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ON COMMUTING GRAPHS ASSOCIATED TO BCI-ALGEBRAS

H. HARIZAVI

Abstract. In this paper, first, the graph Γ(X) associated to a BCI-algebra X

is studied and some related properties are established. Especially, a necessary

and sufficient condition for Γ(X) to be a complete graph is given. After that,

the commuting graph associated to a BCI-algebra X, denoted by G(X), is defined

and some related properties are investigated. The paper provides a necessary and

sufficient condition for the p-semisimple part of X to be an ideal. Moreover, a

condition for an element of a BCI-algebra X to be minimal is given. Finally, it

is proved that a BCI-algebra X is p-semisimple if and only if G(X) is a complete

graph.

1. Introduction

Many authors applied graph theory in connection with some algebraic structures

and obtained some interesting results. For example, Beck, I. [2] associated to any

commutative ring R its zero-divisor graph G(R) ; and F.R. DeMeyer, T. McKenzie

and K. Schneideretc [3] associated to any commutative semigroup S its zero-divisor

graph Γ(S). For first time, Y.B. Jun and K.J. Lee [7] introduced the concept of

associative graph of a BCK/BCI algebra and provided several examples. They gave

conditions for a proper (quasi-)ideal of a BCK/BCI-algebra to be l-prime.
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The notion of BCK-algebras was introduced by Y. Imai and K. Iséki [4] in 1966

as a generalization of set-theoretic difference and propositional calculi. In the same

year, K. Iséki introduced the notion of BCI-algebras which is a generalization of

BCK-algebras [5]. These algebras are two important classes of logical algebras. In

this paper, following [7], we study the graph Γ(X) associated to the BCI-algebra X ,

defined in [7], and establish some related properties. We give a necessary and sufficient

condition for Γ(X) to be a complete graph. It is well known that p-semisimple

algebras are equivalent to abelian groups. According to this, for any BCI-algebra X,

we define a new commuting graph associated to the BCI-algebra X, denoted by G(X),

and investigate some related properties. Also, we provide a necessary and sufficient

condition for the p-semisimple part of a BCI-algebra to be an ideal. Finally, we prove

that a BCI-algebra X is p-semisimple if and only if G(X) is a complete graph.

Now, we recall some definitions and results on BCI-algebras and graph theory. The

reader is referred to [4, 5, 6, 8, 9, 11] for more details.

Definition 1.1. By a BCI-algebra we mean an algebra (X, ∗, 0) of type (2, 0) satis-

fying the following axioms:

BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

BCI-2: (x ∗ (x ∗ y)) ∗ y = 0,

BCI-3: x ∗ x = 0,

BCI-4: x ∗ y = 0 and y ∗ x = 0 imply x = y.

A BCI-algebra X satisfying 0 ∗ x = 0 for all x ∈ X is called a BCK-algebra. In

any BCI/BCK-algebra X one can define a partial order ≤ by putting x ≤ y if and

only if x ∗ y = 0.

A non-empty subset A of X is called a subalgebra of X if x∗y ∈ A for all x, y ∈ A.

The set BX := {x ∈ X | 0 ∗ x = 0} is called the BCK-part of X . The element a of

X is called a minimal element if x ≤ a implies x = a for all x ∈ X . The set of all
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minimal elements of X, denoted by PX , is called p-semisimple part of X . It is proved

that PX = {x ∈ X | 0 ∗ (0 ∗ x) = x}. A BCI-algebra X is said to be a p-semisimple

if PX = X . It is well known that (i) BX ∩PX = {0}; (ii) x ∈ X is a minimal element

if and only if x = 0 ∗ u for some u ∈ X .

In any BCI-algebra X , the following hold: for any x, y, z ∈ X ,

(a1) x ∗ 0 = x,

(a2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(a3) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,

(a4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(a5) x ∗ (x ∗ (x ∗ y)) = x ∗ y,

(a6) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

(a7) x ∗ (x ∗ y) ≤ y.

A BCK-algebra X is called commutative if it satisfies the condition: x ∗ (x ∗ y) =

y ∗ (y ∗ x) for all x ∈ X . In this case, x ∗ (x ∗ y) (and y ∗ (y ∗ x)) is the greatest lower

bound of x and y with respect to BCK-order ≤, and we denote it by x ∧ y.

