
Jordan Journal of Mathematics and Statistics (JJMS), 14(3), 2021, pp 527 - 544

DOI: https://doi.org/10.47013/14.3.10

POMPEIU TYPE INEQUALITIES USING CONFORMABLE

FRACTIONAL CALCULUS AND ITS APPLICATIONS

SAMET ERDEN(1) AND M. ZEKI SARIKAYA(2)

Abstract. We establish Pompeiu’s mean value theorem for α-fractional differ-

entiable mappings. Then, some Pompeiu type inequalities including conformable

fractional integrals are obtained, and the weighted versions of this Pompeiu type in-

equalities are presented. Finally, some applications for quadrature rules and special

means are given.

1. Introduction

In 1938, a famous integral inequality, which was named Ostrowski inequality, in-

troduced by Ostrowski [17] as follows:

Theorem 1.1. Let f : [a, b]→ R be a differentiable mapping on (a, b) whose derivative

f
′

: (a, b)→ R is bounded on (a, b), i.e., ‖f ′‖
∞

= sup
t∈(a,b)

|f ′(t)| < ∞. Then the following

inequality holds:

(1.1)

∣

∣

∣

∣

∣

∣

f(x)− 1

b− a

b
∫

a

f(t)dt

∣

∣

∣

∣

∣

∣

≤
[

1

4
+

(x− a+b
2
)2

(b− a)2

]

(b− a) ‖f ′‖
∞
,

for all x ∈ [a, b]. The constant 1
4
is the best possible.

2010 Mathematics Subject Classification. 26D10, 26D15, 26A33.

Key words and phrases. Pompeiu’s mean value theorem, conformable fractional integral, numer-

ical integration, special means.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: April 14, 2020 Accepted: Oct. 11, 2020 .

527



528 SAMET ERDEN AND M. ZEKI SARIKAYA

Inequality (1.1) has wide applications in numerical analysis and the theory of some

special means; estimating error bounds for some special means, some mid-point,

trapezoid and Simpson rules and quadrature rules, etc. Hence, the inequality (1.1) has

attracted considerable attention and interest from mathematicians and researchers.

In 1946, Pompeiu [19] derived a variant of Lagrange’s mean value theorem, which

is known as Pompeiu’s mean value theorem.

Theorem 1.2. For every real valued function f differentiable on an interval [a, b]

not containing 0, there exist a point ξ between x1 and x2 such that

x1f(x2)− x2f(x1)

x1 − x2

= f(ξ)− ξf ′(ξ),

for all pairs x1 6= x2 in [a, b]

In [6], Dragomir proved the following Pompeiu type inequality by using Pompeiu’s

mean value theorem.

Theorem 1.3. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)

with [a, b] not containing 0. Then, for any x ∈ [a, b] , we have the inequality
∣

∣

∣

∣

∣

∣

a + b

2

f(x)

x
+

1

b− a

b
∫

a

f(t)dt

∣

∣

∣

∣

∣

∣

(1.2)

≤ b− a

|x|

[

1

4
+

(x− a+b
2
)2

(b− a)2

]

‖f − lf ′‖
∞
,

where l(t) = t for all t ∈ [a, b] . The constant 1
4
is sharp in the sense that it cannot be

replaced by a smaller constant.

In recent years, many authors have worked on the inequalities obtained by using

Cauchy’s mean value theorem and the above variant of the Lagrange’s mean value

theorem given by Pompeiu in [19]. For example, the authors presented some Os-

trowski type inequalities by using mean value theorem in [4] and [20]. In addition
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to the inequality (1.2), Pečarić and Ungar provided a new Ostrowski type inequality

for p-norm by using Pompeiu’s mean value theorem in [18]. What’s more, Dragomir

obtained some power Pompeiu’s type and exponential Pompeiu’s type inequalities

for complex-valued absolutely continuous functions in [8] and [9]. Also, Dragomir

gave some generalizations of Pompeiu inequality, and these results are used to obtain

some new Ostrowski type inequalities in [7]. In [25], Sarikaya obtained some new

Pompeiu type inequalities for twice differentiable mappings. Afterwards, some re-

searchers examined some new Ostrowski and Grüss type inequalities via a variant of

Lagrange’s mean value theorem for two-variable functions in [22]-[24]. On the other

side, Erden and Sarikaya established generalized Pompeiu mean value theorem and

Pompeiu type inequalities for local fractional calculus in [10]. For recent other results

obtained realated to similar inequalities, we refer the reader to [11], [15], [16], [12]

and the references therein.

