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CAS WAVELETS STOCHASTIC OPERATIONAL MATRIX OF
INTEGRATION AND ITS APPLICATION FOR SOLVING
STOCHASTIC ITO-VOLTERRA INTEGRAL EQUATIONS

S. C. SHIRALASHETTI®) AND LATA LAMANI®

ABSTRACT. This article provides an effective technique for solving stochastic Ito-
Volterra integral equations using Cosine and Sine (CAS) wavelets. A novel stochas-
tic operational matrix of integration of CAS wavelets is developed in this article
for solving stochastic Ito-Volterra integral equations. Stochastic Ito-Volterra inte-
gral equation can be reduced to a system of algebraic equations using the newly
generated stochastic operational matrix of integration of CAS wavelets along with
the operational matrix of integration of CAS wavelets. These system of algebraic
equations can be solved using appropriate methods. Convergence and the error
analysis of the proposed technique is studied in detail. Numerical examples are

presented in order to show the efficiency and reliability of the proposed method.

1. INTRODUCTION

Wavelets have many interesting applications that are described below. Wavelets
have also been used to analyze the coherent state of a specific quantum system [1]. In
several science and engineering problems, integral equations arise. Various integral

equations are studied by authors using various methods, of which the wavelet methods
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are one of them. CAS wavelets are used by many authors to solve integral and integro-
differential equations. Some of them are found in [2-21]. Like integral equations, in
studying many physical phenomena in life sciences and engineering stochastic or
random integral equations are very important [22-24]. In recent years, the numerical
simulation of stochastic integral equations has been an important area of research
[25-29]. Many a times finding the analytic solution of stochastic integral equations is
quite difficult. And hence providing computational methods to these equations are of
great importance. Numerical methods to these equations using Block pulse functions
and various wavelets have been studied by many authors, which are found in [30-39].

In this paper, a computational technique is given for solving stochastic 1to-Volterra

integral equation,

L) ye) = f(2) + / "k (e.1) y(t) i+ / ko (0, t) () AW (D), © € [0,T),

using CAS wavelets. In equation (1.1), f (z) € L*[0,1), ki (z,t), ko (z,t) € L*[0,1) x
[0,1) for z,t € [0,T), are the stochastic processes defined on the same probability
space (€, F, P) and y(z) is unknown. Also W (x) is a Brownian motion process and
s k2 (z,t) y(t) dW(t), is the Ito-integral.

We have derived a new stochastic operational matrix of integration of CAS wavelets.
This technique uses the derived stochastic operational matrix of integration of CAS
wavelets along with the operational matrix of integration of CAS wavelets to reduce
the stochastic Ito-Volterra integral equations to a system of algebraic equations with
unknown coefficients, which are solved by using efficient methods.

The paper is organized as follows: Definitions of Brownian motion and properties
of CAS wavelets are studied and given in section 2. Method of solution is given in
section 3. Convergence and error analysis of the proposed method is given in 4. Some
numerical examples based on the proposed method are given in section 5. Finally.

conclusion is drawn in section 6.
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2. BROWNIAN MOTION AND CAS WAVELETS

2.1. Brownian motion. For definitions of Brownian motion see [40].

2.2. CAS Wavelets. CAS wavelets [13] ¥, m(x) = ¥(k,n,m,z) have four argu-
ments: n =0,1,...,2¢ — 1, k is assumed to be any positive integer. They are defined

on the interval [0, 1) as follows:

25CAS,, 2%z —n), & <z<ml

(2.1) Upm (x) =
0, Otherwise,

CAS,,(x) = cos(2mmz) + sin(2mnz),

where m = —M,—(M —1),...,0.,...,(M — 1), M. For instance, for k =1 and M =1,

we get \
Yon(z) = V2 (cos (4rz) — sin (47z))
Goolz) =3 D<r<y
Vo1 () = /2 (cos (47x) + sin (472)) )
Yr (@) = V2 (cos (4mr) — sin (47))
ro(r) =2 % <z<l1
¥11() = /2 (cos (47x) + sin (472)) )

2.3. Function Approximation. Suppose ¢(z) € L?[0,1) is expanded in terms of
the CAS wavelets as

(22) q(x) ~ Z Z Gnmnm (@) = GTY ().
n=0 m=—M

Truncating the above infinite series, we get
2k—1

(2.3) q(z =Y Z GrmWUnm(2) = GT(2),

n=0 m=—M
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where, G and ¢(z) are i x 1 (7 = 2% (2M + 1)) matrices given by:

T
(24) G = [90,(—M)790,(—(M—1))7 < 90,M 5 91,(=M) s -5 1, M5 -+ G2k —1 (= M) 5 -5 G2k -1, M ] )