A subset A of a BCI/BCK-algebra X is called an ideal of X if it satisfies (i)

0 ∈ A and (ii) x, y ∗ x ∈ A imply y ∈ A for all x, y ∈ X .

Proposition 1.1. [11] Let X be a BCI-algebra. Then the p-semisimple part P of X

is an ideal if and only if x ∗ a ∈ PX implies x = 0 for any a ∈ PX and x ∈ BX .

Let G = (V (G), E(G)) be a graph, where V (G) be the set of all vertices of G, and

E(G) be the set of all edges of G. A graph G is called complete if every two vertices

of G are connected. The complete graph with n vertices is denoted by Kn. A graph

G is called null if the set E(G) is empty. The null graph with n vertices is denoted

by Nn. Let G and H be two graphs with V (G) ∩ V (H) = φ. The union G ∪H is a

graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).
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2. graph based on BCI-algebras

To investigate the properties of a graph associated to a BCI-algebra, defined by

Y.B. Jun [7], we recall some definitions.

Definition 2.1. [7] Let X be a BCI-algebra. Then

(i) For any subset A of X, we will use the notation l(A) to denote the set

l(A) := {x ∈ X | x ∗ a = 0, ∀a ∈ A};

(ii) For any x ∈ X , we will use the notation Zx to denote the set of all elements

y ∈ X such that l({x, y}) = {0}, that is,

Zx := {y ∈ X | l({x, y}) = {0}}.

Definition 2.2. [7] By the associated graph of a BCK/BCI-algebra X , denoted

Γ(X), we mean the graph whose vertices are just the elements of X , and for distinct

vertices x, y ∈ V (Γ(X)), there is an edge connecting x and y if and only if l({x, y}) =

{0}.

Lemma 2.1. Let X be a BCI-algebra and a ∈ X. Then

a ∈ Za if and only if a = 0.

Proof. Let a ∈ Za. Then l({a}) = {0}. By axiom BCI-3, a ∈ l({a}). Hence a = 0.

Conversely, let a = 0. We show that 0 ∈ Z0, or equivalently, l({0}) = {0}.

Obviously, 0 ∈ l({0}); and for any t ∈ l({0}), we get t ∗ 0 = 0, which yield t=0. This

completes the proof. �

Lemma 2.2. Let X be a BCI-algebra and a, b ∈ X with a ≤ b. Then the following

hold:

(i) l({a}) ⊆ l({b});

(ii) Zb ⊆ Za.
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Proof. (i) It follows from a ≤ b that a ∗ b = 0. Let x ∈ l({a}). Then x ∗ a = 0 and so

by (a4), we have x ∗ b = (x ∗ b) ∗ (x ∗ a) ≤ a ∗ b = 0. From this we obtain x ∗ b = 0

and consequently, x ∈ l({b}).

(ii) Let x ∈ Zb. Then l({x, b}) = {0}. From this follows that

(2.1) 0 ∗ x = 0 and 0 ∗ b = 0.

Now, assume that t ∈ l({x, a}). Hence t ∗ x = 0 and t ∗ a = 0. From t ∗ a = 0, we get

t ∈ l({a}) and so by (i), we have t ∈ l({b}), that is, t ∗ b = 0. Moreover, t ∗ x = 0.

Thus t ∈ l({x, b}). But l{x, b}) = {0}, hence t = 0. Next we show that 0 ∈ l({x, b}).

By (a3), from a ≤ b, we obtain 0 ∗ b ≤ 0 ∗a and so by (1), we conclude 0 ≤ 0 ∗a, that

is, 0 ∗ a ∈ BX . But 0 ∗ a ∈ PX . Thus 0 ∗ a ∈ BX ∩PX = {0} and so 0 ∗ a = 0. Hence,

by (2.1), we get 0 ∈ l({x, a}) and consequently, l({x, a} = {0}. Therefore x ∈ Za,

which completes the proof. �

We provide a condition for Za to be an ideal.

Theorem 2.1. Let X be a BCI-algebra. Then the following are equivalent:

(i) Za is an ideal of X;

(ii) a ∈ BX .

Proof. (i) ⇒ (ii) Let Za be an ideal of X for some a ∈ X . Then 0 ∈ Za and so there

is x ∈ X such that l({a, x}) = {0}. From this follows that 0 ∗ a = 0, that is, a ∈ BX .

