SUM 2-IRREDUCIBLE SUBMODULES OF A MODULE

F. FARSHADIFAR $^{(1)}$ AND H. ANSARI-TOROGHY $^{(2)}$

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. M is said to be sum-irreducible precisely when it is non-zero and cannot be expressed as the sum of two proper submodules of itself. In this paper, we will introduce the concept of sum 2-irreducible submodules of M as a generalization of sum irreducible submodules of M and investigate some basic properties of this class of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

An ideal I of R is said to be *irreducible* if $I = J_1 \cap J_2$ for ideals J_1 and J_2 of R implies that either $I = J_1$ or $I = J_2$. A proper ideal I of R is said to be *strongly irreducible* if for ideals J_1, J_2 of R, $J_1 \cap J_2 \subseteq I$ implies that $J_1 \subseteq I$ or $J_2 \subseteq I$.

Strongly irreducible ideals were first studied by Fuchs, [13], under the name primitive ideals. Apparently the name "strongly irreducible" was first used by Blair in [8]. In [9, p. 177, Exercise 34] the strongly irreducible ideals are called quasi prime. More information about these classes of ideals can be found in [7], [15], and [17].

²⁰⁰⁰ Mathematics Subject Classification. 13C13, 13C99.

Key words and phrases. Sum irreducible submodule, 2-irreducible ideal, sum 2-irreducible submodule.

 $[\]hbox{Copyright $ \textcircled{C} $ Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. } \\$

An ideal I of R is said to be 2-irreducible if whenever $I = J_1 \cap J_2 \cap J_3$ for ideals J_1, J_2 and J_3 of R, then either $I = J_1 \cap J_2$ or $I = J_1 \cap J_3$ or $I = J_2 \cap J_3$. Clearly, any irreducible ideal is a 2-irreducible ideal [11].

An R-module M is said to be sum-irreducible precisely when it is non-zero and cannot be expressed as the sum of two proper submodules of itself [16].

The main purpose of this paper is to introduce the concept of sum 2-irreducible submodules of an R-module M as a generalization of sum-irreducible submodules of M and obtain some related results.

We say that a non-zero submodule N of an R-module M is a sum 2-irreducible submodule if whenever $N = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 + H_2$ or $N = H_2 + H_3$ or $N = H_1 + H_3$ (Definition 2.1).

For an R-module M, among other results, we prove that if N is a sum 2-irreducible submodule of an Artinian R-module M, then either N is sum-irreducible or N is a sum of exactly two sum-irreducible submodules of M (Theorem 2.6). Example 2.5 shows that the concepts of sum-irreducible submodules and of sum 2-irreducible submodules are different in general. Also, it is shown that if M is a strong comultiplication R-module, then every non-zero proper ideal of R is a 2-irreducible ideal if and only if every non-zero proper submodule of M is a sum 2-irreducible submodule of M (Theorem 2.11). Finally, let $R = R_1 \times R_2 \times \cdots \times R_n$ ($2 \le n < \infty$) be a decomposition of the ring R and $M = M_1 \times M_2 \times \cdots \times M_n$ be an R-module, where for every $1 \le i \le n$, M_i is an R_i -module, respectively. We proved that if N is a sum 2-irreducible submodule of M, then either $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, ..., n\}$, N_k is a sum 2-irreducible submodule of M_k , and $N_i = 0$ for every $i \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such that for some $k, m \in \{1, 2, ..., n\}$, N_k is a sum-irreducible submodule of M_k , N_m is a sum-irreducible submodule of M_m , and $N_i = 0$ for every $i \in \{1, 2, ..., n\} \setminus \{k, m\}$ (Theorem 2.13).

2. Main results

Definition 2.1. We say that a non-zero submodule N of an R-module M is a sum 2-irreducible submodule if whenever $N = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M, then either $N = H_1 + H_2$ or $N = H_2 + H_3$ or $N = H_1 + H_3$. Also, we say that M is a sum 2-irreducible module if M is a sum 2-irreducible submodule of itself.

Proposition 2.2. Let N be a sum 2-irreducible submodule of an R-module M. Then N is also a sum 2-irreducible submodule of T and N/K is a sum 2-irreducible submodule of M/K for any submodules T and K of M with $K \subseteq N \subseteq T$.

Proof. The first assertion is clear. Now let $N/K = H_1/K + H_2/K + H_3/K$ for submodules H_1 , H_2 and H_3 of M. Then $N = H_1 + H_2 + H_3$ and so as N is a sum 2-irreducible submodule of M, either $N = H_1 + H_2$ or $N = H_2 + H_3$ or $N = H_1 + H_3$. Hence either $N/K = H_1/K + H_2/K$ or $N/K = H_2/K + H_3/K$ or $N/K = H_1/K + H_3/K$, as needed.

