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ON CONDUCTOR IDEALS OF QUADRATIC ORDERS
S. ALMAS®™ |'S. U. REHMAN® AND S. YOUNUS®)

ABSTRACT. In this paper we study the orders in quadratic number fields. We give
a complete description of conductor ideals of certain orders in quadratic number

fields and investigate some of their important arithmetic properties.

1. INTRODUCTION

Let K be an algebraic number field. The ring of integers of K is denoted by Ok.
A subring of Ok with quotient field K is called an order in K and is denoted by O.
The orders can also be defined equivalently in many other ways, cf. [15, page: 73-81].
Clearly Ok is an order in K and hence it is the maximal order in the sense of set
inclusion. We say that an order O is proper if O # Og. In algebraic number theory,
the rings O and Ok are important objects to study because of their remarkable
properties. Also in algebraic geometry, the affine space Spec(Q) is non-singular if
and only if O = Ok, where Spec(O) denotes the set of all prime ideals of the ring
O, cf. [9, Theorem 5.1]. Therefore, we have a correspondence between the study
of O and Ok with the study of singular and non-singular curves, respectively. For
detailed study about the facts related to O and Og, see [1] and [15]. The conductor
of O, denoted by O : Ok, is defined by the set {x € K| 2O C O} which is

always non-zero and is a proper ideal of O if and only if O is a proper subring of
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Ok. Moreover, O : Ok is a maximal common ideal of both O and Og. It plays a
significant role in the factorization based properties of orders, cf. [8]. The orders in
algebraic number fields and their conductor ideals have been investigated by many
authors (see [3, 6, 11, 12, 13, 14, 16, 18]).

Let d # 0,1 be an integer. The ring Z[\/E] is an order in the quadratic number field
Q(v/d ) and is often named as quadratic order. Moreover, every quadratic order can
be written as Z[f+/d] or Z[f(1 + v/d)/2] for some integer f > 1, cf. [14, Proposition
4] or [4, page: 133-134]. The quadratic order Z[v/d] is proper order if either d is
non-square-free or d is square-free with d = 1 (mod 4). In this paper we completely
describe the conductor ideals of the proper quadratic orders of the form Z[\/E] and
investigate some of their important arithmetic properties. We obtain the following
results:

If d = m?d € Z — {0,1}, where d is square-free integer with d = 1 (mod 4)
and O = Z[Vd], then O : O = (2m,m + \/E) which is a non-principal ideal in O
but principal in Ok generated by 2m. Moreover, if m > 1, then O : O is always
non-maximal in both O and Ok (Theorems 3.1, 3.2, Remark 3.1). If d € Z — {0,1}
is square-free with d = 1 (mod 4) and O = Z[V/d], then O : Ok = (2,1 + v/d) which
is a non-principal ideal in O but principal in Ok generated by 2. Moreover, in this
case O : O is always maximal in O but maximal in O if and only if d = 5 (mod 8)
(Corollaries 3.1, 3.2, Remark 3.1, Theorem 3.3). If d = m?d € Z — {0,1} , where d’
is square-free with d' = 2,3 (mod 4) and O = Z[V/d], then O : Og = (m, V/d) which
is a non-principal ideal in O for m # +1 but always principal in Og. Moreover, in
this case O : Ok is maximal ideal in O if and only if m is prime and it is maximal
ideal in O if and only if m is prime and 2> — d' is irreducible in Z,,[z] (Theorems
3.4, 3.5, 3.6, 3.7, Remark 3.2). If d € Z — {0, 1}, then (n, 1+ \/E) is a maximal ideal
in Z[v/d] if and only if ged(n,1 — d) is prime (Theorem 3.8).
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2. PRELIMINARIES

