ON COMMUTING GRAPHS ASSOCIATED TO BCI-ALGEBRAS

H. HARIZAVI

ABSTRACT. In this paper, first, the graph $\Gamma(X)$ associated to a BCI-algebra X

is studied and some related properties are established. Especially, a necessary

and sufficient condition for $\Gamma(X)$ to be a complete graph is given. After that,

the commuting graph associated to a BCI-algebra X, denoted by G(X), is defined

and some related properties are investigated. The paper provides a necessary and

sufficient condition for the p-semisimple part of X to be an ideal. Moreover, a

condition for an element of a BCI-algebra X to be minimal is given. Finally, it

is proved that a BCI-algebra X is p-semisimple if and only if G(X) is a complete

graph.

1. Introduction

Many authors applied graph theory in connection with some algebraic structures

and obtained some interesting results. For example, Beck, I. [2] associated to any

commutative ring R its zero-divisor graph G(R); and F.R. DeMeyer, T. McKenzie

and K. Schneideretc [3] associated to any commutative semigroup S its zero-divisor

graph $\Gamma(S)$. For first time, Y.B. Jun and K.J. Lee [7] introduced the concept of

associative graph of a BCK/BCI algebra and provided several examples. They gave

conditions for a proper (quasi-)ideal of a BCK/BCI-algebra to be l-prime.

2000 Mathematics Subject Classification. 06F35, 03G25, 68R10.

Key words and phrases. BCI-algebra, commutative BCK-algebra, ideal, p-semisimple, graph as-

sociated to a BCI-algebra, commuting graph.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: April 10, 2020

Accepted: July 12, 2021.

505

The notion of BCK-algebras was introduced by Y. Imai and K. Iséki [4] in 1966 as a generalization of set-theoretic difference and propositional calculi. In the same year, K. Iséki introduced the notion of BCI-algebras which is a generalization of BCK-algebras [5]. These algebras are two important classes of logical algebras. In this paper, following [7], we study the graph $\Gamma(X)$ associated to the BCI-algebra X, defined in [7], and establish some related properties. We give a necessary and sufficient condition for $\Gamma(X)$ to be a complete graph. It is well known that p-semisimple algebras are equivalent to abelian groups. According to this, for any BCI-algebra X, we define a new commuting graph associated to the BCI-algebra X, denoted by G(X), and investigate some related properties. Also, we provide a necessary and sufficient condition for the p-semisimple part of a BCI-algebra to be an ideal. Finally, we prove that a BCI-algebra X is p-semisimple if and only if G(X) is a complete graph.

Now, we recall some definitions and results on BCI-algebras and graph theory. The reader is referred to [4, 5, 6, 8, 9, 11] for more details.

Definition 1.1. By a BCI-algebra we mean an algebra (X, *, 0) of type (2, 0) satisfying the following axioms:

BCI-1: ((x * y) * (x * z)) * (z * y) = 0,

BCI-2: (x * (x * y)) * y = 0,

BCI-3: x * x = 0,

BCI-4: x * y = 0 and y * x = 0 imply x = y.

A BCI-algebra X satisfying 0 * x = 0 for all $x \in X$ is called a BCK-algebra. In any BCI/BCK-algebra X one can define a partial order \leq by putting $x \leq y$ if and only if x * y = 0.

A non-empty subset A of X is called a subalgebra of X if $x * y \in A$ for all $x, y \in A$. The set $B_X := \{x \in X \mid 0 * x = 0\}$ is called the BCK-part of X. The element a of X is called a minimal element if $x \leq a$ implies x = a for all $x \in X$. The set of all minimal elements of X, denoted by P_X , is called *p*-semisimple part of X. It is proved that $P_X = \{x \in X \mid 0 * (0 * x) = x\}$. A *BCI*-algebra X is said to be a *p*-semisimple if $P_X = X$. It is well known that (i) $B_X \cap P_X = \{0\}$; (ii) $x \in X$ is a minimal element if and only if x = 0 * u for some $u \in X$.

In any BCI-algebra X, the following hold: for any $x, y, z \in X$,

- $(a_1) x * 0 = x,$
- $(a_2) (x * y) * z = (x * z) * y,$
- (a₃) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$,
- $(a_4) (x*z)*(y*z) \le x*y,$
- $(a_5) x * (x * (x * y)) = x * y,$
- $(a_6) \ 0 * (x * y) = (0 * x) * (0 * y),$
- $(a_7) x * (x * y) \le y.$

A BCK-algebra X is called commutative if it satisfies the condition: x*(x*y) = y*(y*x) for all $x \in X$. In this case, x*(x*y) (and y*(y*x)) is the greatest lower bound of x and y with respect to BCK-order \leq , and we denote it by $x \wedge y$.