Remark 2.3. It is easy to see that any strongly irreducible ideal is an irreducible ideal but the converse need not be true in general (see [17, 1.2]).

Let M be an R-module. M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N = (0:_M I) = \{m \in M : Im = 0\}$, equivalently, for each submodule N of M, we have $N = (0:_M Ann_R(N))$, where $Ann_R(N) = \{r \in R : rN = 0\}$ [2]. M satisfies the double annihilator condition (DAC for short) if for each ideal I of R we have $I = Ann_R(0:_M I)$ [12]. M is said to be a strong comultiplication module if M is a comultiplication R-module and satisfies the DAC condition [6].

Theorem 2.4. Let M be an R-module. Then we have the following.

(a) If M is a strong comultiplication R-module and N is a sum 2-irreducible submodule of M, then $Ann_R(N)$ is a 2-irreducible ideal of R.

- (b) If M is a comultiplication R-module and N is a non-zero submodule of M such that Ann_R(N) is a 2-irreducible ideal of R, then N is a sum 2-irreducible submodule of M.
- Proof. (a) Let M be a strong comultiplication R-module, N be a sum 2-irreducible submodule of M, and $Ann_R(N) = J_1 \cap J_2 \cap J_3$ for some ideals J_1, J_2 , and J_3 of R. Then $(0:_M Ann_R(N)) = (0:_M J_1 \cap J_2 \cap J_3)$. Now as M is a strong comultiplication R-module, $N = (0:_M J_1) + (0:_M J_2) + (0:_M J_3)$. Thus by assumption, either $N = (0:_M J_1) + (0:_M J_2)$ or $N = (0:_M J_1) + (0:_M J_3)$ or $N = (0:_M J_2) + (0:_M J_3)$. Therefore, either $Ann_R(N) = J_1 \cap J_2$ or $Ann_R(N) = J_1 \cap J_3$ or $Ann_R(N) = J_2 \cap J_3$ since M is a strong comultiplication R-module.
- (b) Let M be a comultiplication R-module and N be a non-zero submodule of M such that $Ann_R(N)$ be a 2-irreducible ideal of R. Let $N = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M. Then $Ann_R(N) = Ann_R(H_1) \cap Ann_R(H_2) \cap Ann_R(H_3)$. Thus either $Ann_R(N) = Ann_R(H_1) \cap Ann_R(H_2)$ or $Ann_R(N) = Ann_R(H_1) \cap Ann_R(H_3)$ or $Ann_R(N) = Ann_R(H_2) \cap Ann_R(H_3)$ since $Ann_R(N)$ is a 2-irreducible ideal of R. Therefore, since M is a comultiplication R-module, either $(0:_M Ann_R(N)) = (0:_M Ann_R(N)) = (0:_M Ann_R(H_1)) + (0:_M Ann_R(H_2))$ or $(0:_M Ann_R(N)) = (0:_M Ann_R(H_2)) + (0:_M Ann_R(H_3))$ by [4, 3.3]. Thus again since M is a comultiplication R-module, $N = H_1 + H_2$ or $N = H_1 + H_3$ or $N = H_2 + H_3$, as needed.

The following example shows that the concepts of sum-irreducible submodules and sum 2-irreducible submodules are different in general.

Example 2.5. Consider the \mathbb{Z} -module \mathbb{Z}_6 . Then $\mathbb{Z}_6 = \overline{3}\mathbb{Z}_6 + \overline{2}\mathbb{Z}_6$ implies that \mathbb{Z}_6 is not a sum-irreducible \mathbb{Z} -module. But $Ann_{\mathbb{Z}}(\mathbb{Z}_6) = 6\mathbb{Z}$ is a 2-irreducible ideal of \mathbb{Z} by [11, Example 1]. Since by [3, 3.8], the \mathbb{Z} -module \mathbb{Z}_6 is a comultiplication \mathbb{Z} -module, \mathbb{Z}_6 is a sum 2-irreducible \mathbb{Z} -module by Theorem 2.4 (b).

Theorem 2.6. Let M be an Artinian R-module. If N is a sum 2-irreducible submodule of M, then either N is sum-irreducible or N is a sum of exactly two sum-irreducible submodules of M.