2. Definitions and properties of conformable fractional derivative

and integral

Recently, the authors introduced a new simple well-behaved definition of the frac-

tional derivative called the ”conformable fractional derivative” depending just on

the basic limit definition of the derivative in [14]. Namely, for given a function

f : [0,∞) → R, the conformable fractional derivative of order 0 < α ≤ 1 of f at

t > 0 was defined by

Dα (f) (t) = lim
ǫ→0

f (t+ ǫt1−α)− f (t)

ǫ
.

If f is α−differentiable in some (0, a) with α > 0, lim
t→0+

f (α) (t) exists such that

f (α) (0) = lim
t→0+

f (α) (t) .
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Also, we note that if f is differentiable, then one has

(2.1) Dα (f) (t) = t1−αf ′ (t) ,

where

f ′ (t) = lim
ǫ→0

f (t + ǫ)− f (t)

ǫ
.

We can write f (α) (t) for Dα (f) (t) to denote the conformable fractional derivatives

of f of order α. In addition, if the conformable fractional derivative of f of order α

exists, then we simply say f is α−differentiable.

In order to prove the main results, we use the mean value theorem for conformable

fractional derivatives. This theorem is established by Iyiola and Nwaeze [13] as

follows.

Theorem 2.1 (Mean value theorem for conformable fractional differentiable func-

tions). Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] and an α-fractional

differentiable mapping on (a, b) with 0 ≤ a < b. Then, there exists c ∈ (a, b), such

that

Dα (f) (c) =
f(b)− f(a)

bα

α
− aα

α

.

The following definitions and theorems related to conformable fractional derivative

and integral were referred in [1]-[3], [5], [13] and [14].

Theorem 2.2. Let α ∈ (0, 1] and f, g be α−differentiable at a point t > 0. Then, we

possess

i. Dα (af + bg) = aDα (f) + bDα (g) , for all a, b ∈ R,

ii. Dα (λ) = 0, for all constant functions f (t) = λ,

iii. Dα (fg) = fDα (g) + gDα (f) ,
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iv. Dα

(

f

g

)

=
gDα (f)− fDα (g)

g2
.

Definition 2.1 (Conformable fractional integral). Let α ∈ (0, 1] and 0 ≤ a < b. A

function f : [a, b] → R is α-fractional integrable on [a, b], if the integral

∫ b

a

f (x) dαx :=

∫ b

a

f (x) xα−1dx,

exists and is finite.

Remark 1. We have

Iaα (f) (t) = Ia1
(

tα−1f
)

=

∫ t

a

f (x)

x1−α
dx,

where the integral is the usual Riemann improper integral, and α ∈ (0, 1].

Theorem 2.3. Let f : (a, b) → R be differentiable and 0 < α ≤ 1. Then, for all

t > a, we possess

IaαD
a
αf (t) = f (t)− f (a) .

Theorem 2.4. (Integration by parts) Let f, g : [a, b] → R be two functions such

that fg is differentiable. Then

∫ b

a

f (x)Da
α (g) (x) dαx = fg|ba −

∫ b

a

g (x)Da
α (f) (x) dαx.

Theorem 2.5. Assume that f : [a,∞) → R such that f (n)(t) is continuous and

α ∈ (n, n + 1]. Then, for all t > a we have

Da
αI

a
αf (t) = f (t) .

Theorem 2.6. Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] with

0 ≤ a < b. Then,

|Iaα (f) (x)| ≤ Iaα |f | (x) .
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In [5], Anderson provided Ostrowski’s α-fractional inequality using a Motgomery

identity as follows:

Theorem 2.7. Let a, b, s, t ∈ R with 0 ≤ a < b, and f : [a, b]→ R be α-fractional

differentiable for α ∈ (0, 1]. Then, one has

∣

∣

∣

∣

∣

∣

f(t)− α

bα − aα

b
∫

a

f(t)dαt

∣

∣

∣

∣

∣

∣

≤ M

2α (bα − aα)

[

(tα − aα)2 + (bα − tα)
]

,

where

M = sup
t∈(a,b)

|Dαf(t)| < ∞.