?/’(93) = [?/)0,(—1\4) (f)a %,(—(M—l))(l")» ey %,M(f), ¢1,(—M) (f), ooy %,M(ﬂf), ey

¢2k—1,(—M) (x)7 ooy ¢2k—1,M($)]T-

(2.5)

(i—0.5)

And from equation (2.5) using the collocation point z; = vi=1,2,...,28 (2M + 1),

@I +D)
we can write for kK =1and M =1 (7 = 6) as:
[ Yo,(-1)(7) ]
Q/’0,0(17)
vy = |
Y11 ()
Q/’1,0(17)
Q/’1,1(17)
[ 05176 —1.4142 1.9319 0 0 0
14142 14142 1.4142 0 0 0
| 19319 14142 05176 0 0 0
| o 0 0 —05176 —1.4142 1.9319
0 0 0 14142 14142 1.4142
0 0 0 19319 —1.4142 —0.5176 |

2.4. Operational Matrix of Integration of CAS Wavelets. The operational

matrix of integration of CAS wavelets P is given in detail in [13].

2.5. Stochastic Operational Matrix of Integration of CAS Wavelets. Here
we derive a new stochastic operational matrix of CAS wavelets as follows:

The stochastic operational matrix of integration of CAS wavelets, Pg is defined as
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follows:

(26) | wwaw) = puta)
0
where P, is a m X m matrix and is called the stochastic operational matrix of inte-

gration of CAS wavelets. In particular, for M =1 and k =1 (m = 6), we have

7

ﬁ((COS(Zle}) —sin(4nx)) W(z)

DO =

/:c Yo,(—1)(z)dW (t) = — fox 47 (sin(47t) — cos(4rnt)) W(t)dt), 0<z<

0

V2 <W(x) + / v 47rW(t)dt> ,
0

()L

7 e (3)+ [ ) oo

47 (sin(47t) — cos(4mt)) W(t)dt) o,0()

(2.8)
/ox Yoo (1) dW () = S Ry G) Yoole) +W (%) drote)

V2((cos(dmz) + sin(4rz)) W ()
/0 Yo ()dW (t) = + [y Am (sin(4mt) — cos(4nt)) W(t)dt), 0 <z <

V2 (W(:c) BRe 47TW(t)dt> ,

— N

<z<

\

12

W G) + /0 ? (sin(4rt) — cos(4t)) W(t)dt) Yoo(@)

(2.9) +(w @) - /0 v 47rW(t)dt> ro(a),
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| ncn@aw -

(2.10)

(2.11)

/0 " hro(t)dW (1) = {

/ (@)W () =

(2.12)

12

\/5(((:08(47T:L’) + sin(4nz)) W(x) = W (%)
)

+ flw/Z 47 (sin(4nmt) — cos(4mt)) W (t)dt),

12
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0, 0<zr<i

ﬁ((cos(@r:p) —sin(4nrz)) W(zx) — W (%)
)

_ /Z 47 (sin(4nt) — cos(4nt)) W(t)dt> VY1o(w),

1

2

N —

" 47 (sin(dnt) — cos(4nt)) W(t)dt) 10(z).

Using equations (2.7) to (2.12), we get

Jo waw(t) =
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Therefore,
| vwaw
[0 (—w (1) - 1 4 (sin(drt) — cos(dnt) W(t)dt 0 0 W (L) + [1/2 4xW (1)t 0]
0 w (L) 00 W (3) 0
0 —W (L) + [iF 4 (sin(dnt) — cos(dnt)) W(t)dt 0 0 W (L) = [2 axW ()t 0
~ o 0 0 0 - ff 47 (sin(4nt) — cos(4rt)) W(H)dt 0 V().
0 0 W (5 -W(3) 0
0 0 E 4 (sin(4wt) — cos(4nt)) W (¢)dt 0_

Pg
The stochastic operational matrix of integration of CAS wavelets is derived here in
particular for k = 1 and M =1 i.e., for m = 6 and can extended for different values

of k and M i.e., for different values of m.

Remark 2.1. For a m-vector F', we have

(2.13) ()" (2)F = Fi(a),

where, V() is the CAS wavelet coefficient matriz and F is an 1/ x 1 matriz given

by

(2.14) F=y(x)Fy ' (2),

where F = diag(yy~"(z)F). Also, for a m x m matriz X, we have

(2.15) YT (@) Xo(e) = XTy(x),

where, XT = Vip=(z) and V = diag(T (2) X0 (x)) is a m-vector.
3. METHOD OF SOLUTION

Consider equation (1.1). In equation (1.1), let us approximate f(z), y(x), ki(z,t),
and ko (z,t), with respect to CAS wavelets as follows:

(3.1) y(z) = G (x) = Gy’ (2),
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where G is given in equation (2.4) and is the unknown vector to be determined.