Proof. Let N be a sum 2-irreducible submodule of M. By [16, 5.3], N has a representation of a finite sum of sum-irreducible submodules $N = N_1 + N_2 + \cdots + N_k$. We show that either k = 1 or k = 2. If k > 3, then since N is sum 2-irreducible, $N = N_i + N_j$ for some $1 \le i, j \le k$, say i = 1 and j = 2. Therefore $N_3 \subseteq N_1 + N_2$, which is a contradiction.

A non-zero submodule S of an R-module M is said to be second if for each $a \in R$, the endomorphism of M given by multiplication by a is either surjective or zero [18].

Let M be an R-module. For a submodule N of M the second radical (or second socle) of N is defined as the sum of all second submodules of M contained in N and it is denoted by sec(N) (or soc(N)). In case N does not contain any second submodule, the second radical of N is defined to be (0). $N \neq 0$ is said to be a second radical submodule of M if sec(N) = N (see [10] and [5]).

A non-zero submodule N of an R-module M is said to be a strongly 2-absorbing secondary submodule of M if whenever I, J are ideals of R, K is a submodule of M and $IJN \subseteq K$, then $I(sec(N)) \subseteq K$ or $J(sec(N)) \subseteq K$ or $IJ \subseteq Ann_R(N)$ [1].

Corollary 2.7. Let M be an Artinian comultiplication R-module. If N is a sum 2-irreducible submodule of M, then N is a strongly 2-absorbing secondary submodule of M.

Proof. Let N be a sum 2-irreducible submodule of M. By the fact that every sumirreducible submodule of an Artinian R-module is secondary and regarding Theorem 2.6, we have either N is a secondary submodule or is a sum of two secondary submodules. It is clear that every secondary submodule is strongly 2-absorbing secondary, also the sum of two secondary submodules is a strongly 2-absorbing secondary submodule, by [1, 2.17 (c)].

Proposition 2.8. Let M be a comultiplication R-module and let N_1 , N_2 , and N_3 be second submodules of M such that $N_1 \cap N_2 = N_1 \cap N_3 = N_2 \cap N_3 = 0$. Then $N_1 + N_2 + N_3$ is not a sum 2-irreducible submodule of M.

Proof. This is clear.
$$\Box$$

Corollary 2.9. Let M be a comultiplication R-module such that every non-zero submodule of M is sum 2-irreducible. Then M has at most two minimal submodules.

Proof. This follows from Proposition 2.8.
$$\square$$

Theorem 2.10. Let $f: M \to M$ be a monomorphism of R-modules. Then we have the following.

- (a) If N is a sum 2-irreducible submodule of M, then f(N) is a sum 2-irreducible submodule of f(M).
- (b) If \acute{N} is a sum 2-irreducible submodule of f(M), then $f^{-1}(\acute{N})$ is a sum 2-irreducible submodule of M.

Proof. (a) Let N be a sum 2-irreducible submodule of M. Since $N \neq 0$ and f is a monomorphism, we have $f(N) \neq 0$. Suppose that $f(N) = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of f(M). Then

$$N = f^{-1}(f(N)) = f^{-1}(\acute{H}_1) + f^{-1}(\acute{H}_2) + f^{-1}(\acute{H}_3)$$

since f is monomorphism. Thus by assumption, either $N = f^{-1}(H_1) + f^{-1}(H_2)$ or $N = f^{-1}(H_1) + f^{-1}(H_3)$ or $N = f^{-1}(H_2) + f^{-1}(H_3)$. Now as H_1 , H_2 and H_3 are submodules of f(M), we have either $f(N) = H_1 + H_2$ or $f(N) = H_1 + H_3$ or $f(N) = H_2 + H_3$ as needed.

(b) Let \acute{N} be a sum 2-irreducible submodule of f(M). If $f^{-1}(\acute{N}) = 0$, then $f(M) \cap \acute{N} = ff^{-1}(\acute{N}) = f(0) = 0$. Thus $\acute{N} = 0$, a contradiction. Therefore, $f^{-1}(\acute{N}) \neq 0$. Now let $f^{-1}(\acute{N}) = H_1 + H_2 + H_3$ for submodules H_1 , H_2 and H_3 of M. Then $\acute{N} = f(f^{-1}(\acute{N})) = f(H_1) + f(H_2) + f(H_3)$. Thus by assumption, either $\acute{N} = f(H_1) + f(H_2)$ or $\acute{N} = f(H_1) + f(H_3)$ or $\acute{N} = f(H_2) + f(H_3)$. Now as f is monomorphism, either $f^{-1}(\acute{N}) = H_1 + H_2$ or $f^{-1}(\acute{N}) = H_1 + H_3$ or $f^{-1}(\acute{N}) = H_2 + H_3$, as desired. \Box

Theorem 2.11. Let M be a strong comultiplication R-module. Then every non-zero proper ideal of R is a 2-irreducible ideal if and only if every non-zero proper submodule of M is a sum 2-irreducible submodule of M.