For the reader’s convenience we give a working introduction here for the notions
involved. Let A C B be integral domains. An element b € B is said to be integral over
A it is root of some monic polynomial with coefficients in A and is said to be algebraic
over A if it is root of some polynomial with coefficients in A. Clearly, an element is
integral over a field K if and only if it is algebraic over K. The integral closure of A in
B is denoted by A’; and is defined as Ay = {z € B | = is integral over A}. Clearly,
A’y is a subdomain of B containing A. The integral closure D) in its quotient field K
is simply denoted by D’ and the domain D is said to be integrally closed if D = D’.
A complex number which is integral over Z is called algebraic integer and a complex
number which is algebraic over Q is called algebraic number. An algebraic number
field is a subfield of C of the form Q(ay, ag, ..., ), where oy, o, ..., v, are algebraic
numbers. Every algebraic number field can be written as Q(«) for some algebraic
integer a. If «v is an algebraic number of degree 2 (root of some irreducible quadratic
polynomial 22 +ax+b € Q[xz]), then Q(a) = {a+ba | a,b € Q} is called the quadratic
field. Every quadratic field can be be written as Q(v/d ) for some (unique) square-free
integer d. The set of all algebraic integers that lie in an algebraic number field K
is denoted by Og; that is Ox = Zi N K. The set Ok is an integral domain with
quotient field K and is called the ring of integers of the algebraic number field K. 1f
K = Q(V/d), where d is square-free integer, then O = Z[V/d] if d = 2,3 (mod 4) and
Ok = Z[(1 ++/d)/2] if d = 1 (mod 4). For each algebraic number field K, Ok is a
Dedekind domain; that is Ok is Noetherian, integrally closed and one-dimesnional.
A reader in need of a quick review on these topics may consult [1]. A subring of Ok
with quotient field K is called an order in K and is denoted by O. It can also be
defined as the subring of Ok which is also a free Z-module of rank [K : Q]. The
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order O in K is Noetherian and one-dimesnional integral domain. However, it is not
necessarily integrally closed. For detailed introduction about the orders, see [14].
Throughout this paper all rings are (commutative unitary) integral domains. Any

unexplained material is standard as in [1], [2] [7], and [10].

3. MAIN RESULTS

Let d € Z — {0,1}. Then we can write d = d'm? for some integer m and a square-
free integer d'. Note that Z[Vd] = Z[mVd] < Z[Vd] and K = Q(\/d) = Q(Vd').
Hence Z[v/d] will be an order in K = Q(vd) = Q(v/d). In the next results we
are going to study the behavior of conductor ideal O : Ok in both O = Z[/d] and
Ok = Z[Vd] or Z[(1 +/d)/2] depending on the specified congruence classes of d’.

Theorem 3.1. Let d = m*d € Z — {0,1}, where d is square-free integer with

/

d = 1 (mod 4). If O =Z[Vd], then O : Ok = (2m,m + Vd).

Proof. We have Ox = Z[Vd] and O : Og = {z € K| 20, C O}. Since 2m(a +
b(H—;/C?)) = (2a + b)m +bdbmVd € O for all a + b(1+2 d,) € Ok, s02m € O : Ok.
Also note that (m + mvVd')(a + b(HQ—\/d_,)) = ma + mb(#) + (a +b)ymVd. As
d = 1(mod 4), so ”—2‘1/ € Z. Thus (m-l—m\/j)(a—l—b(HQ—\/d_,)) € O for all a—f-b(”—zd/) €
Ok. Hence m + mvVd € O : Ok. This implies (2m,m+m\/g) C O : Of. Let
a=at+bmvd € 0: Ok. As o (#) € O then (a+bmVd) (#) € O. This

implies 2+omd 4 (an;)\/d_ € O;ie. “d — 5 and “H™ = mk for some k € Z. This

implies a = 2s—bmd and also a = 2mk—>bm. Thus we have a = 2mk—bm-+bmVd =
2m(k—b)+(m+mvVd)b € (2m,m+mx/¥). This implies O : Ok C (Qm,m—i—m\/g)
andhence@:@K:(2m,m+m\/g):(2m,m+\/3). O

Corollary 3.1. Let d € Z — {0,1} be a square-free with d = 1 (mod 4) and O =
Z[Vd]. Then O : Ok = (2,1+ Vd).
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Theorem 3.2. Let d = m?d € 7Z — {0,1}, where d is square-free integer with
d =1 (mod 4). If O = Z[Vd], then O : O = (2m,m+/d) is a non-principal ideal
in O = Z[Vd).