(3:2) f(x) = FTp(x) = Fy' (),

(3.3) ko (a, 1) >~ T () Ky (t) = o7 (6) KT (),
and

(3.4) ka(x, 1) ~ ¢ () Ko (t) = 7 (£) K3 (),

where G and F' are CAS wavelet coefficient vectors and K7, K5 are the CAS wavelet
matrix. Substituting equations (3.1), (3.2), (3.3) and (3.4) in equation (1.1), we get

6 v(e) =F"0(e) + 07 @ ( [ v Gar)
@i ([T omeocar )
Using the Remark 2.1, we get
6 v(a) =#"0te) + 0 @ ( [ Gutoe) + vtk ([ Guman),

where G is a i x 7 matrix. Using the operational matrix of integration and stochastic

operational matrix of CAS wavelets, we get
GTp(x) = F1y(w) + o7 () KsGPy(a) + §7 (1) KrG P ().
Let X; = KléP and X, = K2GPS. Again using the remark 2.1, we get,
GT() = X (@) - X3 (@) = FTy(a),

where X; and X, are the m x m matrices and are linear functions of C' and these

equations are applicable for all z € [0, 1), hence

(3.5) GT — XTI —XI' = F7.
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Solving this linear system of equations, we get the unknown vector C. Substitut-
ing this unknown vector in equation 3.1, we get the solution the stochastic volterra

integral equation given in equation (1.1).

4. CONVERGENCE AND ERROR ANALYSIS

Lemma 4.1. Let q(z) € L*(R) be a continuous function on the interval [0,1) and
lg(z)| < 6, for every x € [0,1). Then, the CAS wavelet bases of q(x) on equation
(2.3) are bounded as:

J
(4.1) |gn,m| <
22

where, 0 is a constant.

Proof. Using CAS wavelets, any arbitrary function ¢(z) can be approximated as:

21 M

(4.2) @) =) Y Gumtam(r) = GTY(2).

n=0 m=—M

The coefficients g, ,, in (4.2) are calculated as follows:
1
(13) = [ e ()
0
Using the definition of 1y, ,,(z) i.e., CAS wavelets, we have

k n n+1

And therefore, equation (4.3) becomes,

n+1

(4.4) Gnm = / . q(x)2§CASm(2kx —n)dz.

ok

Let 282 —n = v, then equation (4.4) becomes:

1
(4.5) dom=— [y (” i n)CASm(v)dv.

95 ) 2k
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Seeing the properties of CAS wavelets [10], we have
1

(4.6) / |CAS,,(v)|dv < 1.
0

From equations (4.5) and using the assumption |¢(x)| < J, we have

o] = k|/ (U3 )easalas

(4.7) < —k/ |CAS,, (v)|dv.
22 Jo
Using equations (4.6) and (4.7), we get
ol < 5
gn,m — 2% .

U

Theorem 4.1. Let q(x) € L*(R) be a continuous function on the interval [0,1) and
lg(z)| < 0 for every x € [0,1). By using the CAS wavelet expansion we approzimate
this function.

Let ¢*(x) = 22 M Gumam(T) be the CAS wavelet series. Then, the bound

of the truncated error E(x) is given as:

(4.8)  [E@)|z= lla(z) = ¢" (@) < (Z > ai) + (Z > ai)

n=2k m=—M n=0 m=—M

1

o

where, o, = %
22

Proof. Any function ¢(z) € L?[0, 1) can be expanded in terms of CAS wavelets as:

n=0 m=—M
If ¢*(x) is the expansion truncated by using CAS wavelets, then the error obtained

by truncating the above function can be computed as:

n=2k m=—M n=0 m=—M
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From equation (4.9), we can write

1B \<HZ Z I (@ \+HZ Z InmWnm (@

=2k m=— n=0m=—M

(/ 3 S ptne \dx>1+</ 3% gt mx)

=2k m=—M n=0m=—M

D=

(4.10)
(E;mgj ol [ Wnan(z Id:U) +<n§jom_§_j ouanl [ (s |dm>

From Lemma 4.1, using the property, |gn.m| < —E, equation (4.10) reduces to,

5l < (Z > 15 [ Wt m)

n=2k m=—M

(4.11) ( Z| k|2/|wnm |daz)