Proof. " \Rightarrow " Let $N=H_1+H_2+H_3$ for submodules H_1 , H_2 and H_3 of M. Then $Ann_R(N)=Ann_R(H_1)\cap Ann_R(H_2)\cap Ann_R(H_3)$. This implies that either $Ann_R(N)=Ann_R(H_1)\cap Ann_R(H_2)$ or $Ann_R(N)=Ann_R(H_1)\cap Ann_R(H_3)$ or $Ann_R(N)=Ann_R(H_2)\cap Ann_R(H_3)$ since by assumption, $Ann_R(N)$ is a 2-irreducible ideal. Therefore, either $N=H_1+H_2$ or $N=H_1+H_3$ or $N=H_2+H_3$ because M is a comultiplication R-module.

" \Leftarrow " Let I be a non-zero proper ideal of R and let $I = I_1 \cap I_2 \cap I_3$ for ideals I_1 , I_2 and I_3 of R. Then by using [14, 2.6],

$$(0:_M I) = (0:_M I_1) + (0:_M I_2) + (0:_M I_3).$$

Thus by assumption, either $(0:_M I) = (0:_M I_1) + (0:_M I_2)$ or $(0:_M I) = (0:_M I_1) + (0:_M I_3)$ or $(0:_M I) = (0:_M I_2) + (0:_M I_3)$. This implies that either $(0:_M I) = (0:_M I_1 \cap I_2)$ or $(0:_M I) = (0:_M I_1 \cap I_3)$ or $(0:_M I) = (0:_M I_2 \cap I_3)$. Thus either $I = I_1 \cap I_2$ or $I = I_1 \cap I_3$ or $I = I_2 \cap I_3$ since $I = I_3 \cap I_4$ is a strong comultiplication $I = I_3 \cap I_4$.

Let R_i be a commutative ring with identity and M_i be an R_i -module, for i = 1, 2. Let $R = R_1 \times R_2$. Then $M = M_1 \times M_2$ is an R-module and each submodule of M is in the form of $N = N_1 \times N_2$ for some submodules N_1 of M_1 and N_2 of M_2 .

Theorem 2.12. Let $R = R_1 \times R_2$ be a decomposition of the ring R and $M = M_1 \times M_2$ be an R-module, where M_1 is an R_1 -module and M_2 is an R_2 -module. Suppose that $N = N_1 \times N_2$ is a non-zero submodule of M. If N is a sum 2-irreducible submodule of M, then either $N_1 = 0$ and N_2 sum 2-irreducible submodule of M_2 or $N_2 = 0$ and N_1 is a sum 2-irreducible submodule of M_1 or N_1 , N_2 are sum-irreducible submodules of M_1 , M_2 , respectively.

Proof. Let $N = N_1 \times N_2$ be a sum 2-irreducible submodule of M such that $N_2 = 0$. From our hypothesis, N is non-zero, so $N_1 \neq 0$. Set $M = M_1 \times 0$. One can see that $M = N_1 \times 0$ is a sum 2-irreducible submodule of M. Also, observe that $M \cong M_1$ and $M \cong M_1$. Thus M_1 is a sum 2-irreducible submodule of M_1 . Suppose that $M_1 \neq 0$ and $M_2 \neq 0$. We show that M_1 is a sum-irreducible submodule of M_1 . Suppose that $M_1 = H_1 + K_1$ for some submodules M_1 . Then

$$N_1 \times N_2 = (H_1 + K_1) \times N_2 = (H_1 \times 0) + (K_1 \times 0) + (0 \times N_2).$$

Thus by assumption, either $N_1 \times N_2 = (H_1 \times 0) + (K_1 \times 0)$ or $N_1 \times N_2 = (H_1 \times 0) + (0 \times N_2)$ or $N_1 \times N_2 = (K_1 \times 0) + (0 \times N_2)$. Therefore, $N_1 = H_1$ or $N_1 = K_1$ since $N_2 \neq 0$. Hence, N_1 is a sum-irreducible submodule of M_1 . Similarly, one can see that N_2 is sum-irreducible submodule of M_2 .