In this study, Pompeiu’s mean value theorem for conformable fractional deriva-

tives is obtained. Later, we present Pompeiu type inequalities involving conformable

fractional integrals with applications Ostrowski’s inequalities. Finally, by means of

the inequalities given in this work, some applications in numerical integration and

for conformable special means are given.

3. Main Results

We prove Pompeiu’s mean value theorem for conformable fractional differentiable

functions.

Theorem 3.1. Let α ∈ (0, 1] and f : [a, b] ⊆ R → R be an α-fractional differentiable

mapping on (a, b) with 0 < a < b, for all pairs x1 6= x2 in [a, b], there exist a point ξ

in (x1, x2) such that the following equality holds:

(3.1)
xα
1 f(x2)− xα

2 f(x1)
xα
1

α
− xα

2

α

= αf(ξ)− ξ2−αDα(f)(ξ).

Proof. We first define the function F on
[

1
b
, 1
a

]

by

(3.2) F (t) = tαf(
1

t
).



POMPEIU TYPE INEQUALITIES FOR CONFORMABLE INTEGRALS 533

By using the third item of Theorem 2.2, we find that

(3.3) Dα(F ) (t) = αf(
1

t
)− 1

t2−α
Dα(f)(

1

t
).

In addition, by applying the mean value theorem given for conformable fractional

differentiable functions to F on the interval [x, y] ⊂
[

1
b
, 1
a

]

, it follows that

(3.4)
F (x)− F (y)

xα

α
− yα

α

= Dα(F ) (c) ,

for all c ∈ (x, y) .

Now, if we use the identities (3.2)-(3.4), we obtain

xαf( 1
x
)− yαf( 1

y
)

xα

α
− yα

α

= αf(
1

c
)− 1

c2−α
Dα(f)(

1

c
).

Let x2 =
1
x
, x1 =

1
y
and ξ = 1

c
. Then, since c ∈ (x, y) , we have

x1 < ξ < x2,

and we can write

xα
1 f(x2)− xα

2 f(x1)
xα
1

α
− xα

2

α

= αf(ξ)− ξ2−αDα(f)(ξ),

which completes the proof. �

Now, we give an Ostrowski type inequality by using Pompeiu’s mean value theorem

which is given for conformable fractional differentiable functions in the following

theorem.

Theorem 3.2. Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] and an

α-fractional differentiable mapping on (a, b) with 0 < a < b. Then, for any x ∈ [a, b] ,
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we have the inequality

∣

∣

∣

∣

∣

∣

aα + bα

2α

f(x)

xα
− 1

bα − aα

b
∫

a

f(t)dαt

∣

∣

∣

∣

∣

∣

(3.5)

≤ (bα − aα)

αxα





1

4
+

(

xα − aα+bα

2

bα − aα

)2


 ‖f − uDα(f)‖∞ ,

where u(t) = t2−α

α
, t ∈ [a, b] , and ‖f − uDα(f)‖∞ = sup

ξ∈(a,b)

|f(ξ)− uDα(f)(ξ)| < ∞.

Proof. Using Pompeiu’s mean value theorem for conformable fractional differentiable

functions for any x, t ∈ [a, b] , there is a point ξ between x and t such that

(3.6) tαf(x)− xαf(t) =

[

f(ξ)− ξ2−α

α
Dα(f)(ξ)

]

(tα − xα) .

