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LOCAL LINEAR PRESERVERS OF MATRIX MAJORIZATIONS
AHMAD MOHAMMADHASANI

ABSTRACT. In this paper, we characterize the local linear preservers of right (resp.

left) matrix majorization on R,, (resp. R™).

1. INTRODUCTION

Vector majorization is a much studied concept in linear algebra and its applica-
tions. The reader can find that majorization has been connected with combinatorics,
analytic inequalities, numerical analysis, matrix theory, probability and statistics in
a book written by Marshall, Olkin, and Arnold [6].

Let M,, ,,, be the set of all n-by-m real matrices, and is abbreviated M,, ,, to M,,.
We denote the set of 1-by-n (resp. n-by-1) real vectors by R,, (resp. R™).

A matrix R = [r;;] € M,,,, with nonnegative entries is called a row stochastic
matrix if 37 ri; <1 for all 4. For vectors x,y € R, (resp. R"), it is said that z is
right (resp. left) matrix majorized by y (denoted by = <, y (resp. z <; y)) if v = yR
(resp. © = Ry) for some n-by-n row stochastic matrix R.

Let V' be a linear space of matrices, T' be a linear function on V, and R be a
relation on V. The linear function 7 is said to preserve R, if R(TX,TY) whenever
R(X,Y).
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The following conventions will be fixed throughout the paper.
We will denote the notation P(n) for the collection of all n-by-n permutation matrices.
e denotes an all ones vector. Also, let A’ be the transpose of a given matrix A. Let
[Ay/.../A,] be the n-by-n matrix with rows A;,..., A, € R,. Let N be the set
{1,...,k} € N. For every = = (z1,...,7,) € R, (R") define tr(x) := > | x;. Let
[T] be the matrix representation of a linear function 7' : R,, - R,, (7" : R* — R")
with respect to the standard basis. In this case, Te = A (T'x = Az), where A = [T].

In [4, 5], the authors obtained all linear preservers of <, and <; on R, and R",
respectively. The following theorems characterize the linear preservers of right (left)

matrix majorization. The case n = 1 is evident.

Theorem 1.1. Let T : R,, — R, be a linear function. Then T preserves <, if and

only if one of the following conditions holds.
(1) fn=2;

e There exists some a € Ry such that
T(z) =tr(x)a, Vx € Rs.
e There exist a,b € R (ab > 0) such that

a b
T(x) ==z , Vo € R.
b a

(17) If n > 3;

e There exists some a € R,, such that
T(z) =tr(x)a, Vxe€R,.
e There exist « € R and P € P(n) such that

T(x) = azP, Yz eR,.
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Theorem 1.2. Let T : R®™ — R™ be a linear function. Then 7" preserves <; if and

only if one of the following conditions holds.

(7) If n = 2; there exist a,b € R (ab < 0) such that

a b
T(x)= r, Vz e R
b a

(73) If n > 3; there exist a € R and P € P(n) such that

T(x) = aPx, Yz e R".

A nonnegative real matrix D is called doubly stochastic if sum of entries of each
row and each column of D is one.

Let X and Y be two matrices in M, ,,. We say that X is multivariate majorized
by Y, denoted by X < Y, if there exists a doubly stochastic matrix D in M,, such
that X = DY

Let ¢ : M,,,,, = M,,,,, be a linear function. ¢ is said to be of local preserving
multivariate majorization if for each X € M,, ,, there exists a linear function Tx of
preserving multivariate majorization, which is depended on X, such that ¢(X) =
Tx(X).

In [7], the authors characterized all of linear functions that locally preserve the

multivariate majorization. For more information about majorization see [1, 2, 3, 6].

Definition 1.3. A linear function ¢ : R, — R,, (resp. ¢ : R" — R") is said to be a
local preserving right (resp. left) matrix majorization if for each x € R, (resp. R™)
there exists a linear function 7}, of preserving right (resp. left) matrix majorization,

which is depended on z, such that ¢(z) = T, (z).
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In Section 2, we characterize all local linear preservers of right matrix majorization
on R,. In section 3, we obtain the local linear preservers of left matrix majorization
on R™.

The case n = 1 is evident. So we assume that n > 2.

2. LOCAL RIGHT MATRIX MAJORIZATION PRESERVING LINEAR FUNCTIONS ON R,

In this section, we study local linear preservers of right matrix majorization on R,,,
and characterize all of the linear functions ¢ : R,, — R,, local preserving right matrix
majorization.