Proof. Let N = (2m,m + m\/g) As N? = (4m2,2m2 + 2m2Vd ,m? + m2d +
2m2\/j). Since d = 1 (mod 4), so N = (4m?2m? + om2Vd ,m? + m?(4k +
1) + QmQﬁ) = (4m2,2m2 + 2m2Vd  4km? + 2m? + 2m2\/g) = (4m2,2m2 +
2m2Vd, 4k‘m2). Now N = 2m(2m, 2m—|—2m\/j). This implies N2 = 2mN. Suppose
N is principal; i.e. N = oZ[V/d] for some 0 # a € Z[Vd] . So o*Z[\/d] = 2maZ[V/d).
This implies aZ[v/d] = 2mZ[V/d]. Therefore N = (2m) and so m + mvd € (2m);
ie. 2m | m+ mV/d , a contradiction. U

Corollary 3.2. Let d € Z —{0,1} be square-free with d = 1 (mod 4). If O = Z[/d],
then O : Ok = (2,1+V/d) is a non-principal ideal in Z[/d).

Remark 3.1. Ifd = m?d € Z —{0,1}, where d is square-free with d =1 (mod 4),
and O = Z[\/E], then O : Ok s a non-principal in O but principal in Ok generated
by 2m. If m =1, then O : Ok is maximal ideal in O. Indeed, because by successively
applying the isomorphisms V/d — x : Z[V/d) — Z[z]/ (2*—d) and z — —1: Z[z]/ (z+
1) — Z, we get that Z[\/E]/(Q, 1+ \/E) = Z/(Q, 1— d) ~ Zo. But in this case; i.e.
m =1, O : Ok need not to be a maximal ideal in Ok . For example if d = —3, then
Ok /O : Ok = Z[(1 4+ vV=3)/2]/(2) = Zs[z] /(1 + x + 2?) is a field and so O : O
is mazimal in Ok. But if d = =7, then Og /O : Og = Z|(1 +v/—=T7)/2]/(2) =
Zg[:p]/(x + xQ) which is not a field. Hence O : Ok is not a mazrimal ideal in Ok.

However, if m > 1 then O : Ok is always non-mazimal in both O and Ok.

From the above observations a natural question arise: For which values of square-
free integer d the ideal O : Ok is maximal in Og? The answer to this question is

given in the next Theorem.
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Theorem 3.3. Let d € Z—{0, 1} be a square-free with d = 1 (mod 4) and O = Z[\/d|.
Then O : Og = (2,1+Vd) € Max(Ok) if and only if d =5 (mod 8).

Proof. Since d = 1 (mod 4), we have O = Z[H\/&], cf. [1, Theorem 5.4.2] and by

2
. _ ; Ok _ Z[%\/ﬂ ~ Z3[z]
Remark 3.1 above, we have O : Ok = (2) in Og. Now 00 = (2) = ( " d).
’ 2 4a4-7"
Note that 22 +z+ 122 is irreducible in Z,[z] if and only if 124 = 1(mod 2). Therefore,

4
Zsa ]

2+ %d is irreducible if and only if d = 5 (mod 8). This implies that ( ) d) ,
e

and hence O(?TKK, is a field if and only if d = 5 (mod 8). Therefore O : Ok is a

maximal ideal in O if and only if d =5 (mod 8). O

Theorem 3.4. Let d = m?d € Z — {0,1}, where d is square-free with d =
2,3 (mod 4). If O = Z[Vd], then O : Ox = (m,Vd).

Proof. We have Ox = Z[Vd']. As m(a +bV/d') = ma +mbVd € O and mVd (a +
Wd) = maVd +mbd € O for all a+bvd € Ok. This implies (m,m\/z) CO: 0.
Let g = x+ym\/67 € O : Ok, where z,y € Z. Then B-Vd = :c\/g—i—ymd/ € 0.
This implies « is a multiple of m and so 8 = mk 4+ ym\/d for some k € Z. Hence
ﬁe(m,m\/z).ThusO:OK:(m,m\/g). d

Theorem 3.5. Let d = m?d € Z — {0,1}, where d is square-free integer with
d =2,3 (mod 4) and m € Z — {*1}. If O = Z[Vd], then O : Og = (m,Vd) is a
non-principal ideal in O = Z[\/d].

Proof. Let M = (m,m\/g). As M? = (mZ,mQ\/E, m*d') = (mZ,m2\/E) = m(m,m\/z)
= M? = mM. Suppose M is principal that is M = (04) for some 0 # o € O. Then
we have o?Z[v/d] = maZ[v/d]. This implies oZ[v/d] = mZ[V/d]. Therefore M = (m)
and so m | v/d in O, a contradiction. U

Remark 3.2. Ifd € Z—{0,1} is a square-free with d = 2,3 (mod 4), then O = Ok.

