LOCAL LINEAR PRESERVERS OF MATRIX MAJORIZATIONS

AHMAD MOHAMMADHASANI

ABSTRACT. In this paper, we characterize the local linear preservers of right (resp. left) matrix majorization on \mathbb{R}_n (resp. \mathbb{R}^n).

1. Introduction

Vector majorization is a much studied concept in linear algebra and its applications. The reader can find that majorization has been connected with combinatorics, analytic inequalities, numerical analysis, matrix theory, probability and statistics in a book written by Marshall, Olkin, and Arnold [6].

Let $\mathbf{M}_{n,m}$ be the set of all n-by-m real matrices, and is abbreviated $\mathbf{M}_{n,n}$ to \mathbf{M}_n . We denote the set of 1-by-n (resp. n-by-1) real vectors by \mathbb{R}_n (resp. \mathbb{R}^n).

A matrix $R = [r_{ij}] \in \mathbf{M}_{n,m}$ with nonnegative entries is called a row stochastic matrix if $\sum_{j=1}^{n} r_{ij} \leq 1$ for all i. For vectors $x, y \in \mathbb{R}_n$ (resp. \mathbb{R}^n), it is said that x is right (resp. left) matrix majorized by y (denoted by $x \prec_r y$ (resp. $x \prec_l y$)) if x = yR (resp. x = Ry) for some n-by-n row stochastic matrix R.

Let V be a linear space of matrices, T be a linear function on V, and R be a relation on V. The linear function T is said to preserve R, if R(TX, TY) whenever R(X, Y).

²⁰¹⁰ Mathematics Subject Classification. Primary 15A04,15A21; Secondary 15A51.

Key words and phrases. Linear preserver, local linear preserver, right (left) matrix majorization, row stochastic matrix.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

The following conventions will be fixed throughout the paper.

We will denote the notation $\mathbb{P}(n)$ for the collection of all n-by-n permutation matrices. e denotes an all ones vector. Also, let A^t be the transpose of a given matrix A. Let $[A_1/\ldots/A_n]$ be the n-by-n matrix with rows $A_1,\ldots,A_n\in\mathbb{R}_n$. Let \mathbb{N}_k be the set $\{1,\ldots,k\}\subset\mathbb{N}$. For every $x=(x_1,\ldots,x_n)\in\mathbb{R}_n$ (\mathbb{R}^n) define $\mathrm{tr}(\mathbf{x}):=\sum_{i=1}^n \mathbf{x}_i$. Let [T] be the matrix representation of a linear function $T:\mathbb{R}_n\to\mathbb{R}_n$ ($T:\mathbb{R}^n\to\mathbb{R}^n$) with respect to the standard basis. In this case, Tx=xA (Tx=Ax), where A=[T]. In [4,5], the authors obtained all linear preservers of \prec_r and \prec_l on \mathbb{R}_n and \mathbb{R}^n , respectively. The following theorems characterize the linear preservers of right (left) matrix majorization. The case n=1 is evident.

Theorem 1.1. Let $T: \mathbb{R}_n \to \mathbb{R}_n$ be a linear function. Then T preserves \prec_r if and only if one of the following conditions holds.

- (i) If n = 2;
 - There exists some $a \in \mathbb{R}_2$ such that

$$T(x) = \operatorname{tr}(\mathbf{x}) \boldsymbol{a}, \ \forall \mathbf{x} \in \mathbb{R}_2.$$

• There exist $a, b \in \mathbb{R}$ $(ab \ge 0)$ such that

$$T(x) = x \begin{pmatrix} a & b \\ b & a \end{pmatrix}, \quad \forall x \in \mathbb{R}_2.$$

- (ii) If $n \geq 3$;
- There exists some $a \in \mathbb{R}_n$ such that

$$T(x) = \operatorname{tr}(\mathbf{x}) \boldsymbol{a}, \quad \forall \mathbf{x} \in \mathbb{R}_n.$$

• There exist $\alpha \in \mathbb{R}$ and $P \in \mathbb{P}(n)$ such that

$$T(x) = \alpha x P, \quad \forall x \in \mathbb{R}_n.$$

Theorem 1.2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Then T preserves \prec_l if and only if one of the following conditions holds.