A subset A of a BCI/BCK-algebra X is called an *ideal* of X if it satisfies (i) $0 \in A$ and (ii) $x, y * x \in A$ imply $y \in A$ for all $x, y \in X$.

Proposition 1.1. [11] Let X be a BCI-algebra. Then the p-semisimple part P of X is an ideal if and only if $x * a \in P_X$ implies x = 0 for any $a \in P_X$ and $x \in B_X$.

Let G = (V(G), E(G)) be a graph, where V(G) be the set of all vertices of G, and E(G) be the set of all edges of G. A graph G is called complete if every two vertices of G are connected. The complete graph with n vertices is denoted by K_n . A graph G is called null if the set E(G) is empty. The null graph with n vertices is denoted by N_n . Let G and G be two graphs with G or G are connected. The union $G \cup G$ is a graph with vertex set G and G is empty. The null graph with G is a graph with vertex set G and G is an edge set G. The union $G \cup G$ is a graph with vertex set G is a graph with vertex

2. Graph based on BCI-algebras

To investigate the properties of a graph associated to a BCI-algebra, defined by Y.B. Jun [7], we recall some definitions.

Definition 2.1. [7] Let X be a BCI-algebra. Then

(i) For any subset A of X, we will use the notation l(A) to denote the set

$$l(A) := \{ x \in X \mid x * a = 0, \forall a \in A \};$$

(ii) For any $x \in X$, we will use the notation Z_x to denote the set of all elements $y \in X$ such that $l(\lbrace x, y \rbrace) = \lbrace 0 \rbrace$, that is,

$$Z_x := \{ y \in X \mid l(\{x, y\}) = \{0\} \}.$$

Definition 2.2. [7] By the associated graph of a BCK/BCI-algebra X, denoted $\Gamma(X)$, we mean the graph whose vertices are just the elements of X, and for distinct vertices $x, y \in V(\Gamma(X))$, there is an edge connecting x and y if and only if $l(\{x, y\}) = \{0\}$.

Lemma 2.1. Let X be a BCI-algebra and $a \in X$. Then

$$a \in Z_a$$
 if and only if $a = 0$.

Proof. Let $a \in Z_a$. Then $l(\{a\}) = \{0\}$. By axiom BCI-3, $a \in l(\{a\})$. Hence a = 0. Conversely, let a = 0. We show that $0 \in Z_0$, or equivalently, $l(\{0\}) = \{0\}$. Obviously, $0 \in l(\{0\})$; and for any $t \in l(\{0\})$, we get t * 0 = 0, which yield t = 0. This completes the proof.

Lemma 2.2. Let X be a BCI-algebra and $a, b \in X$ with $a \leq b$. Then the following hold:

- (i) $l(\lbrace a \rbrace) \subseteq l(\lbrace b \rbrace);$
- (ii) $Z_b \subseteq Z_a$.

Proof. (i) It follows from $a \le b$ that a * b = 0. Let $x \in l(\{a\})$. Then x * a = 0 and so by (a_4) , we have $x * b = (x * b) * (x * a) \le a * b = 0$. From this we obtain x * b = 0 and consequently, $x \in l(\{b\})$.

(ii) Let $x \in \mathbb{Z}_b$. Then $l(\{x,b\}) = \{0\}$. From this follows that

$$(2.1) 0 * x = 0 \text{ and } 0 * b = 0.$$

Now, assume that $t \in l(\{x, a\})$. Hence t * x = 0 and t * a = 0. From t * a = 0, we get $t \in l(\{a\})$ and so by (i), we have $t \in l(\{b\})$, that is, t * b = 0. Moreover, t * x = 0. Thus $t \in l(\{x, b\})$. But $l\{x, b\}) = \{0\}$, hence t = 0. Next we show that $0 \in l(\{x, b\})$. By (a_3) , from $a \le b$, we obtain $0 * b \le 0 * a$ and so by (1), we conclude $0 \le 0 * a$, that is, $0 * a \in B_X$. But $0 * a \in P_X$. Thus $0 * a \in B_X \cap P_X = \{0\}$ and so 0 * a = 0. Hence, by (2.1), we get $0 \in l(\{x, a\})$ and consequently, $l(\{x, a\}) = \{0\}$. Therefore $x \in Z_a$, which completes the proof.

We provide a condition for Z_a to be an ideal.