Because of the equality (3.6) and the inequality

∣

∣

∣

∣

f(ξ)− ξ2−α

α
Dα(f)(ξ)

∣

∣

∣

∣

≤ sup
ξ∈(a,b)

∣

∣

∣

∣

f(ξ)− ξ2−α

α
Dα(f)(ξ)

∣

∣

∣

∣

= ‖f − uDα(f)‖∞ ,

it follows that

(3.7) |tαf(x)− xαf(t)| ≤ ‖f − uDα(f)‖∞ |tα − xα| .
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Integrating both sides of (3.7) with respect to t from a to b for conformable fractional

integrals, it is found that

∣

∣

∣

∣

∣

∣

f(x)

b
∫

a

tαdαt− xα

b
∫

a

f(t)dαt

∣

∣

∣

∣

∣

∣

(3.8)

≤ ‖f − uDα (f)‖∞
b
∫

a

|tα − xα| dαt(3.9)

= ‖f − uDα (f)‖∞





x
∫

a

(xα − tα) dαt+

b
∫

x

(tα − xα) dαt



 .

Using the definition 2.1 and the inequality (3.8), we obtain

∣

∣

∣

∣

∣

∣

b2α − a2α

2α
f(x)− xα

b
∫

a

f(t)dαt

∣

∣

∣

∣

∣

∣

(3.10)

≤ ‖f − uDα(f)‖∞

[

(xα − aα)2 + (bα − xα)2

2α

]

.

If we divide the inequality (3.10) by xα (bα − aα), we easily deduce the required result

(3.5). �

Corollary 3.1. Under the same assumptions of Theorem 3.2 with xα = aα+bα

2
. Then,

we have
∣

∣

∣

∣

∣

∣

1

α
f

(

(

aα + bα

2

)
1

α

)

− 1

bα − aα

b
∫

a

f(t)dαt

∣

∣

∣

∣

∣

∣

≤ (bα − aα)

2α (aα + bα)
‖f − uDα(f)‖∞ .

We consider the weighted version of the inequality (3.5) in the following theorem.
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Theorem 3.3. Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] and an

α-fractional differentiable mapping on (a, b) with 0 < a < b. If w : [a, b] → R is

nonnegative and α-fractional integrable on [a, b], then one has
∣

∣

∣

∣

∣

∣

f(x)

xα

b
∫

a

tαw(t)dαt−
b
∫

a

f(t)w(t)dαt

∣

∣

∣

∣

∣

∣

(3.11)

≤ ‖f − uDα(f)‖∞





x
∫

a

w(t)dαt−
b
∫

x

w(t)dαt

+
1

xα





b
∫

x

tαw(t)dαt−
x
∫

a

tαw(t)dαt







 ,

for each x ∈ [a, b] and where u(t) = t2−α

α
, t ∈ [a, b] , and

‖f − uDα(f)‖∞ = sup
ξ∈(a,b)

|f(ξ)− uDα(f)(ξ)| < ∞.

Proof. Multiplying both sides of the inequality (3.7) by w(t), and later integrating

both sides of the resulting inequality with respect to t from a to b for conformable

fractional integrals, we have
∣

∣

∣

∣

∣

∣

f(x)

b
∫

a

tαw(t)dαt− xα

b
∫

a

f(t)w(t)dαt

∣

∣

∣

∣

∣

∣

≤ ‖f − uDα(f)‖∞
b
∫

a

w(t) |tα − xα| dαt

= ‖f − uDα(f)‖∞ xα





x
∫

a

w(t)dαt−
b
∫

x

w(t)dαt





+ ‖f − uDα(f)‖∞





b
∫

x

tαw(t)dαt−
x
∫

a

tαw(t)dαt



 ,

by this way, we obtain the inequality (3.11). �
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Theorem 3.4. Let α ∈ (0, 1] and f : [a, b] → R be an α-fractional differentiable

mapping on (a, b) with 0 < a < b. Then, for any x ∈ [a, b] , we have the inequality

∣

∣

∣

∣

∣

∣

f(x)

αxα
− 1

bα − aα

b
∫

a

f(t)

tα
dαt

∣

∣

∣

∣

∣

∣

(3.12)

≤ 2

α (bα − aα)

(

ln
xα

√
aαbα

+
aα+bα

2
− xα

xα

)

‖f − uDα(f)‖∞ ,

where u(t) = t2−α

α
, t ∈ [a, b] , and

‖f − uDα(f)‖∞ = sup
ξ∈(a,b)

|f(ξ)− uDα(f)(ξ)| < ∞.