(ii) ⇒ (i) Let a ∈ BX . Then it is easy to see that l({a, 0}) = {0}, which yield

0 ∈ Za. Now, let x, y ∗ x ∈ Za. Then l({a, x}) = {0} and l({a, y ∗ x}) = {0} and so

from 0 ∈ l({a, y ∗ x}), we get 0 ∗ (y ∗ x) = 0. Let t ∈ l({a, y}). Then, we have

(2.2) t ∗ a = 0 and t ∗ y = 0.
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Now, we show that t ∗ (y ∗ x) ∈ l({a, x}). For this, we have

(t ∗ (y ∗ x)) ∗ a = (t ∗ a) ∗ (y ∗ x)by (a2)

= 0 ∗ (y ∗ x)by (2.4)

= 0.

Therefore

(2.3) (t ∗ (y ∗ x)) ∗ a = 0

Also, using (a2), (a4) and (2), we get

(2.4) (t ∗ (y ∗ x)) ∗ x = (t ∗ x) ∗ (y ∗ x) ≤ t ∗ y = 0.

From (2.3) and (2.4), we conclude t ∗ (y ∗ x) ∈ l({x, a}) = {0} and so t ∗ (y ∗ x) = 0.

Moreover by (2.2), t ∗ a = 0. Thus t ∈ l({y ∗ x, a}) = {0} and so t = 0. Therefore

l({y, a}) = {0}, and consequently y ∈ Za. Hence Za is an ideal of X . �

The following example shows that Za is not necessary be an ideal.

Example 2.1. [11] Let (X = {0, 1, a, b}; ∗, 0) be a BCI-algebra in which the operation

“ ∗ ” is given by the following table:

∗ 0 1 a b

0 0 0 b a

1 1 0 b a

a a a 0 b

b b b a 0

By some routine calculations, one can check that Za = {a} which is not ideal, since

0 6∈ Za.

The following lemma determines the degree of the vertex in graph Γ(X).
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Lemma 2.3. Let X be a BCI-algebra. Then for any vertex a ∈ V (Γ(X)),

degΓ(X)a =







|Za| − 1 if a = 0,

|Za| otherwise.

Proof. Let a 6= 0 be a vertex of V (Γ(X)). Then by Lemma 2.1, a 6∈ Za. Thus for any

vertex x ∈ V (Γ(X)), it is easy to see that

x 6= a and x is connected to vertex a ⇔ x 6= a and l({x, a} = {0}

⇔ x ∈ Za.

This implies that degΓ(X)a = |Za| whenever a 6= 0. If a = 0, then by Lemma 2.1,

a ∈ Za and so similar to the previous argument, we conclude degΓ(X)a = |Za| − 1 �

Lemma 2.4. Let X be a BCI-algebra. Then the following conditions hold:

(i) For any a ∈ X, l({0, a}) = {0} if and only a ∈ BX ;

(ii) degΓ(X)0 = |BX | − 1;

(iii) For any a 6= 0, a ∈ BX if and only if degΓ(X)a ≥ 1;

(iv) For any a ∈ PX with a 6= 0, degΓ(X)a = 0.

Proof. (i) Let l({0, a}) = {0} for some a ∈ X . It follows from 0 ∈ l({0, a}) that

0 ∗ a = 0, which yield a ∈ B.

Conversely, assume that a ∈ BX . Then 0 ∗ a = 0 and so 0 ∈ l({0, a}). Now, let

t ∈ l({0, a}). Then t ∗ 0 = 0 and so t = 0. Therefore l({0, a}) = {0}.

(ii) By (i), the result is obvious.

(iii) By (i), the vertex 0 6= a ∈ V (BX) is connected to the vertex 0. Hence

degΓ(X)a ≥ 1.

Conversely, let degΓ(X)a ≥ 1. Then there exists a vertex x connected to vertex a,

that is, l({x, a}) = {0}. Hence 0 ∗ a = 0 and so a ∈ BX .

(iv) Let 0 6= a ∈ PX . Then from BX ∩ PX = {0}, we get a 6∈ BX and so by (iii),

degΓ(X)a = 0. �
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In the following, we provide a relationship between a complete graph and a com-

mutative BCK-algebra.