Theorem 2.1. Let X be a BCI-algebra. Then the following are equivalent:

- (i) Z_a is an ideal of X;
- (ii) $a \in B_X$.

Proof. (i) \Rightarrow (ii) Let Z_a be an ideal of X for some $a \in X$. Then $0 \in Z_a$ and so there is $x \in X$ such that $l(\{a, x\}) = \{0\}$. From this follows that 0 * a = 0, that is, $a \in B_X$. (ii) \Rightarrow (i) Let $a \in B_X$. Then it is easy to see that $l(\{a, 0\}) = \{0\}$, which yield $0 \in Z_a$. Now, let $x, y * x \in Z_a$. Then $l(\{a, x\}) = \{0\}$ and $l(\{a, y * x\}) = \{0\}$ and so from $0 \in l(\{a, y * x\})$, we get 0 * (y * x) = 0. Let $t \in l(\{a, y\})$. Then, we have

$$(2.2) t * a = 0 and t * y = 0.$$

Now, we show that $t * (y * x) \in l(\{a, x\})$. For this, we have

by
$$(a_2)$$
 $(t * (y * x)) * a = (t * a) * (y * x)$
by (2.4) $= 0 * (y * x)$
 $= 0.$

Therefore

$$(2.3) (t * (y * x)) * a = 0$$

Also, using (a_2) , (a_4) and (2), we get

$$(2.4) (t*(y*x))*x = (t*x)*(y*x) \le t*y = 0.$$

From (2.3) and (2.4), we conclude $t*(y*x) \in l(\{x,a\}) = \{0\}$ and so t*(y*x) = 0. Moreover by (2.2), t*a = 0. Thus $t \in l(\{y*x,a\}) = \{0\}$ and so t = 0. Therefore $l(\{y,a\}) = \{0\}$, and consequently $y \in Z_a$. Hence Z_a is an ideal of X.

The following example shows that Z_a is not necessary be an ideal.

Example 2.1. [11] Let $(X = \{0, 1, a, b\}; *, 0)$ be a BCI-algebra in which the operation "*" is given by the following table:

By some routine calculations, one can check that $Z_a = \{a\}$ which is not ideal, since $0 \notin Z_a$.

The following lemma determines the degree of the vertex in graph $\Gamma(X)$.

Lemma 2.3. Let X be a BCI-algebra. Then for any vertex $a \in V(\Gamma(X))$,

$$deg_{\Gamma(X)}a = \begin{cases} |Z_a| - 1 & if \ a = 0, \\ |Z_a| & otherwise. \end{cases}$$

Proof. Let $a \neq 0$ be a vertex of $V(\Gamma(X))$. Then by Lemma 2.1, $a \notin Z_a$. Thus for any vertex $x \in V(\Gamma(X))$, it is easy to see that

 $x \neq a$ and x is connected to vertex $a \Leftrightarrow x \neq a$ and $l(\{x, a\} = \{0\})$

$$\Leftrightarrow x \in Z_a$$
.

This implies that $deg_{\Gamma(X)}a = |Z_a|$ whenever $a \neq 0$. If a = 0, then by Lemma 2.1, $a \in Z_a$ and so similar to the previous argument, we conclude $deg_{\Gamma(X)}a = |Z_a| - 1$

Lemma 2.4. Let X be a BCI-algebra. Then the following conditions hold:

- (i) For any $a \in X$, $l(\{0, a\}) = \{0\}$ if and only $a \in B_X$;
- (ii) $deg_{\Gamma(X)}0 = |B_X| 1;$
- (iii) For any $a \neq 0$, $a \in B_X$ if and only if $deg_{\Gamma(X)}a \geq 1$;
- (iv) For any $a \in P_X$ with $a \neq 0$, $deg_{\Gamma(X)}a = 0$.

Proof. (i) Let $l(\{0, a\}) = \{0\}$ for some $a \in X$. It follows from $0 \in l(\{0, a\})$ that 0 * a = 0, which yield $a \in B$.

Conversely, assume that $a \in B_X$. Then 0 * a = 0 and so $0 \in l(\{0, a\})$. Now, let $t \in l(\{0, a\})$. Then t * 0 = 0 and so t = 0. Therefore $l(\{0, a\}) = \{0\}$.

- (ii) By (i), the result is obvious.
- (iii) By (i), the vertex $0 \neq a \in V(B_X)$ is connected to the vertex 0. Hence $deg_{\Gamma(X)}a \geq 1$.