Theorem 2.13. Let $R = R_1 \times R_2 \times \cdots \times R_n$ $(2 \le n < \infty)$ be a decomposition of the ring R and $M = M_1 \times M_2 \times \cdots \times M_n$ be an R-module, where for every $1 \le i \le n$, M_i is an R_i -module, respectively. If N is a sum 2-irreducible submodule of M, then either $N = \times_{i=1}^n N_i$ such that for some $k \in \{1, 2, ..., n\}$, N_k is a sum 2-irreducible submodule of M_k , and $N_i = 0$ for every $i \in \{1, 2, ..., n\} \setminus \{k\}$ or $N = \times_{i=1}^n N_i$ such

that for some $k, m \in \{1, 2, ..., n\}$, N_k is a sum-irreducible submodule of M_k , N_m is a sum-irreducible submodule of M_m , and $N_i = 0$ for every $i \in \{1, 2, ..., n\} \setminus \{k, m\}$.

Proof. We use induction on n. For n=2 the result holds by Theorem 2.12. Now let $3 \leq n < \infty$ and suppose that the result is valid when $K = M_1 \times \cdots \times M_{n-1}$. We show that the result holds when $M = K \times M_n$. By Theorem 2.12, N is a sum 2-irreducible submodule of M if and only if either $N = L \times 0$ for some sum 2-irreducible submodule L of K or $N = 0 \times L_n$ for some sum 2-irreducible submodule L_n of M_n or $N = L \times L_n$ for some sum-irreducible submodule L of K and some sum-irreducible submodule L_n of M_n . Note that a non-zero submodule L of K is a sum-irreducible submodule of K if and only if $L = \times_{i=1}^{n-1} N_i$ such that for some $k \in \{1, 2, ..., n-1\}, N_k$ is a sum-irreducible submodule of M_k , and $N_i = 0$ for every $i \in \{1, 2, ..., n-1\} \setminus \{k\}$. Consequently we reach the claim.

Acknowledgement

We would like to thank the referees for their helpful comments.

REFERENCES

- [1] H. Ansari-Toroghy and F. Farshadifar, 2-absorbing and strongly 2-absorbing secondary submodules of modules, Le Matematiche, 72 (11) (2017), 123-135.
- [2] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese
 J. Math., 11 (4) (2007), 1189–1201.
- [3] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., 25
 (2) (2008), 57–66.
- [4] H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, Honam Math. J., 30 (1) (2008), 91–99.
- [5] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 (Spec 1)(2012), 1109-1116.
- [6] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8
 (1) (2009), 105–113.

- [7] A. Azizi, Strongly irreducible ideals, J. Austral. Math. Soc., 84 (2008), 145-154.
- [8] R. L. Blair, Ideal lattices and the structure of rings, Trans AMS, 75 (1953), 136-153.
- [9] N. Bourbaki, Algèbre commutative, Chapitres 3 et 4. Paris: Hermann, (1966).
- [10] S. Ceken, M. Alkan, and P.F. Smith, The dual notion of the prime radical of a module, J. Algebra, 392 (2013), 265-275.
- [11] A.Y. Darani and H. Mostafanasab, 2-irreducible and strongly 2-irreducible ideals of commutative rings. Miskolc Math. Notes, 17 (1) (2016), 441-455.
- [12] C. Faith, Rings whose modules have maximal submodules, Publ. Mat., 39 (1995), 201-214.
- [13] L. Fuchs, Über die Ideale arithmetischer ringe, Comment. Math. Helv., 23 (1949), 334-341.
- [14] I.M.A. Hadi and G.A. Humod, Strongly (Completely) Hollow Sub-modules II, Ibn AL- Haitham Journal For Pure and Applied Science, 26 (1) (2013), 292-302.
- [15] W.J. Heinzer, L.J. Ratliff, and D.E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra, 166 (3) (2002), 267-275.
- [16] I.G. Macdonald, Secondary reperesentation of modules over a commutative ring, Symp. Math., XI (1973), 23-43.
- [17] N. Schwartz, Strongly Irreducible Ideals and Truncated Valuations, Commun Algebra, 44 (3), (2016), 1055-1087.
- [18] S. Yassemi, The dual notion of prime submodules, Arch. Math. (Brno), 37 (2001), 273–278.
- (1) (Corresponding Author) Assistant Professor, Department of Mathematics, Farhangian University, Tehran, Iran.

Email address: f.farshadifar@cfu.ac.ir

(2) Department of pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P. O. Box 41335-19141, Rasht, Iran.

Email address: ansari@guilan.ac.ir