Theorem 2.2. Let X be a BCK-algebra. Then the following conditions are equiva-

lent:

(i) Γ(X) is a complete graph;

(ii) X is commutative and for any a, b ∈ X, a ∧ b = 0.

Proof. (i) ⇒ (ii) Let a, b ∈ X . Then by (i), the vertex a is connected to the vertex

b and so l({a, b}) = {0}. Since a ∗ (a ∗ b) ≤ a, b, we get a ∗ (a ∗ b) ∈ l({a, b}), which

yield a ∗ (a ∗ b) = 0. Similarly, from b ∗ (b ∗ a) ≤ a, b we obtain b ∗ (b ∗ a) = 0 and so

a ∗ (a ∗ b) = b ∗ (b ∗ a) = 0. This implies that X is commutative and a ∧ b = 0.

(ii) ⇒ (i) Let a, b ∈ X and let t ∈ l({a, b}). Then t ∗ a = 0 and t ∗ b = 0 and

so t ≤ a, b. This implies that t ≤ a ∧ b = 0, and so t = 0. Moreover, obviously,

0 ∈ l({a, b}). Hence l({a, b}) = {0}, that is, the vertex a is connected to the vertex

b. Therefore Γ(X) is a complete graph. �

3. On Commuting graphs associated to BCI-algebras

It is known that the commuting graph G = (V (G), E(G)) associated to a group G

is defined by: “ two distance vertices x, y in V (G) are adjacent ⇔ xy = yx.”

We note that if (X ; ∗, 0) is a p-semisimple algebra, then the group (G, .) defined

by x.y = x ∗ (0 ∗ y) is abelian, which is called the adjoint abelian group. According

this, for any BCI-algebra X, we define a commuting graph associated to X , denoted

by G(X), and investigate some related properties.

Definition 3.1. For any BCI-algebra X , the commuting graph associated to X ,

denoted by G(X), is the graph whose vertices are just elements of X and two distinct

vertices u and v are connected by edge (u, v) if and only if u ∗ (0 ∗ v) = v ∗ (0 ∗ u).
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Example 3.1. Consider the BCI-algebra (X = {0, 1, a, b}; ∗, 0) as in Example 2.1.

By routine calculations, one can check that BX = {0, 1} and PX = {0, a, b} and so

the associated commuting graph to X is as follows:

G(X)
b
••

a

0
❅

❅
❅

❅

�
�
�
�

•

•

1

Lemma 3.1. Let X be a BCI-algebra. Then, a vertex u ∈ V (G(X)) is connected to

vertex 0 ∗ u if and only if u is a minimal element of X.

Proof. Let u be connected to 0∗u. Then we have u∗ (0∗ (0∗u) = (0∗u)∗ (0∗u) = 0.

This implies u ≤ 0∗(0∗u) and so by the minimality of 0∗(0∗u), we get u = 0∗(0∗u),

that is, u is a minimal element of X .

Conversely, let u be a minimal element ofX . Then it easy to see that u∗(0∗(0∗u) =

0 = (0 ∗ u) ∗ (0 ∗ u), which implies that vertex u is connected to vertex 0 ∗ u. �

Theorem 3.1. Let X be a BCI-algebra. Then the following conditions are equivalent:

(i) X is p-semisimple;

(ii) G(X) is a complete graph.

Proof. (i) ⇒ (ii) Let u, v ∈ V (G(X)). Since X is p-semisimple, u = 0 ∗ (0 ∗ u) and

v = 0 ∗ (0 ∗ v). Thus we have

u ∗ (0 ∗ v) = (0 ∗ (0 ∗ u) ∗ (0 ∗ v)

= (0 ∗ (0 ∗ v) ∗ (0 ∗ u)by (a2)

= v ∗ (0 ∗ u).

Therefore u is connected to v and so G(X) is a complete graph.
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(ii) ⇒ (i) Let u ∈ X . If 0 ∗ u = u, then obviously, u is a minimal element.

Otherwise, by (ii), u is connected to 0 ∗ u and so by Lemma 3.1, u is a minimal

element of X . This completes the proof. �

Corollary 3.1. Let X be a BCI-algebra. Then the subgraph of G(X), induced by

the vertices V (PX), is a complete graph.

Theorem 3.2. Let X be a BCI-algebra. X is a BCK-algebra if and only if the

graph G(X) is a null graph.