Conversely, let $deg_{\Gamma(X)}a \geq 1$. Then there exists a vertex x connected to vertex a, that is, $l(\{x,a\}) = \{0\}$. Hence 0 * a = 0 and so $a \in B_X$.

(iv) Let $0 \neq a \in P_X$. Then from $B_X \cap P_X = \{0\}$, we get $a \notin B_X$ and so by (iii), $deg_{\Gamma(X)}a = 0$.

In the following, we provide a relationship between a complete graph and a commutative BCK-algebra.

Theorem 2.2. Let X be a BCK-algebra. Then the following conditions are equivalent:

- (i) $\Gamma(X)$ is a complete graph;
- (ii) X is commutative and for any $a, b \in X$, $a \wedge b = 0$.

Proof. $(i) \Rightarrow (ii)$ Let $a, b \in X$. Then by (i), the vertex a is connected to the vertex b and so $l(\{a,b\}) = \{0\}$. Since $a*(a*b) \leq a, b$, we get $a*(a*b) \in l(\{a,b\})$, which yield a*(a*b) = 0. Similarly, from $b*(b*a) \leq a, b$ we obtain b*(b*a) = 0 and so a*(a*b) = b*(b*a) = 0. This implies that X is commutative and $a \land b = 0$.

 $(ii) \Rightarrow (i)$ Let $a, b \in X$ and let $t \in l(\{a, b\})$. Then t * a = 0 and t * b = 0 and so $t \leq a, b$. This implies that $t \leq a \wedge b = 0$, and so t = 0. Moreover, obviously, $0 \in l(\{a, b\})$. Hence $l(\{a, b\}) = \{0\}$, that is, the vertex a is connected to the vertex b. Therefore $\Gamma(X)$ is a complete graph.

3. On Commuting graphs associated to BCI-algebras

It is known that the commuting graph G = (V(G), E(G)) associated to a group G is defined by: "two distance vertices x, y in V(G) are adjacent $\Leftrightarrow xy = yx$."

We note that if (X; *, 0) is a p-semisimple algebra, then the group (G, .) defined by x.y = x * (0 * y) is abelian, which is called the adjoint abelian group. According this, for any BCI-algebra X, we define a commuting graph associated to X, denoted by G(X), and investigate some related properties.

Definition 3.1. For any BCI-algebra X, the commuting graph associated to X, denoted by G(X), is the graph whose vertices are just elements of X and two distinct vertices u and v are connected by edge (u, v) if and only if u * (0 * v) = v * (0 * u).

Example 3.1. Consider the BCI-algebra $(X = \{0, 1, a, b\}; *, 0)$ as in Example 2.1. By routine calculations, one can check that $B_X = \{0, 1\}$ and $P_X = \{0, a, b\}$ and so the associated commuting graph to X is as follows:

Lemma 3.1. Let X be a BCI-algebra. Then, a vertex $u \in V(G(X))$ is connected to vertex 0 * u if and only if u is a minimal element of X.

Proof. Let u be connected to 0 * u. Then we have u * (0 * (0 * u) = (0 * u) * (0 * u) = 0. This implies $u \le 0 * (0 * u)$ and so by the minimality of 0 * (0 * u), we get u = 0 * (0 * u), that is, u is a minimal element of X.

Conversely, let u be a minimal element of X. Then it easy to see that u*(0*(0*u) = 0 = (0*u)*(0*u), which implies that vertex u is connected to vertex 0*u.

Theorem 3.1. Let X be a BCI-algebra. Then the following conditions are equivalent:

- (i) X is p-semisimple;
- (ii) G(X) is a complete graph.

Proof. $(i) \Rightarrow (ii)$ Let $u, v \in V(G(X))$. Since X is p-semisimple, u = 0 * (0 * u) and v = 0 * (0 * v). Thus we have

$$u * (0 * v) = (0 * (0 * u) * (0 * v)$$

$$= (0 * (0 * v) * (0 * u)$$

$$= v * (0 * u).$$

Therefore u is connected to v and so G(X) is a complete graph.

 $(ii) \Rightarrow (i)$ Let $u \in X$. If 0 * u = u, then obviously, u is a minimal element. Otherwise, by (ii), u is connected to 0 * u and so by Lemma 3.1, u is a minimal element of X. This completes the proof.

Corollary 3.1. Let X be a BCI-algebra. Then the subgraph of G(X), induced by the vertices $V(P_X)$, is a complete graph.

Theorem 3.2. Let X be a BCI-algebra. X is a BCK-algebra if and only if the graph G(X) is a null graph.