Let us assume that

o

25

the definition of ¢, ,,,(z) i.e., CAS wavelets, we have

(4.12) O =

k n n+1
Therefore,
n n+1
(4.13) V2 () = 2°CASL (2%% — n), o ST < 5

Integrating equation (4.13) with respect to x, we get

n+1

ok n n—+1
(4.14) / V2 (x)de = 2k N CAS? (2x — n)dx, o <z< o

ok

Let 2%z — n = u, equation (4.14) becomes,

(4.15) /¢ dx:/OICAan(u)du.
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Using the property of CAS wavelets [13], we have

(4.16) / CAS2 (u

Substituting equation (4.16) in (4.15), we get

(4.17) /0 Y2, (2)de =

From (4.11), (4.12), and (4.17), we get

1) < (Z S a >5+<fj > a;)

n=2k m=—M n=0 m=—M

1

O

Lemma 4.2. Let k(z,t) € L*(R x R) be a continuous function on [0,1) x [0,1) and
|k(z,t)| <<, for each [x,t) € [0,1) x [0,1). Then, the CAS wavelet bases of k(z,t)

are bounded as:

2k—1 2k—1

(419 <Y 2SS S

n1=0mi=—M n2=0 mo=—M

where, ¢ is any constant.

Proof. Let us approximate k(z,t) as k*(z,t) = T (t)Ky(z). Here K = [k, is a

matrix of order m x m and

2k 1 2k_1

@19 B €3 3 S S )t () trars ().

n1=0mi=—M n2=0mo=—M

By the definition of inner product,

1 pl

(420) (5 (0:0) Vs () s ) = [ | [ 52 @) | s 1
o LJo

By the definition of CAS wavelets, equation (4.20) reduces to:

(b (2,8) , Ynymy (T)) 5 Ynmy (1))

ni+1

(121) et o
= 2’“/ [/ k(t,2)CAS,y, (2°z —n) do

ni
ok

CASp, (28t = ny) dt.
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Let 2*2 — n; = v and 2%t — ny = u. Then equation (4.17) becomes:

((F (2, 8) s Py ma (2)) 5 Pngms (1))

1 ! ! v+ny u+ng

Therefore,

{(k( @bm ma ()3 Ung.ms (1))

(4.22)

<o [ ] (S5 ) 1S ] 1CAS ()] ded

In the hypothesis it is assumed that |k(x,t)| < ¢ and hence, equation (4.22) becomes:

(423) (5020, o @) s ) < 5z [ [ 1048, (11O AS s ()] et

From equation (4.6) and (4.23), we get

(4.24) (K (2,1) , ¥nymy (2)) 5 Yngims (1)) < %

And hence from (4.19), we get

2k 1 2k 1

nm|<ZZZZ%

n1=0mi=—M no=0meo=—M

O

Theorem 4.2. Let k(x,t) € L* (R x R) be a continuous function on [0,1) x [0,1)
and |k(xz,t)] < ¢ for all [x,t) € [0,1) x [0,1). By using the CAS wavelet expansion
we approximate this function

k_ _
Let k* (w,8) = Y2 0 ST S M Kt () Yny s (1) be the CAS
wavelet series. Then, the bound of the truncated error E (x,t) can be given as:

1E (@, 8)ll2 = [|k (2, 8) — k™ (2,1)]]2

N

kal i i i pi,m)

=2k m1=—M no=2k mo=—M

N
_l’_
3

2k 1 2k 1
> Z > Z P
ny= 2"7777/1:—]\477,2 kag -

=

(4.25) (25 i Z Z pnm)2+(i i i i pi,m),

n1=2k mi=—M ny=2k ma=—M n1=2k mi=—M no=2k mo=—M
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where,

M-12k—1 M—1 2F—1

(4.26) Prm = Z ik

1=0n1=1m2=0n

[\
[\

3
3

Proof. Any function k(z,t) € L? (R x R) can be expanded in terms of CAS wavelets

as:

oo o0

=333 S bW (@) Yy (1)

m1=0n1=1mo=0n2=1

If this expansion is truncated by using CAS wavelets, then then the error obtained

by truncating the above function can be computed as:

E (z,t) = k(z,t) — k*(x,t)

2k 1 00

2 Z SN bnmtunm (%) Yngms (t)

ni= =2k mi=—M no= =2k mo=—M

Z Z Z Z k" mwnlﬂm ) 'lvbmmw (t)