Proof. Let X be a BCK-algebra and x, y ∈ X with x 6= y. If x is connected to y,

then x = x ∗ (0 ∗ y) = y ∗ (0 ∗ x) = y, which is a contradiction. Therefore G(X) is a

null graph.

Conversely, assume that G(X) is a null graph. If BX 6= X , then there is x ∈ X

such that 0∗x 6= 0. If 0∗x = x, then x is a minimal element ofX and so 0∗(0∗x) = x.

From this, we get x ∗ (0 ∗ 0) = x = 0 ∗ (0 ∗ x). This implies that 0 is connected to

x, which contradict to null graph. Hence 0 ∗ x and x are distinct, and so by Lemma

3.1, they are connected together, which is a contradiction. Therefore BX = X , that

is, X is a BCK-algebra. �

Corollary 3.2. Let X be a BCI-algebra. Then the subgraph of G(X) induced by the

vertices V (BX) is a null graph.

By combining Corollaries 3.1 and 3.2, we have the following result.

Proposition 3.1. Let X be a BCI-algebra. If X = BX ∪ PX , then G(X) is union of

a complete graph and a null graph, that is, G(X) = K|BX | ∪N|PX |−1.

In general, it is not necessary that PX be an ideal. The following theorem provides

a condition for PX to be an ideal of X .
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Theorem 3.3. Let X be a BCI-algebra. Then PX is an ideal of X if and only if the

following implication is satisfied.

(3.1) (∀x ∈ BX)(∀a ∈ PX) if x is connected to a, then x = 0.

Proof. Let PX be an ideal of X , and let x be connected to a for some x ∈ BX and

a ∈ PX . Then x ∗ (0 ∗ a) = a ∗ (0 ∗ x) = a ∗ 0 = a, and so x ∗ (0 ∗ a) ∈ P . From this

and the fact that 0 ∗ a ∈ PX and PX is an ideal, we get x ∈ PX . But BX ∩PX = {0}.

Therefore x = 0.

Conversely, let the implication (3.1) holds, and let y ∗ a, a ∈ PX . By Proposition

1.1, it can be assumed that y ∈ BX ; and consequently it suffices to show that y = 0.

First, we prove that y is connected to 0 ∗ a. Since PX is closed under the operation

∗, it follows from 0, y ∗ a ∈ PX that 0 ∗ (0 ∗ (y ∗ a)) ∈ PX . Now, we have

y ∗ a = 0 ∗ (0 ∗ (y ∗ a))by the minimality of y ∗ a

= 0 ∗ ((0 ∗ y) ∗ (0 ∗ a))by (a6)

= 0 ∗ (0 ∗ (0 ∗ a))since y ∈ BX

= 0 ∗ aby (a5)

By the minimality of a and the above result, we get

y ∗ (0 ∗ (0 ∗ a)) = y ∗ a = 0 ∗ a = (0 ∗ a) ∗ (0 ∗ y).

This implies that y is connected to 0 ∗ a. Therefore, by (3.1), we conclude y = 0,

which completes the proof. �

Acknowledgement

The author would like to thank the reviewers for their comments which have im-

proved the paper.



516 H. HARIZAVI

References

[1] M. Aslam, A.B. Thaheem, On certain ideals in BCK-algebras, Math. Japon, 36(1991), 895–906

[2] I. Beck, Coloring of commutative rings. J. Algebra, 116(1988), 208—226

[3] F.R. DeMeyer, T. McKenzie, Schneider, K., The zero-divisor graph of a commutative semi-

group. Semigroup Forum, 65 (2002), 206—214

[4] Y. Imai, K. Isék, On axiom systems of propositional calculi, XIV. Proc. Japan Academy,

42(1966), 19–22
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[6] K. Iséki, S. Tanaka, Ideal Theory of BCK-algebras, Math. Japonica, 21(1976), 351–366

[7] Y.B. Jun, K.J. Lee, Graphs Based on BCK/BCI-Algebras, International Journal of Mathemat-

ics and Mathematical Sciences, Article ID 616981 (2011), 1–8

[8] J. Meng, An ideal characterization of commutative BCI-algebras, Pusan Kyongnam Mathemat-

ics journal, 9(1)(1993), 1–6
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