Proof. If we divide both sides of (3.6) by tαxα, we obtain the inequality

(3.13)

∣

∣

∣

∣

f(x)

xα
− f(t)

tα

∣

∣

∣

∣

≤ ‖f − uDα(f)‖∞
∣

∣

∣

∣

1

xα
− 1

tα

∣

∣

∣

∣

,

for any t, x ∈ [a, b] .

Integrating both sides of the above result over t ∈ [a, b] by considering conformable

fractional integrals, we find that

∣

∣

∣

∣

∣

∣

f(x)

xα

bα − aα

α
−

b
∫

a

f(t)

tα
dαt

∣

∣

∣

∣

∣

∣

(3.14)

≤
b
∫

a

∣

∣

∣

∣

f(x)

xα
− f(t)

tα

∣

∣

∣

∣

dαt

≤ ‖f − uDα(f)‖∞
b
∫

a

∣

∣

∣

∣

1

xα
− 1

tα

∣

∣

∣

∣

dαt.
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We observe that

b
∫

a

∣

∣

∣

∣

1

xα
− 1

tα

∣

∣

∣

∣

dαt =

b
∫

a

(

1

tα
− 1

xα

)

dαt+

b
∫

a

(

1

xα
− 1

tα

)

dαt(3.15)

= ln
x

a
− xα − aα

αxα
+

bα − xα

αxα
− ln

b

x

=
2

α

(

ln
xα

√
aαbα

+
aα+bα

2
− xα

xα

)

,

for any x ∈ [a, b] . If we sabstitute (3.15) in (3.14), then we deduce the desired

inequality (3.12). �

Corollary 3.2. Under the same assumptions of Theorem 3.4 with xα = aα+bα

2
. Then,

we have
∣

∣

∣

∣

∣

∣

f
(

(

aα+bα

2

)
1

α

)

αaα+bα

2

− 1

bα − aα

b
∫

a

f(t)

tα
dαt

∣

∣

∣

∣

∣

∣

≤ 2

α (bα − aα)

(

ln
aα + bα

2
− ln

√
aαbα

)

‖f − uDα(f)‖∞ .

We consider now the weighted version of the inequality (3.12).

Theorem 3.5. Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] and an

α-fractional differentiable mapping on (a, b) with 0 < a < b. If w : [a, b] → R is

nonnegative and α-fractional integrable on [a, b], then one possesses
∣

∣

∣

∣

∣

∣

f(x)

xα

b
∫

a

w(t)dαt−
b
∫

a

f(t)

tα
w(t)dαt

∣

∣

∣

∣

∣

∣

≤ ‖f − uDα(f)‖∞





x
∫

a

w(t)

tα
dαt−

b
∫

x

w(t)

tα
dαt

+
1

xα





b
∫

x

w(t)dαt−
x
∫

a

w(t)dαt







 ,
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for each x ∈ [a, b] and where u(t) = t2−α

α
, t ∈ [a, b] and

‖f − uDα(f)‖∞ = sup
ξ∈(a,b)

|f(ξ)− uDα(f)(ξ)| < ∞.

Proof. If we use the inequality (3.13), we attain

∣

∣

∣

∣

∣

∣

f(x)

xα

b
∫

a

w(t)dαt−
b
∫

a

f(t)

tα
w(t)dαt

∣

∣

∣

∣

∣

∣

≤
b
∫

a

∣

∣

∣

∣

f(x)

xα
− f(t)

tα

∣

∣

∣

∣

w(t)dαt

≤ ‖f − uDα(f)‖∞
b
∫

a

∣

∣

∣

∣

1

xα
− 1

tα

∣

∣

∣

∣

w(t)dαt.

By simple calculations, the required inequality can be easily deduced, and thus the

theorem is proved. �

4. Applications to Numerical Integration

In this section, we obtain some estimates of composite quadrature rules by taking

into account the results given in the previous section.

