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ON CONDUCTOR IDEALS OF QUADRATIC ORDERS

S. ALMAS(1) , S. U. REHMAN(2) AND S. YOUNUS(3)

Abstract. In this paper we study the orders in quadratic number fields. We give

a complete description of conductor ideals of certain orders in quadratic number

fields and investigate some of their important arithmetic properties.

1. Introduction

Let K be an algebraic number field. The ring of integers of K is denoted by OK .

A subring of OK with quotient field K is called an order in K and is denoted by O.

The orders can also be defined equivalently in many other ways, cf. [15, page: 73-81].

Clearly OK is an order in K and hence it is the maximal order in the sense of set

inclusion. We say that an order O is proper if O 6= OK . In algebraic number theory,

the rings O and OK are important objects to study because of their remarkable

properties. Also in algebraic geometry, the affine space Spec(O) is non-singular if

and only if O = OK , where Spec(O) denotes the set of all prime ideals of the ring

O, cf. [9, Theorem 5.1]. Therefore, we have a correspondence between the study

of O and OK with the study of singular and non-singular curves, respectively. For

detailed study about the facts related to O and OK , see [1] and [15]. The conductor

of O, denoted by O : OK , is defined by the set {x ∈ K| xOK ⊆ O} which is

always non-zero and is a proper ideal of O if and only if O is a proper subring of
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OK . Moreover, O : OK is a maximal common ideal of both O and OK . It plays a

significant role in the factorization based properties of orders, cf. [8]. The orders in

algebraic number fields and their conductor ideals have been investigated by many

authors (see [3, 6, 11, 12, 13, 14, 16, 18]).

Let d 6= 0, 1 be an integer. The ring Z[
√
d] is an order in the quadratic number field

Q(
√
d ) and is often named as quadratic order. Moreover, every quadratic order can

be written as Z[f
√
d] or Z[f(1 +

√
d)/2] for some integer f ≥ 1, cf. [14, Proposition

4] or [4, page: 133-134]. The quadratic order Z[
√
d] is proper order if either d is

non-square-free or d is square-free with d ≡ 1 (mod 4). In this paper we completely

describe the conductor ideals of the proper quadratic orders of the form Z[
√
d] and

investigate some of their important arithmetic properties. We obtain the following

results:

If d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free integer with d

′ ≡ 1 (mod 4)

and O = Z[
√
d], then O : OK =

(

2m,m +
√
d
)

which is a non-principal ideal in O
but principal in OK generated by 2m. Moreover, if m > 1, then O : OK is always

non-maximal in both O and OK (Theorems 3.1, 3.2, Remark 3.1). If d ∈ Z− {0, 1}
is square-free with d ≡ 1 (mod 4) and O = Z[

√
d], then O : OK =

(

2, 1 +
√
d
)

which

is a non-principal ideal in O but principal in OK generated by 2. Moreover, in this

case O : OK is always maximal in O but maximal in OK if and only if d ≡ 5 (mod 8)

(Corollaries 3.1, 3.2, Remark 3.1, Theorem 3.3). If d = m2d
′ ∈ Z− {0, 1} , where d

′

is square-free with d
′ ≡ 2, 3 (mod 4) and O = Z[

√
d], then O : OK =

(

m,
√
d
)

which

is a non-principal ideal in O for m 6= ±1 but always principal in OK . Moreover, in

this case O : OK is maximal ideal in O if and only if m is prime and it is maximal

ideal in OK if and only if m is prime and x2 − d
′
is irreducible in Zm[x] (Theorems

3.4, 3.5, 3.6, 3.7, Remark 3.2). If d ∈ Z−{0, 1}, then
(

n, 1+
√
d
)

is a maximal ideal

in Z[
√
d] if and only if gcd(n, 1− d) is prime (Theorem 3.8).
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2. Preliminaries

For the reader’s convenience we give a working introduction here for the notions

involved. Let A ⊆ B be integral domains. An element b ∈ B is said to be integral over

A it is root of some monic polynomial with coefficients in A and is said to be algebraic

over A if it is root of some polynomial with coefficients in A. Clearly, an element is

integral over a field K if and only if it is algebraic over K. The integral closure of A in

B is denoted by A′
B
and is defined as A′

B
= {x ∈ B | x is integral over A}. Clearly,

A′
B
is a subdomain of B containing A. The integral closure D′

K
in its quotient field K

is simply denoted by D′ and the domain D is said to be integrally closed if D = D′.

