jk,n+1jk,m = 8(−1)m(1− k)kmJk,n−m

Proof. First using equation 2.1 in Theorem 2.2 we have

Jk,nJk,m+1 − Jk,n+1Jk,m =
kn − (−1)n

k + 1

km+1 − (−1)m+1

k + 1
−

km − (−1)m

k + 1

kn+1 − (−1)n+1

k + 1
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=
kn+m+1 − (−1)nkm+1 − (−1)m+1kn + (−1)m+n+1

(k + 1)2

−
km+n+1 − (−1)n+1km − (−1)mkn+1 + (−1)m+n+1

(k + 1)2

=
(−1)n+1km − (−1)nkm+1 + (−1)mkn+1 − (−1)m+1kn

(k + 1)2

=
(−1)nkm(−1− k) + (−1)mkn(k + 1)

(k + 1)2

=
(−1)mkn − (−1)nkm

(k + 1)

= (−1)mkm

(

kn−m − (−1)n−m

(k + 1)

)

= (−1)mkmJk,n−m

Second using equation 2.2 in Theorem 2.2 we have

jk,njk,m+1 − jk,n+1jk,m =
8kn(−1)m + 8km+2(−1)n − 8km(−1)n − 8kn+2(−1)m

(k + 1)2

= 8
(−1)mkn(1− k2) + (−1)nkm(k2 − 1)

(k + 1)2

= 8(1− k2)
(−1)mkn + (−1)nkm

(k + 1)2

= 8(1− k2)(−1)mkmkn−m + (−1)n−m

(k + 1)2

= 8(−1)m(1− k)kmJk,n−m

�

Theorem 4.4. For any two integers m,n ≥ 2 we have

(1) Jk,m+n = Jk,mJk,n+1 + kJk,m−1Jk,n−1

(2) jk,m+n = jk,mJk,n+1 + kjk,m−1Jk,n
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Proof. (1)

Fm+n
k =





Jk,m+n+1 kJk,m+n

Jk,m+n kJk,m+n−1



 =





Jk,m+1 kJk,m

Jk,m kJk,m−1









Jk,n+1 kJk,n

Jk,n kJk,n−1





thus Jk,m+n = Jk,mJk,n+1 + kJk,m−1Jk,n−1

(2) Similar to number 1

�

5. Sum of terms

Theorem 5.1. For all integers k ≥ 2 and n ≥ 0 we have

(1)
∑n

i=0 Jk,i =
1

2(k−1)
(kJk,n + Jk,n+1 − 1)

(2)
∑n

i=0 jk,i =
1

2(k−1)
(kjk,n + jk,n+1 + 2(k − 3))

Proof. We prove the first formula using mathematical induction

(1) For n = 0, the result is trivial.

(2) Assume that
∑n

i=0 Jk,i =
1

2(k−1)
(kJk,n + Jk,n+1 − 1)

(3) Consider

n+1
∑

i=0

Jk,i =
n
∑

i=0

Jk,i + Jk,n+1

=
1

2(k − 1)
(kJk,n + Jk,n+1 − 1) + Jk,n+1 by induction

=
1

2(k − 1)
(kJk,n + Jk,n+1 + 2(k − 1)Jk,n+1 − 1)

=
1

2(k − 1)
(kJk,n+1 + (k − 1)Jk,n+1 + kJk,n − 1)

=
1

2(k − 1)
(kJk,n+1 + Jk,n+2 − 1)

The second formula can be proved in a similar way to the first one so we omit its

proof. �

Remark 2. Theorem 5.1 also can be proved directly from the binet formula.
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Theorem 5.2. For all integers k ≥ 2 and n ≥ 0 we have

(1)
∑n

i=0 Jk,2i =
1

(k+1)
( 1
k−1

Jk,2n+2 − n− 1)

(2)
∑n

i=0 jk,2i+1 =
1

(k+1)
( k

k−1
Jk,2n+2 + n+ 1)

(3)
∑n

i=0 jk,2i =
1

(k+1)
( 4
k−1

Jk,2n+2 + 2(k − 1)(n+ 1))

(4)
∑n

i=0 jk,2i+1 =
1

(k+1)
( 4k
k−1

Jk,2n+2 − 2(k − 1)(n+ 1))

Proof. We will prove the first and third equations. For the first one

n
∑

i=0

Jk,2i =
n
∑

i=0

k2i − (−1)2i

k + 1

=
n
∑

i=0

k2i − 1

k + 1

=
1

k + 1

(

n
∑

i=0

(k2)i − (n+ 1)

)

=
1

k + 1

(

1− (k2)n+1

1− k2
− (n+ 1)

)

=
1

(k + 1)

(

1

k − 1
Jk,2n+2 − n− 1

)

For the third one

n
∑

i=0

jk,2i =

n
∑

i=0

4k2i + 2(k − 1)(−1)2i

k + 1

=
n
∑

i=0

4k2i + 2(k − 1)

k + 1

=
1

k + 1

(

4

n
∑

i=0

(k2)i + 2(k − 1)(n+ 1)

)

=
1

k + 1

(

4
1− (k2)n+1

1− k2
+ 2(k − 1)(n+ 1)

)

=
1

(k + 1)

(

4

k − 1
Jk,2n+2 + 2(k − 1)(n+ 1)

)

Proving the second and forth equations is similar. �
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Remark 3. Theorem 5.2 also can be proved by mathematical induction.

6. Conclusion

We present a generalization for two well-known Lucas sequences, namely the Ja-

cobsthal and Jacobsthal-Lucas sequences. Also, we find the matrix representation of

both new sequences, these matrices can be used in coding theory and cryptography to

create new codes and ciphers. Also they may be combined with some known codes

or ciphers like [11, 12, 13, 15] in order to improve their security levels and error

detection/correction abilities.
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