(i) If n=2; there exist $a,b\in\mathbb{R}$ $(ab\leq 0)$ such that

$$T(x) = \begin{pmatrix} a & b \\ b & a \end{pmatrix} x, \quad \forall x \in \mathbb{R}^2.$$

(ii) If $n \geq 3$; there exist $\alpha \in \mathbb{R}$ and $P \in \mathbb{P}(n)$ such that

$$T(x) = \alpha P x, \quad \forall x \in \mathbb{R}^n.$$

A nonnegative real matrix D is called doubly stochastic if sum of entries of each row and each column of D is one.

Let X and Y be two matrices in $\mathbf{M}_{n,m}$. We say that X is multivariate majorized by Y, denoted by $X \prec Y$, if there exists a doubly stochastic matrix D in \mathbf{M}_n such that X = DY.

Let $\phi: \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear function. ϕ is said to be of local preserving multivariate majorization if for each $X \in \mathbf{M}_{n,m}$ there exists a linear function T_X of preserving multivariate majorization, which is depended on X, such that $\phi(X) = T_X(X)$.

In [7], the authors characterized all of linear functions that locally preserve the multivariate majorization. For more information about majorization see [1, 2, 3, 6].

Definition 1.3. A linear function $\phi : \mathbb{R}_n \to \mathbb{R}_n$ (resp. $\phi : \mathbb{R}^n \to \mathbb{R}^n$) is said to be a local preserving right (resp. left) matrix majorization if for each $x \in \mathbb{R}_n$ (resp. \mathbb{R}^n) there exists a linear function T_x of preserving right (resp. left) matrix majorization, which is depended on x, such that $\phi(x) = T_x(x)$.

In Section 2, we characterize all local linear preservers of right matrix majorization on \mathbb{R}_n . In section 3, we obtain the local linear preservers of left matrix majorization on \mathbb{R}^n .

The case n=1 is evident. So we assume that $n \geq 2$.

2. Local right matrix majorization preserving linear functions on \mathbb{R}_n

In this section, we study local linear preservers of right matrix majorization on \mathbb{R}_n , and characterize all of the linear functions $\phi : \mathbb{R}_n \to \mathbb{R}_n$ local preserving right matrix majorization.

First, we obtain the local linear preservers of right matrix majorization on \mathbb{R}_2 .

Theorem 2.1. Let $\phi : \mathbb{R}_2 \to \mathbb{R}_2$ be a linear function. Then ϕ locally preserves \prec_r if and only if $\operatorname{tr}(\mathbf{x}) = 0$ implies that $\operatorname{tr}\phi(\mathbf{x}) = 0$, $\forall x \in \mathbb{R}_2$.

Proof. First, assume that ϕ locally preserves \prec_r . Theorem 1.1 ensures that for each linear preserver T on \mathbb{R}_2 and for all $x \in \mathbb{R}_2$ that $\operatorname{tr}(x) = 0$. So, we have $\operatorname{tr}\phi(x) = 0$.

Next, suppose ϕ is a linear function which tr(x) = 0 implies that $tr\phi(x) = 0$, $\forall x \in \mathbb{R}_2$. Set

$$[\phi] = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

By the hypothesis, since tr(1, -1) = 0, we see

$$0 = \operatorname{tr}\phi(1, -1)$$
$$= a - c + b - d,$$

and so

$$d = (a+b) - c.$$

Define the linear function T on \mathbb{R}_2 as

$$T(x) = (a - c)x, \quad \forall x \in \mathbb{R}_2.$$

Clearly, T preserves \prec_r .

Let $x_0 \in \mathbb{R}_2$. If $\operatorname{tr}(\mathbf{x}_0) = 0$, then $\phi(x_0) = T(x_0)$. If $\operatorname{tr}(\mathbf{x}_0) \neq 0$; then we set the linear function T_{x_0} on \mathbb{R}_2 as

$$T_{x_0}(x) = \operatorname{tr}(\mathbf{x}) \left[\frac{1}{\operatorname{tr}(\mathbf{x}_0)} \phi(\mathbf{x}_0) \right], \quad \forall \mathbf{x} \in \mathbb{R}_2.$$

We observe that T_{x_0} preserves \prec_r and $\phi(x_0) = T(x_0)$. Therefore, ϕ locally preserves \prec_r .

In the following theorem, we characterize the linear functions $\phi : \mathbb{R}_n \to \mathbb{R}_n$ local preserving right matrix majorization whenever $(n \geq 3)$.