First, we obtain the local linear preservers of right matrix majorization on R,.

Theorem 2.1. Let ¢ : Ry — Ry be a linear function. Then ¢ locally preserves <,

if and only if tr(x) = 0 implies that tr¢(x) = 0, Vo € R..

Proof. First, assume that ¢ locally preserves <,.. Theorem 1.1 ensures that for each
linear preserver 7' on Ry and for all = € Ry that tr(x) = 0. So, we have tro(x) = 0.

Next, suppose ¢ is a linear function which tr(x) = 0 implies that tr¢(x) = 0,
Vo € Ry. Set

By the hypothesis, since tr(1, —1) = 0, we see

0 = trg(1,-1)
= a—c+b—d,
and so
d=(a+b)—c

Define the linear function 7" on Ry as

T(x) = (a—c)z, Ve R,.
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Clearly, T preserves <,..
Let xg € Ry. If tr(xg) = 0, then ¢(zg) = T(xg). If tr(xg) # 0; then we set the

linear function 7, on Ry as

1

(1) = 09 g

¢(Xo>], VX € Rg.

We observe that T}, preserves <, and ¢(xg) = T'(xy). Therefore, ¢ locally preserves
< O

In the following theorem, we characterize the linear functions ¢ : R, — R,, local

preserving right matrix majorization whenever (n > 3).

Theorem 2.2. Let ¢ : R, — R, (n > 3) be a linear function. Then ¢ locally

preserves <, if and only if there exist a € R,,, @ € R, and P € P(n) such that
o(z) = tr(x)a+ axP, ¥x € R,.

Proof. We only prove the necessity of the condition. Assume that ¢ locally preserves

<,. Set
W ={z eR, | tr(x) =0},
and
fij =ei—e;, Vi,jeN,.
We see dim(W) =n — 1 and the set {f1; | j =2,...,n} is a basic for .

If x € W, then ¢(z) € W. So ¢ |w: W — W is a linear function.
We claim that there exist & € R and P € P(n) such that

¢ |w () = azxP, YreW.

If ¢ at the point € W has the form (i) of Theorem 1.1, then ¢(z) = 0. By

choosing a, = 0 for each P € P(n), we have ¢(x) = a,xP. So ¢ in each point x € W
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has the form (i7) of Theorem 1.1, and then there exist a, € R and P, € P(n) such
that

o(r) = azxP,.
If ¢ |y= 0, then the proof is complete. So, suppose ¢ |y # 0, and we prove ¢ |y is

invertible. As ¢ |w# 0, there exist o € R\ {0}, i, jo € N,, (ip # Jo), and P € P(n)
such that

gb(fl’o]’o) = O‘fiojop'

If ¢ |y is not invertible; then there exists some z = (z1,...,2,) € W\ {0} where

| z; |< 1 (i € N,,) such that ¢(x) = 0. We have
O(@ + figjo) = figjo P

Since ¢(z) = 0, we observe that x & span{fi;, }. So x + fi,j, & span{fi;, }-
On the other hand, since ¢ locally preserves <, and x + f;;, € W, there exist
g € R, and @ € P(n) such that

¢($ + fiojo) = ﬁ(l’ + fiojo)Q-

Hence
O‘fiojoP - 5(!13 + fiojo)Qa

which is a contradiction, because the set of all nonzero components of af;j, P is two
numbers with different sign, but, as « + f;,;, & span{f;,} and | z |< 1, the set of all
nonzero components of 5(z + fi j,)@ is not two numbers with different sign. Thus,
¢ |w is invertible.

Assume that i, j, k € N,, are mutually distinct. The hypothesis ensures that there

exist r,s,p,q,u,v € N,, and a, b, c € R such that

O(fij) = afrs, O(fri) = bfpg, and o(fjx) = cfyy.
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Since ¢ is invertible, this implies that

a,b,c#0, r#s, p#gq, and u#v.

Without loss of generality, we assume that a, b, and ¢ have the same sign. As ¢ is

invertible,
{figs fri}s Afig fint,and {fi, fxc}

are linear independ, we deduce

{o(fi), o(fri)}, {&(fij), o(fir)},and {o(fwi), o(fik) }

are linear independ, too.

The relation f;; + fri + fjx = 0 shows that

o(fij) + o(fri) + o(fix) = 0,

and so
ale, —es) +ble, —e,) + cle, —e,) =0.