=2k mo=—M

2k _1 o) o) o)
=30 3 Y D Kt (2) Ynam (1)

n1:2k mi=—M n2:2k mo=—M

3 YN ki (@) Yagms (1)

n1:2k mi=—M n2:2k mo=—M
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IN

IN
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2k _1 M 2k 1

n1:2k mi=—M n2:2k mo=—M

2k 1 M

n1:2k mi=—M n2:2k mo=—M

2k 1

ni1=2 :—]\/‘[n2 =2k mo=—M

n1=2k m1=—M ny=2k mo=—M

2k—1 00

n1=2k mi=—M ny=2k mo=—M

(// OID SIS DD DA

2k 1

(/ / 2 Z Z Z Ko Uny iy () Ungmy ()| daxdt

n1=2k mi=—M ny=2k mo=—M

(/01/01 kal i Z Z KWy my () Yy, (£)| dadt

=2k m1=—M ny=2F mo=—M

(/01/01 Z Z Z Z K m Wy ama () Prag s ()| ddt

n1=2k mi1=—M ny=2k mo=—M

2k 1 M 2k _1 00

Z Z Z Z knm¥n, m (x)wm,mz (t>
Z Z Z Z R ORI ()
Z Z Z Z KWy iy () Gy (1)

DY D0 D D Fambum (2) uame (1)

2

)¢nz ma ( ) dxdt)

Y XYY bl [ @ [0

n1=2%F m1=—M no=2k ma=—M

S XS bl [ @i [0

(
oy

2k m1=—M no=2k ma=—M

wl= [N

(SIS

\_/\ /\_/M‘va

NI

[NIES

569
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2k 1 o0

HE S8 S [ @ar [ 0w

n1=2F mi=—M ny=2F ma=—M

(4.27)  + Z Z Z Z nm\/wmml )dx/O Unmy (t) dt

ni= =2k m1=—M ng= =2k ma=—M

From equation (4.17), we have

and

0

And hence equation (4.27) reduces to,

k oo oo

Sy ey

1=2F m1= A{n2:2k7712:71¥{

[N
_l’_
3

1E (2, D), < (%31 Z 2’“2—:1 i nml2)

2k mi=—M ny=2F mo=—M

o0 oo oo o0

2 2 > X

n1=2k mi=—M no=2k ma=—M

(SIS
~

(4.28) (kal Z Z Z nmlz)

ni1=2k mi=—M no=2k ma=—

Using Lemma 4.2, we have

(4.29) [kl < > %
Let

(4.30) Pom =D . . %
From (4.29) and (4.30), we have

(4.31) |Enm| < Prm.-

(NI

=

Ikn,ml2)

=

[N

[N
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From equations (4.28) and (4.31), we get

=
=

2k _1 -1 o 2k—1

n1=2k mi=—M ny=2k mo=—M n1=2F mi=—M no=2F mo=—

2k-1 oo 2 2
DD D VI I I B SID DI DR S S

n1=2k m1=—M no=2~k ma=—M n1=2F m1=—M nyo=2F ma=—M

U

Theorem 4.3. Let y(x) and y*(z) are the exact and approximate solution of equation
(1.1), respectively. Also, let us assume that

(1) ly)l, <€

(2) NIki (@, ), < My, i =1,2,

(3) (My+m) + W (@)l (Mz +72) <1,

then,
. >\+715+||W(x>’|m725
ylr) —vy(x S ’
ly(z) —y* ()], 1= (M + ) — W (@) (M +72)

where

A =max [lq(z) — ¢"(z)],,
Vi = max ||ki(z, t) — ki (2, t)],, i=12
and A and ; are given in Theorem 4.1 and Theorem 4.2, respectively.

Proof. Let us approximate all the known and unknown functions of equation (1.1)
using CAS wavelets. Let us suppose that f*(x), kj(x,t), and kj(z,t) are approxima-

tions of f(x), ki(x,t) and ko(z,t), respectively. Then,
y(@) — y"() = () — ¢ (2) + / "y (1) y(0) — K (1) 4 () dt
+/Om<k2<x,t> (1) — & (0, 1) 5 (1) AW ().
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Thus,

ly(x) =y (@)lly < llg(z) = ¢" (@)l + [I(kr (2, ) y(2) = ki (2,8) y™(2))

(4.32) W (@)l oo Ml (R (2, 8) y(2) — ks (2, 8) y™ ()l -

For i = 1,2, we have

ki (2, 8) y () = ki (2, 8) y* (@) |y < [k (2, O], [y () = y™ (@),
+ ki, 1) = K (2, 1)l [ly(2) — y* (@),

+ ki, 1) = ki (@, Ol [y (@)l

Using Theorem 4.1 and assumptions 1 and 2, we have

(4.33) ki (2, 8) y(x) = ki (2, 8) y™ (@)l < (M + %) ly(2) — v ()], + vie-
Using Theorem 4.2 and equations (4.32) and (4.33), we get

ly(z) =y (@)l < A+ (My+7) [ly(x) — ™ (@) ], + 71e

+ W (@)l (Mz +72) ly(2) =y ()]l + 72e) -

By using the assumption (3), we finally conclude that

v At e + IV (2) o 1
ly(z) —y*( )Hz < 1— (M + ) — HW(:’U)HOO(M2+72)'

5. COMPUTATIONAL EXPERIMENTS

In this section we present some numerical examples to show the efficiency and
accuracy of the proposed method. The computations related to the test problems

are performed in MATLAB 2016. Let y;(z) be the exact solution of the given test
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problem and y;(z) be its CAS wavelet solution obtained by the proposed method.