Theorem 2.2. Let $\phi : \mathbb{R}_n \to \mathbb{R}_n$ $(n \geq 3)$ be a linear function. Then ϕ locally preserves \prec_r if and only if there exist $\boldsymbol{a} \in \mathbb{R}_n$, $\alpha \in \mathbb{R}$, and $P \in \mathbb{P}(n)$ such that

$$\phi(x) = \operatorname{tr}(x)\boldsymbol{a} + \alpha x P, \quad \forall x \in \mathbb{R}_n.$$

Proof. We only prove the necessity of the condition. Assume that ϕ locally preserves \prec_r . Set

$$W = \{ x \in \mathbb{R}_n \mid \operatorname{tr}(\mathbf{x}) = 0 \},$$

and

$$f_{ij} = e_i - e_j, \quad \forall i, j \in \mathbb{N}_n.$$

We see dim(W) = n - 1 and the set $\{f_{1j} \mid j = 2, ..., n\}$ is a basic for W. If $x \in W$, then $\phi(x) \in W$. So $\phi \mid_{W}: W \longrightarrow W$ is a linear function.

We claim that there exist $\alpha \in \mathbb{R}$ and $P \in \mathbb{P}(n)$ such that

$$\phi \mid_W (x) = \alpha x P, \ \forall x \in W.$$

If ϕ at the point $x \in W$ has the form (i) of Theorem 1.1, then $\phi(x) = 0$. By choosing $\alpha_x = 0$ for each $P \in \mathbb{P}(n)$, we have $\phi(x) = \alpha_x x P$. So ϕ in each point $x \in W$

has the form (ii) of Theorem 1.1, and then there exist $\alpha_x \in \mathbb{R}$ and $P_x \in \mathbb{P}(n)$ such that

$$\phi(x) = \alpha_x x P_x.$$

If $\phi \mid_W = 0$, then the proof is complete. So, suppose $\phi \mid_W \neq 0$, and we prove $\phi \mid_W$ is invertible. As $\phi \mid_W \neq 0$, there exist $\alpha \in \mathbb{R} \setminus \{0\}$, $i_0, j_0 \in \mathbb{N}_n$ $(i_0 \neq j_0)$, and $P \in \mathbb{P}(n)$ such that

$$\phi(f_{i_0 j_0}) = \alpha f_{i_0 j_0} P.$$

If $\phi \mid_W$ is not invertible; then there exists some $x = (x_1, \dots, x_n) \in W \setminus \{0\}$ where $\mid x_i \mid < 1 \ (i \in \mathbb{N}_n)$ such that $\phi(x) = 0$. We have

$$\phi(x + f_{i_0 j_0}) = \alpha f_{i_0 j_0} P.$$

Since $\phi(x) = 0$, we observe that $x \notin \text{span}\{f_{i_0j_0}\}$. So $x + f_{i_0j_0} \notin \text{span}\{f_{i_0j_0}\}$.

On the other hand, since ϕ locally preserves \prec_r and $x + f_{i_0 j_0} \in W$, there exist $\beta \in \mathbb{R}$, and $Q \in \mathbb{P}(n)$ such that

$$\phi(x + f_{i_0 j_0}) = \beta(x + f_{i_0 j_0})Q.$$

Hence

$$\alpha f_{i_0 j_0} P = \beta (x + f_{i_0 j_0}) Q,$$

which is a contradiction, because the set of all nonzero components of $\alpha f_{i_0j_0}P$ is two numbers with different sign, but, as $x + f_{i_0j_0} \notin \text{span}\{f_{i_0j_0}\}$ and |x| < 1, the set of all nonzero components of $\beta(x + f_{i_0j_0})Q$ is not two numbers with different sign. Thus, $\phi|_W$ is invertible.

Assume that $i, j, k \in \mathbb{N}_n$ are mutually distinct. The hypothesis ensures that there exist $r, s, p, q, u, v \in \mathbb{N}_n$, and $a, b, c \in \mathbb{R}$ such that

$$\phi(f_{ij}) = af_{rs}, \quad \phi(f_{ki}) = bf_{pq}, \quad \text{and} \quad \phi(f_{jk}) = cf_{uv}.$$

Since ϕ is invertible, this implies that

$$a, b, c \neq 0, r \neq s, p \neq q, \text{ and } u \neq v.$$

Without loss of generality, we assume that a,b, and c have the same sign. As ϕ is invertible,

$$\{f_{ij}, f_{ki}\}, \{f_{ij}, f_{jk}\}, \text{ and } \{f_{ki}, f_{jk}\}$$

are linear independ, we deduce

$$\{\phi(f_{ij}), \phi(f_{ki})\}, \{\phi(f_{ij}), \phi(f_{jk})\}, \text{ and } \{\phi(f_{ki}), \phi(f_{jk})\}$$

are linear independ, too.