Proof. Let X be a BCK-algebra and $x, y \in X$ with $x \neq y$. If x is connected to y, then x = x * (0 * y) = y * (0 * x) = y, which is a contradiction. Therefore G(X) is a null graph.

Conversely, assume that G(X) is a null graph. If $B_X \neq X$, then there is $x \in X$ such that $0*x \neq 0$. If 0*x = x, then x is a minimal element of X and so 0*(0*x) = x. From this, we get x*(0*0) = x = 0*(0*x). This implies that 0 is connected to x, which contradict to null graph. Hence 0*x and x are distinct, and so by Lemma 3.1, they are connected together, which is a contradiction. Therefore $B_X = X$, that is, X is a BCK-algebra.

Corollary 3.2. Let X be a BCI-algebra. Then the subgraph of G(X) induced by the vertices $V(B_X)$ is a null graph.

By combining Corollaries 3.1 and 3.2, we have the following result.

Proposition 3.1. Let X be a BCI-algebra. If $X = B_X \cup P_X$, then G(X) is union of a complete graph and a null graph, that is, $G(X) = K_{|B_X|} \cup N_{|P_X|-1}$.

In general, it is not necessary that P_X be an ideal. The following theorem provides a condition for P_X to be an ideal of X.

Theorem 3.3. Let X be a BCI-algebra. Then P_X is an ideal of X if and only if the following implication is satisfied.

(3.1)
$$(\forall x \in B_X)(\forall a \in P_X) \text{ if } x \text{ is connected to } a, \text{ then } x = 0.$$

Proof. Let P_X be an ideal of X, and let x be connected to a for some $x \in B_X$ and $a \in P_X$. Then x * (0 * a) = a * (0 * x) = a * 0 = a, and so $x * (0 * a) \in P$. From this and the fact that $0 * a \in P_X$ and P_X is an ideal, we get $x \in P_X$. But $B_X \cap P_X = \{0\}$. Therefore x = 0.

Conversely, let the implication (3.1) holds, and let $y * a, a \in P_X$. By Proposition 1.1, it can be assumed that $y \in B_X$; and consequently it suffices to show that y = 0. First, we prove that y is connected to 0 * a. Since P_X is closed under the operation *, it follows from $0, y * a \in P_X$ that $0 * (0 * (y * a)) \in P_X$. Now, we have

by the minimality of
$$y*a$$

$$y*a = 0*(0*(y*a))$$

$$= 0*((0*y)*(0*a))$$
since $y \in B_X$
$$= 0*(0*(0*a))$$
by (a_5)
$$= 0*a$$

By the minimality of a and the above result, we get

$$y * (0 * (0 * a)) = y * a = 0 * a = (0 * a) * (0 * y).$$

This implies that y is connected to 0 * a. Therefore, by (3.1), we conclude y = 0, which completes the proof.

Acknowledgement

The author would like to thank the reviewers for their comments which have improved the paper.

References

- [1] M. Aslam, A.B. Thaheem, On certain ideals in BCK-algebras, Math. Japon, 36(1991), 895–906
- [2] I. Beck, Coloring of commutative rings. J. Algebra, 116(1988), 208—226
- [3] F.R. DeMeyer, T. McKenzie, Schneider, K., The zero-divisor graph of a commutative semi-group. Semigroup Forum, 65 (2002), 206—214
- [4] Y. Imai, K. Isék, On axiom systems of propositional calculi, XIV. Proc. Japan Academy, 42(1966), 19–22
- [5] K. Iséki, On BCI-algebras, Math. Sem. Notes, 8(1980), 125–130
- [6] K. Iséki, S. Tanaka, Ideal Theory of BCK-algebras, Math. Japonica, 21(1976), 351–366
- [7] Y.B. Jun, K.J. Lee, Graphs Based on BCK/BCI-Algebras, International Journal of Mathematics and Mathematical Sciences, Article ID 616981 (2011), 1–8
- [8] J. Meng, An ideal characterization of commutative BCI-algebras, Pusan Kyongnam Mathematics journal, 9(1)(1993), 1–6
- [9] J. Meng, K. Iséki, BCK-algebras, Kyungmoon Sa Co. Seoul, 1994
- [10] Robin J. Wilson, Introduction to Graph Theory, Longman Group Ltd, Fourth edition, 1996
- [11] H. Yisheng, BCI-algebra, Science Press, China, 2000

DEPARTMENT OF MATHEMATICS, SHAHID CHAMRAN UNIVERSITY OF AHVAZ, AHVAZ, IRAN *Email address*: harizavi@scu.ac.ir