Then the maximum absolute error is defined as:

1B oo = max [y:(x) — y; (x)]-

Test problem 5.1. Let us consider [25],

(5.1) y(z) = +/xln(1+t)y(t)dt+/xty(t)dW(t), z,te0,1).

~ 10

Ezact solution of (5.1) is y(x) = L e(Fon(ta)—e—+ [ tdW(t)

I Table 1 compares the

absolute values of test problem 5.1 obtained from method illustrated in section 3 at
some selected points for m = 6 and m = 10, and table 2 shows the maximum absolute
errors (|| E||«) of test problem 5.1. Figure 1 shows the absolute errors of test problem

5.1 for m = 6, 10.

TABLE 1. Absolute errors of test problem 5.1 for different values of m.

A

m=6

m=10

0.1
0.2
0.3
0.
0.5
0.6
0.7
0.8

0.9

1.6559¢-02
1.5025e-03
3.0955e-03
7.7911e-03
1.5589¢-02
1.9728e-02
1.9728¢-02
3.4927e-02
5.20663e-02
7.7542e-02

5.5065¢-0
1.0076¢-0
1.0247e-0/
5.8570e-0/
1.0880¢-03
2.0770e-03
2.0770e-03
2.7458¢-03
5.3377e-083
4.3741e-03
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TABLE 2. Comparison of maximum absolute errors of test problem 5.1.

Ml Bl

6 | 7.7542e-02

10| 5.3377e-03

y()-y*(x)|

\

0 0.1 0.2 0.3 0.4 0.5 0.6
X

0.7 0.8 0.9

FIGURE 1. Comparison of maximum absolute errors of test problem 5.1

Test problem 5.2. Let us consider [25],

(5.2) y(z) =1+ /0 " 2yt + /0 SO (), ot e [0,1).

13 x
Ezact solution of (5.2) isy(x) = es TJo WO  Tuble 3 compares the absolute values of
test problem 5.2 obtained from method illustrated in section 3 at some selected points

for m = 6 and m = 10, and table 4 shows the mazimum absolute errors (|E||«) of

test problem 5.2. Figure 2 shows the absolute errors of test problem 5.2 for m = 6, 10.
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TABLE 3. Absolute errors of test problem 5.2 for different values of m.

X

A~

m=6

m=10

0
0.1
0.2
0.5
0.
0.5
0.6
0.7
0.8
0.9

7.3745e-03
9.0263¢e-03
9.0864e-03
9.2237e-03
9.4382¢-03
5.2588e-03
5.2588e-03
8.0074e-03
1.1523e-02
1.2552¢-02

4.8387e-0
1.0145¢-04
1.0501¢-04
1.1123¢-04
6.8782¢-0/
1.2944¢-083
1.2944¢-083
1.9126¢-03
2.0882¢-03
2.4375¢-03

TABLE 4. Comparison of maximum absolute errors of test problem 5.2.

FIGURE 2. Comparison of maximum absolute errors of test problem 5.2.

| Bl

6 | 1.2562e-02

10| 2.4375e-03

575
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6. CONCLUSION

In this article, we have provided an effective technique for solving stochastic Ito-
Volterra integral equations using Cosine and Sine (CAS) wavelets. A novel stochas-
tic operational matrix of integration of CAS wavelets is developed in this article for
solving stochastic Ito-Volterra integral equations. Stochastic Ito-Volterra integral
equation are reduced to a system of algebraic equations using the newly generated
stochastic operational matrix of integration of CAS wavelets along with the opera-
tional matrix of integration of CAS wavelets. These system of algebraic equations
are solved using appropriate methods. Convergence and the error analysis of the
proposed technique is given in detail. Computational experiments show that the
results obtained by using the proposed method are in good agreement with that of
exact solution, and the maximum absolute error (||E||) decreases as the value of m
increases, and hence we conclude that method proposed is efficient and reliable of the

solving stochastic [to-Volterra integral equations.

Acknowledgement.