The relation $f_{ij} + f_{ki} + f_{jk} = 0$ shows that

$$\phi(f_{ij}) + \phi(f_{ki}) + \phi(f_{jk}) = 0,$$

and so

$$a(e_r - e_s) + b(e_p - e_q) + c(e_u - e_v) = 0.$$

Now, we conclude a = b = c, and we have one of the following cases.

- q = r, u = s, v = p.
- p = s, u = q, v = r.

Thus,

- $\phi(f_{ij}) = af_{rs}$, $\phi(f_{jk}) = af_{pr}$, $\phi(f_{ki}) = af_{sp}$.
- $\bullet \ \phi(f_{ij}) = af_{rs}, \ \phi(f_{jk}) = af_{sq}, \ \phi(f_{ki}) = af_{qr}.$

So there is a unique permutation δ such that one of the following cases holds.

- $\phi(f_{ij}) = af_{\delta_j\delta_i} = a(e_{\delta_j} e_{\delta_i}) = -a(e_{\delta_i} e_{\delta_j}), \forall i, j \in \mathbb{N}_n.$
- $\phi(f_{ij}) = af_{\delta_i\delta_j} = a(e_{\delta_i} e_{\delta_j}), \forall i, j \in \mathbb{N}_n.$

By putting $\alpha = a$ or $\alpha = -a$, in both cases, we have

$$A_i - A_j = \alpha(e_{\delta_i} - e_{\delta_j}), \quad \forall i, j \in \mathbb{N}_n.$$

We define the vector $\mathbf{a} \in \mathbb{R}_n$ as $\mathbf{a} = A_1 - \alpha e_{\delta_1}$. Since for all $i, j \in \mathbb{N}_n$

$$A_i - \alpha e_{\delta_i} = A_j - \alpha e_{\delta_i}$$

we see

$$A_i = \boldsymbol{a} + \alpha e_{\delta_i}, \forall i \in \mathbb{N}_n.$$

Choose $P = [e_{\delta_1}/.../e_{\delta_n}] \in \mathbb{P}(n)$. This follows that $e_{\delta_i} = e_i P$, $\forall i \in \mathbb{N}_n$.

Now, for each $x = (x_1, \ldots, x_n) \in \mathbb{R}_n$ we observe that

$$T(x) = xA$$

$$= \sum_{i=1}^{n} x_i A_i$$

$$= \sum_{i=1}^{n} x_i (\boldsymbol{a} + \alpha e_{\delta_i})$$

$$= (\sum_{i=1}^{n} x_i) \boldsymbol{a} + \alpha \sum_{i=1}^{n} x_i e_{\delta_i}$$

$$= \operatorname{tr}(\mathbf{x}) \boldsymbol{a} + \alpha \sum_{i=1}^{n} x_i e_i P$$

$$= \operatorname{tr}(\mathbf{x}) \boldsymbol{a} + \alpha \mathbf{x} P,$$

as desired.

3. Local left matrix majorization preserving linear functions on \mathbb{R}^n

Here, we characterize the linear functions $\phi : \mathbb{R}_n \longrightarrow \mathbb{R}_n$ local preserving left matrix majorization. For n = 2, we can give the following Theorem.

Theorem 3.1. Let $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear function. Then the following conditions are equivalent.

- (i) ϕ preserves \prec_l .
- (ii) ϕ locally preserves \prec_l .
- (iii) There exist $a, b \in \mathbb{R}$ ($ab \leq 0$) such that

$$Tx = \begin{pmatrix} a & b \\ b & a \end{pmatrix} x, \quad \forall x \in \mathbb{R}^2.$$

Proof. By the use of Theorem 1.2, we only show that (ii) implies (iii). Theorem 1.2 ensures that for each linear preserver \prec_l , namely T, on \mathbb{R}^2 we have

- $Te \in \text{span}(e)$.
- If tr(x) = 0, then trT(x) = 0, $\forall x \in \mathbb{R}^2$.
- $(Te_1)_1(Te_1)_2 \leq 0$.