We consider the partition of the interval [a, b] , 0 < a < b, given by

In : a = x0 < x1 < ... < xn−1 < xn = b,

and ξi ∈ [xi, xi+1] , i = 0, ..., n− 1 a sequence of intermediate points. We also define

the quadrature

(4.1) S(f, In, ξ) :=
1

2α

n−1
∑

i=0

f (ξi)

ξαi

(

xα
i+1 + xα

i

)

hi,

where hi = (xα
i+1 − xα

i ), i = 0, ..., n− 1.

Theorem 4.1. Let α ∈ (0, 1] and f : [a, b] → R be a continuous on [a, b] and

an α-fractional differentiable mapping on (a, b) with 0 < a < b. Then we have the
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representation
b
∫

a

f(t)dαt = S(f, In, ξ) +R(f, In, ξ),

where S(f, In, ξ) is as defined in (4.1) and the remainder satisfies the estimation:

|R(f, In, ξ)|(4.2)

≤ 1

α
‖f − uDα(f)‖∞

n−1
∑

i=0

h2
i

ξαi





1

4
+

(

ξαi − xα
i
+xα

i+1

2

hi

)2


 .

Proof. Applying Theorem 3.2 on the interval [xi, xi+1] for the intermediate points ξi,

we obtain
∣

∣

∣

∣

∣

∣

xα
i+1 + xα

i

2α

f (ξi)

ξαi
hi −

xi+1
∫

xi

f(t)dαt

∣

∣

∣

∣

∣

∣

≤ 1

α

h2
i

ξαi





1

4
+

(

ξαi − xα
i
+xα

i+1

2

hi

)2


 ‖f − uDα(f)‖∞ ,

for all i = 0, ..., n−1. Summing over i from 0 to n−1 and using the triangle inequality,

we obtain the estimation (4.2). �

Now, we define the mid-point rule as follows:

M(f, In) :=
1

α

n−1
∑

i=0

f

(

(

xα
i + xα

i+1

2

)
1

α

)

hi,

where hi = (xα
i+1 − xα

i ), i = 0, ..., n− 1.

Corollary 4.1. Under the same assumptions of Theorem 4.1 with ξαi =
xα
i
+xα

i+1

2
.

Then, we have
b
∫

a

f(t)dαt = M(f, In) +R(f, In),

where the remainder satisfies the estimation:

|R(f, In)| ≤
1

2α
.
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5. Applications to Some Special Means

We define conformable arithmetic, geometric, and p-logarithmic means, respec-

tively:

Aα(a, b) =
aα + bα

2
,

Gα(a, b) =
√
aαbα,

Lα
p (a, b) =

[

bα(p+1) − aα(p+1)

α (p+ 1) (bα − aα)

]

1

p

, p ∈ R\ {−1, 0} .

In order to attain the results in this section, we will use inequalities obtained in

Corollary 3.1 and Corollary 3.2.

Consider the mapping f : (0,∞) → R, f(t) = tαp, p ∈ R\ {−1, 0} . Then, 0 < a <

b, we have

f

(

(

aα + bα

2

) 1

α

)

= [Aα(a, b)]
p
,

1

bα − aα

b
∫

a

f(t)dαt =
[

Lα
p (a, b)

]p
,

and

1

bα − aα

b
∫

a

f(t)

tα
dαt =

[

Lα
p−1(a, b)

]p−1
.

Also, if we use the identity (2.1), then we obtain

‖f − uDα(f)‖∞ = δ(a, b)

=



















(1− pa2−2α) aαp, if p ∈ (−∞, 0) \ {−1} ,

|1− pb2−2α| bαp, if p ∈ (0, 1) ∪ (1,∞) .

Finally, if we use the corollary 3.1 and corollary 3.2, then we derive the inequalities
∣

∣

∣

∣

1

α
[Aα(a, b)]

p −
[

Lα
p (a, b)

]p

∣

∣

∣

∣

≤ (bα − aα)

4αAα(a, b)
δ(a, b),
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and

∣

∣

∣

∣

1

α
[Aα(a, b)]

p−1 −
[

Lα
p−1(a, b)

]p−1

∣

∣

∣

∣

≤ δ(a, b)

α (bα − aα)
ln

[

Aα(a, b)

Gα(a, b)

]2

,

respectively.
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