We would like to thank the editor and the referees for their positive comments,
which have strengthened this manuscript significantly.
('S. C. Shiralashetti™ ): Thank University Grants Commission (UGC), New Delhi,
for supporting this work partially through UGC-SAP DRS-III for 2016-2021: F.510/3/DRS-
I11/2016 (SAP-I).
( Lata Lamani  ): Thank Karnatak University Dharwad (KUD) for support-
ing this work under University Research Studentship(URS) 2016-2019: K. U. 40
(SC/ST)URS/2018-19/32/3/841 Dated: 07/07/2018.



CAS WAVELETS STOCHASTIC OPERATIONAL MATRIX... 577

REFERENCES

P. Wojtaszczyk, A mathematical introduction to wavelets, Cambridge University Press, 37
(1997).

S. Yousefi, A. Banifatemi, Numerical solution of Fredholm integral equations by using CAS
wavelets, Appl. Math. Comput., 183 (2006), 458-463.

H. Adibi, A. Assari, Using CAS wavelets for numerical solution of Volterra integral equations
of the second kind, Dyn. Continuous Discrete & Impulsive. Syst. Ser. A, 16 (2009), 673—685.
A. Barzkar, P. Assari, and M. A. Mehrpouya, Application of the cas wavelet in solving fredholm-
hammerstein integral equations of the second kind with error analysis, World Appl. Sci. J., 18
(2012), 1695-1704.

R. Ezzati, S. Najafalizadeh, Numerical methods for solving linear and nonlinear Volterra-
Fredholm integral equations by using CAS wavelets, World Appl. Sci. J., 18 (2012), 1847-1854.
H. Saeedi, M. M. Moghadam, and N. Mollahasani, A CAS wavelet method for solving nonlinear
Fredholm integro-differential equations of fractional order, Commun. Nonlinear Sci. Numer.
Simul., 16 (2011), 1154-1163.

H. Saeedi, M. M. Moghadam, Numerical solution of nonlinear Volterra integro-differential equa-
tions of arbitrary order by CAS wavelets, Commun. Nonlinear Sci. Numer. Simul., 16 (2011),
1216-1226.

S. C. Shiralashetti, S. Kumbinarasaiah, CAS wavelets analytic solution and Genocchi poly-
nomials numerical solutions for the integral and integro-differential equations, J. Interdiscip.
Math., 22 (2019), 201-218.

R. Ezzati, K. Maleknejad, and E. Fathizadeh, CAS Wavelet Function Method for Solving Abel
Equations with Error Analysis, Int. J. Res. Ind. Eng., 6 (2017), 350-364.

M. Yi, K. Sun, J. Huang, and L. Wang, Numerical solutions of fractional integrod-
ifferential equations of Bratu type by using CAS wavelets, J. Appl. Math., (2013),
https://doi.org/10.1155/2013/801395.

A. Rivaz, F. Yousefi, Using CAS Wavelets for solving fuzzy Fredholm Integral equations of the
second kind, (2013).

D. K Sahu, Numerical solutions of integral equations by using CAS wavelets, Doctoral disser-

tation, 2012.



578

[13]

[14]

[15]

[20]

[21]

[25]

S. C. SHIRALASHETTI AND LATA LAMANI

H. Danfu, S. Xufeng, Numerical solution of integro-differential equations by using CAS wavelet
operational matrix of integration, Appl. Math. Comput., 194 (2007), 460-466.

M. Yi, J. Huang, CAS wavelet method for solving the fractional integro-differential equation
with a weakly singular kernel, Int. J. Comput. Math., 92 (2015), 1715-1728.

N. Mollahasani, M. Mohseni Moghadam, Two new operational methods for solving a kind of
fractional volterra integral equations, Asian Eur. J. Math., 9 (2016), 1650032.

M. M. Shamooshaky, P. Assari, and H. Adibi, CAS wavelet method for the numerical solution
of boundary integral equations with logarithmic singular kernels, Int. J. Math. Model. Comput.,
4 (2014), 377-987.

X. Wang, Numerical solution of time-varying systems by CAS Wavelets, Adv. Inf. Sci. Serv.
Sci., 6 (2014), 75.

M. M. Rahman, M.S. Hossain, and M. S. Islam, A Numerical Study of Integral Equation by
Using CAS Wavelet Method, (2013).

J. Wei, R. Shan, W. Liu, and F. Jin, CAS wavelet method for solving numerical solution of
high order nonlinear integro-differential equation with weak singularity, J. Hefei Univ. Technol.
(Nat. Sci.), 9 (2012).

K. Gilani, U. Saeed, CAS Wavelet Picard Technique for Burger’s-Huxley and Burgers Equation,
Int. J. Appl. Comput. Math., 4 (2018), 133.

H. Han, Y. Wang, Solving system of linear integro-differential equations by using CAS wavelets
method, J. Anhui Univ. (Nat. Sci. Ed.), 5 (2012), 3.