So there is nothing to study about conductor ideals in this case. If d = m?d €
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7 — {0,1}, where d is square-free with d = 2,3 (mod 4), m € Z — {*1} and
0 = Z[\/E], then O : Ok s a non-principal ideal in O but principal ideal in Ok
generated by m. Moreover, O : Ok is not necessarily a maximal ideal in O and in
Ok. Further, we discuss that under which conditions O : Ok is mazximal ideal in O

and in Ok, respectively.

Theorem 3.6. Let d = m?d € Z — {0,1}, where d is square-free with d =
2,3 (mod 4). Then O : Ok = (m,Vd) is mazimal ideal in O = Z[Vd] if and

only if m 1is prime.

Proof. The map = — /d : Z[z] — Z[/d] is an epimorphism which induce an iso-
morphism between Z[z]/(2? — d) and Z[v/d]. Applying this isomorphism, we get
that

2VA T/ -d) 7]
(m, \/E) (m, xr, 1% — d)/(:p d) (m, T, 1% — d)

2 _
Moreover, the map x +— 0 (mod m) : Z[x] — Z,, is an epimorphism which induce an

isomorphism between % and . Hence Z[\/E] o z o

p !
(m, z,2? — d) (m, —d) (m, \/E) (m, —m2d')

ZLy,. Therefore O : Ok is maximal in O if and only if m is prime. O

Theorem 3.7. Let d € 7 — {0,1} and d = m?d’, where d is square-free with d =
2,3 (mod 4). The ideal O : Ox = (m,\/d) is mazimal ideal in Ok = ZINd'] if and

only if m is prime and x> — d is irreducible in Zy,|x].

Proof. We have O : O = (m, \/E) = (m) in Og. Therefore,

Ox _ZIVd] _ ,
O: 0k (m) - Zm[\/d_]

Moreover, the map z — V/d : Z[z] — Z[Vd] is an epimorphism which induce an

isomorphism between Z,,[z]/(2? — d') and Zm[Vd']. Applying this isomorphism, we
O OK a ({L‘2 — d/) '
Section 9.5]. ]

get that Now apply well known result [2, Proposition 15 of
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We have noticed that the ideal (2,1+ v/d) is a conductor ideal in Z[V/d], where
d € Z—{0,1} be a square-free with d = 1 (mod 4). Note that (2, 1+ +/d) is maximal
ideal in Z[\/E] for every odd integer d. Now a question arise that what happened
with the properties of the ideal (2, 1+ \/E) if we replace 2 by any arbitrary positive
integer? By using our results, it can be easily conclude that (n, 1+ \/E) is a conductor
ideal in O = Z[/d] if and only if n = 2 and d = 1 (mod 4). Our next results is about
maximality of the ideal (n, 1+ \/E) in the ring Z[V/d].

Theorem 3.8. Let d € Z — {0,1}. Then (n,1+ V/d) is mazimal ideal in Z[\/d] if

and only if ged(n,1 — d) is prime.

Proof. By successively applying the isomorphisms v/d — = : Z[v/d] — Z[z] /(2? —d)
and v — —1: Z[z]/(z+1) — Z, we get that Z[Vd]/ (n, 1+Vd) = Z[z]/ (n, 1 +2, 2% —
d) =2 Z/(n,1—d) = Zs, where § = ged(n, 1 — d). Hence (n,1+ \/3) € Maxz(Z[Vd))
if and only if 6 = ged(n, 1 — d) is prime. O

We conclude the paper with some specific remarks about quadratic orders.

Remark 3.3. Let d € Z — {0,1} be square-free with d = 1 (mod 4). Then the
order O = Z[\/d] is a one-dimensional Noetherian domain which is not integrally
closed and hence it cannot be a PID. In this case, the conductor ideal is given by
O : O = (2, 1+ \/E) which is non-principal. However, if d = 5 (mod 8), then
0= Z[\/E] can be described by a certain factorization property of non-principal ideals;
i.e. each non-principal ideal in O can be written as o+ (O : Ok) for some 0 # o € O,
cf. [5, Section 2, Example 2.13|. This shows that for d = 5 (mod 8), each non-

principal ideal in O = Z[V/d] is contained in the conductor ideal O : Ok-.
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