Now, we conclude a = b = ¢, and we have one of the following cases.
eg=r,u=S5,0=0p.
ep=SUu=¢q, V="

Thus,
* ¢(fi) = afrs; ¢(fi) = afpr; ¢(fri) = afsp.
© &(fiy) = afrs, 0(fi) = afsq, O(fri) = afor-

So there is a unique permutation § such that one of the following cases holds.
® ¢(fij) = afs,s, = ales; — es,) = —ales, — es;), Vi, j € Ny,
® ¢(fij) = afs;s; = ales, —es,), Vi, j € Ny.

By putting a = a or a = —a, in both cases, we have

A — Aj = ales; —es,), Vi,j €N,
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We define the vector a € R,, as a = A; — aes,. Since for all 7,5 € N,
Ai — ey, = Aj — Oé€5j,

we see

A; = a+ aes,, Vi € N,,.

Choose P = [es,/ ... /es,| € P(n). This follows that es, = ¢; P, Vi € N,,.

Now, for each x = (z1,...,z,) € R, we observe that
T(x) = zA
= Y1 Tid

= > xi(a+ aes,)
= CiLimat+ o)l vies,
= tr(x)a+ad . xeP
= tr(x)a+ axP,
as desired. 0

3. LOCAL LEFT MATRIX MAJORIZATION PRESERVING LINEAR FUNCTIONS ON R"

Here, we characterize the linear functions ¢ : R, — R,, local preserving left matrix

majorization. For n = 2, we can give the following Theorem.

Theorem 3.1. Let ¢ : R> — R? be a linear function. Then the following conditions
are equivalent.

(i) ¢ preserves <.

(1) ¢ locally preserves <.

(73) There exist a,b € R (ab < 0) such that

a b
Tr = z, Vre R
b «a
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Proof. By the use of Theorem 1.2, we only show that (iz) implies (i7i). Theorem 1.2
ensures that for each linear preserver <;, namely 7', on R? we have

e Te € span(e).

o If tr(x) = 0, then trT(x) = 0, Vo € R%

o (Te1)1(Tey)s <0.
Suppose that ¢ locally preserves <; and [¢] = ‘e . We see ¢(e) = (a+c,b+d)t,

b d
and hence

(3.1) at+c=b+d

Since tr(e; — ey) = 0, we have

0 = tro(er —ey)

= tr(a—c,b—d)*
= (a—c)+(b—4d).
This follows that
(3.2) a—c=—-b+d.

The relations (3.1) and (3.2) ensure that a = d and b = ¢, and then

a b
b a

(0] =

On the other hand, since (¢e;)i(¢e1)2 < 0, we observe that ab < 0, and the proof is

complete. 0

In the following theorem, we obtain the local linear preservers of left matrix ma-

jorization on R™ (n > 3).
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Theorem 3.2. Let ¢ : R" — R" (n > 3) be a linear function. Then the following
conditions are equivalent.

(1) ¢ preserves <.

(77) ¢ locally preserves ;.

(7i1) There exist « € R and P € P(n) such that

¢(x) = aPz, VreR".

Proof. The equivalence of the relations (i) and (ii7) results from Theorem 1.2. It is
easily seen that the condition (7i7) is a result the condition (i7). . So, it suffices to

prove if ¢ locally preserves <;, then there exist « € R and P € P(n) such that
¢(r) = aPz, YreR"

Suppose that ¢ locally preserves <;. In this case, for each ¢ € N,, there exist a; € R
and P; € P(n) such that

o(e;) = a; Pe;.
Let f: N, — N,, be a function that is defined as
erq) = Piei, Vi €N,
So, we have
o(er) = azepny, VieN,.

Assume that ¢ # j (1,7 € N,,). The hypothesis ensures that there exist & € R and
@ € P(n) such that

olei+e;) = aQle; +ey)
= e + aey,

where e, = Qe;, and e; = Qe;. This shows that k # [.
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On the other hand,
Plei+ej) = dle) + 9ley)
= lfa) + er()-
So,
e, + aep = ey + e
As k # [, this follows that

Q; = o = «,

and
{£0), f(3)} = {k. 1},
especially
f@) # £().
Then
0= =, =

and f is a permutation function on N,,.

Suppose P € P(n) is a permutation which its ¢ column is es(;). Thus,

¢(e;) = aPe;, VieN,.

Then

¢(x) = aPz, VreR".
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