Suppose that ϕ locally preserves \prec_l and $[\phi] = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. We see $\phi(e) = (a+c,b+d)^t$, and hence

$$(3.1) a+c=b+d$$

Since $tr(e_1 - e_2) = 0$, we have

$$0 = tr\phi(e_1 - e_2)$$

$$= tr(a - c, b - d)^t$$

$$= (a - c) + (b - d).$$

This follows that

$$(3.2) a - c = -b + d.$$

The relations (3.1) and (3.2) ensure that a = d and b = c, and then

$$[\phi] = \begin{pmatrix} a & b \\ b & a \end{pmatrix}.$$

On the other hand, since $(\phi e_1)_1(\phi e_1)_2 \leq 0$, we observe that $ab \leq 0$, and the proof is complete.

In the following theorem, we obtain the local linear preservers of left matrix majorization on \mathbb{R}^n $(n \geq 3)$.

Theorem 3.2. Let $\phi : \mathbb{R}^n \to \mathbb{R}^n$ $(n \ge 3)$ be a linear function. Then the following conditions are equivalent.

- (i) ϕ preserves \prec_l .
- (ii) ϕ locally preserves \prec_l .
- (iii) There exist $\alpha \in \mathbb{R}$ and $P \in \mathbb{P}(n)$ such that

$$\phi(x) = \alpha P x, \ \forall x \in \mathbb{R}^n.$$

Proof. The equivalence of the relations (i) and (iii) results from Theorem 1.2. It is easily seen that the condition (iii) is a result the condition (ii). So, it suffices to prove if ϕ locally preserves \prec_l , then there exist $\alpha \in \mathbb{R}$ and $P \in \mathbb{P}(n)$ such that

$$\phi(x) = \alpha P x, \quad \forall x \in \mathbb{R}^n.$$

Suppose that ϕ locally preserves \prec_l . In this case, for each $i \in \mathbb{N}_n$ there exist $\alpha_i \in \mathbb{R}$ and $P_i \in \mathbb{P}(n)$ such that

$$\phi(e_i) = \alpha_i P_i e_i.$$

Let $f: \mathbb{N}_n \longrightarrow \mathbb{N}_n$ be a function that is defined as

$$e_{f(i)} = P_i e_i, \quad \forall i \in \mathbb{N}_n.$$

So, we have

$$\phi(e_i) = \alpha_i e_{f(i)}, \quad \forall i \in \mathbb{N}_n.$$

Assume that $i \neq j$ $(i, j \in \mathbb{N}_n)$. The hypothesis ensures that there exist $\alpha \in \mathbb{R}$ and $Q \in \mathbb{P}(n)$ such that

$$\phi(e_i + e_j) = \alpha Q(e_i + e_j)$$
$$= \alpha e_k + \alpha e_l.$$

where $e_k = Qe_i$, and $e_l = Qe_j$. This shows that $k \neq l$.

On the other hand,

$$\phi(e_i + e_j) = \phi(e_i) + \phi(e_j)$$
$$= \alpha_i e_{f(i)} + \alpha_j e_{f(j)}.$$

So,

$$\alpha e_k + \alpha e_l = \alpha_i e_{f(i)} + \alpha_j e_{f(j)}.$$

As $k \neq l$, this follows that

$$\alpha_i = \alpha_j = \alpha,$$

and

$${f(i), f(j)} = {k, l},$$

especially

$$f(i) \neq f(j)$$
.

Then

$$\alpha_1 = \cdots = \alpha_n = \alpha,$$

and f is a permutation function on \mathbb{N}_n .

Suppose $P \in \mathbb{P}(n)$ is a permutation which its i^{th} column is $e_{f(i)}$. Thus,

$$\phi(e_i) = \alpha P e_i, \quad \forall i \in \mathbb{N}_n.$$

Then

$$\phi(x) = \alpha P x, \ \forall x \in \mathbb{R}^n.$$

References

- [1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra and its Applications, 118 (1989), 163-248.
- [2] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear and Multilinear Algebra, 53 (2005), 1-11.
- [3] G. Dahl, Matrix majorization, Linear Algebra and its Applications, 288 (1999), 53-73.
- [4] A. Mohammadhasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra, 15 (2006), 260-268.
- [5] A. Mohammadhasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra and its Applications, 423 (2007), 255-261.
- [6] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, (2011).
- [7] J. Zhu and P. Li, Local multivariate majorization preserving linear mappings, Linear and multilinear Algebra, 66 (2017), no. 3, 600-612.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCES, SIRJAN UNIVERSITY OF TECHNOLOGY, SIRJAN, IRAN.

Email address: a.mohammadhasani53@gmail.com; a.mohammadhasani@sirjantech.ac.ir