A. T. Bharucha-Reid, Random Integral Equations, Mathematics in Science and Engineering,
96 Academic Press, New York, (1972).

D. Szynal, S. Wedrychowicz, On solutions of a stochastic integral equation of the Volterra type
with applications for chemotherapy, J. Appl. Probab., 25 (1988), 257-267.

C. P. Tsokos and W. J. Padgett, Random Integral Equations with Applications to Life Sciences
and Engineering, Mathematics in Science and Engineering, 108, Academic Press, New York,
(1974).

K. Maleknejad, M. Khodabin, and M. Rostami, Numerical solution of stochastic Volterra inte-
gral equations by a stochastic operational matrix based on block pulse functions, Math. Comput.

Modell., 55 (2012), 791-800.



[26]

[27]

[30]

[31]

[32]

CAS WAVELETS STOCHASTIC OPERATIONAL MATRIX... 579

M. H. Heydari, M. R. Hooshmandasl, F. M. Ghaini, and C. Cattani, A computational method
for solving stochastic It6—Volterra integral equations based on stochastic operational matrix for
generalized hat basis functions, J. Comput. Phys., 270 (2014), 402-415.

B. H. Hashemi, M. Khodabin, and K. Maleknejad, Numerical method for solving linear stochas-
tic Ito-Volterra integral equations driven by fractional Brownian motion using hat functions,
Turk. J. Math., 41 (2017), 611-624.

M. Khodabin, K. Maleknejad, and T. Damercheli, Approximate solution of the stochastic
Volterra integral equations via expansion method, Int. J. Ind. Math., 6 (2014), 41-48.

B. Hashemi, M. Khodabin, and K. Maleknejad, Numerical solution based on hat functions
for solving nonlinear stochastic It0 Volterra integral equations driven by fractional Brownian
motion, Mediterr. J. Math., 14 (2017), 24.

M. Rostami, and M. Khodabin, An optimal method based on rationalized Haar wavelet for
approximate answer of stochastic Ito-Volterra integral equations, Int. J. Appl. Oper. Res., 6
(2016), 39-52.

S. Vahdati, A wavelet method for stochastic Volterra integral equations and its application to
general stock model, Comput. Methods Differ. Equations, 5 (2017), 170-188.

X. Wen, and J. Huang, A Numerical Method for Linear Stochastic Ito-Volterra Integral Equa-
tion Driven by Fractional Brownian Motion, IEEE International Conference on Artificial In-
telligence and Computer Applications (ICAICA), (2019), 121-125.

N. Momenzade, A. R. Vahidi, and E. Babolian, A computational method for solving stochastic
Ito6—Volterra integral equation with multi-stochastic terms, Math. Sci., 12 (2018), 295-303.

Y. Xiao, J. N. Shi, and Z. W. Yang, Split-step collocation methods for stochastic Volterra
integral equations, J. Integral Equations Appl., 30 (2018), 197-218.

C. H. Wen, T. S. Zhang, Improved rectangular method on stochastic Volterra equations, J.
Comput. Appl. Math., 235 (2011), 2492-501.

M. Khodabin, K. Maleknejad, and F. Hossoini Shckarabi, Application of triangular functions
to numerical solution of stochastic volterra integral equations, JAENG Int. J. Appl. Math., 43
(2013), 1-9.

S. Singh, and S. Saha Ray, Stochastic operational matrix of Chebyshev wavelets for solving
multi-dimensional stochastic Ito-Volterra integral equations, Int. J. Wavelets Multiresolution

Inf. Process., 17 (2019), 1950007.



580 S. C. SHIRALASHETTI AND LATA LAMANI

[38] F. H. Shekarabi, M. Khodabin, and K. Maleknejad, The Petrov-Galerkin method for numerical
solution of stochastic Volterra integral equations, Differ. Equations, 14 (2014), 15.

[39] S. Saha Ray, S. Singh, Numerical solutions of stochastic Volterra-Fredholm integral equations
by hybrid Legendre block-pulse functions, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018),
289-297.

[40] S. C. Shiralashetti, and L. Lamani, Numerical solution of stochastic integral equations using

CAS wavelets, Malaya Journal of Matematik (MJM), 1 (2020), 183-186.

(1) DEPARTMENT OF MATHEMATICS, KARNATAK UNIVERSITY, DHARWAD-580 003, KAR-
NATAKA, INDIA

Email address: shiralashettisc@gmail.com

(2) DEPARTMENT OF MATHEMATICS, KARNATAK UNIVERSITY, DHARWAD-580 003, KAR-
NATAKA, INDIA

Email address: latalamani@gmail.com