A complex number which is integral over Z is called algebraic integer and a complex

number which is algebraic over Q is called algebraic number. An algebraic number

field is a subfield of C of the form Q(α1, α2, ..., αn), where α1, α2, ..., αn are algebraic

numbers. Every algebraic number field can be written as Q(α) for some algebraic

integer α. If α is an algebraic number of degree 2 (root of some irreducible quadratic

polynomial x2+ax+b ∈ Q[x]), then Q(α) = {a+bα | a, b ∈ Q} is called the quadratic

field. Every quadratic field can be be written as Q(
√
d ) for some (unique) square-free

integer d. The set of all algebraic integers that lie in an algebraic number field K

is denoted by OK ; that is OK = Z′
C ∩ K. The set OK is an integral domain with

quotient field K and is called the ring of integers of the algebraic number field K. If

K = Q(
√
d), where d is square-free integer, then OK = Z[

√
d] if d ≡ 2, 3 (mod 4) and

OK = Z[(1 +
√
d)/2] if d ≡ 1 (mod 4). For each algebraic number field K, OK is a

Dedekind domain; that is OK is Noetherian, integrally closed and one-dimesnional.

A reader in need of a quick review on these topics may consult [1]. A subring of OK

with quotient field K is called an order in K and is denoted by O. It can also be

defined as the subring of OK which is also a free Z-module of rank [K : Q]. The
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order O in K is Noetherian and one-dimesnional integral domain. However, it is not

necessarily integrally closed. For detailed introduction about the orders, see [14].

Throughout this paper all rings are (commutative unitary) integral domains. Any

unexplained material is standard as in [1], [2] [7], and [10].

3. Main Results

Let d ∈ Z− {0, 1}. Then we can write d = d
′
m2 for some integer m and a square-

free integer d
′
. Note that Z[

√
d] = Z[m

√
d′] ≤ Z[

√
d′ ] and K = Q(

√
d) = Q(

√
d′).

Hence Z[
√
d] will be an order in K = Q(

√
d) = Q(

√
d′). In the next results we

are going to study the behavior of conductor ideal O : OK in both O = Z[
√
d] and

OK = Z[
√
d′] or Z[(1 +

√
d′)/2] depending on the specified congruence classes of d

′
.

Theorem 3.1. Let d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free integer with

d
′ ≡ 1 (mod 4). If O = Z[

√
d], then O : OK =

(

2m,m+
√
d
)

.

Proof. We have OK = Z[
√
d′ ] and O : OK = {x ∈ K| xOK ⊆ O}. Since 2m

(

a +

b(1+
√

d
′

2
)
)

= (2a + b)m + bm
√
d′ ∈ O for all a + b(1+

√
d
′

2
) ∈ OK , so 2m ∈ O : OK .

Also note that (m + m
√
d′)

(

a + b(1+
√

d
′

2
)
)

= ma + mb(1+d
′

2
) + (a + b)m

√
d′. As

d
′ ≡ 1(mod 4), so 1+d

′

2
∈ Z. Thus (m+m

√
d′)

(

a+b(1+
√

d
′

2
)
)

∈ O for all a+b(1+d
′

2
) ∈

OK . Hence m + m
√
d′ ∈ O : OK . This implies

(

2m,m + m
√
d′
)

⊆ O : OK . Let

α = a+bm
√
d′ ∈ O : OK . As α ·

(

1+
√

d
′

2

)

∈ O then (a+bm
√
d′)

(

1+
√

d
′

2

)

∈ O. This

implies a+bmd
′

2
+ (a+bm)

√
d
′

2
∈ O; i.e. a+bmd

′

2
= s and a+bm

2
= mk for some k ∈ Z. This

implies a = 2s−bmd
′
and also a = 2mk−bm. Thus we have α = 2mk−bm+bm

√
d′ =

2m(k−b)+(m+m
√
d′)b ∈

(

2m,m+m
√
d′
)

. This implies O : OK ⊆
(

2m,m+m
√
d′
)

and hence O : OK =
(

2m,m+m
√
d′
)

=
(

2m,m+
√
d
)

. �

Corollary 3.1. Let d ∈ Z − {0, 1} be a square-free with d ≡ 1 (mod 4) and O =

Z[
√
d]. Then O : OK =

(

2, 1 +
√
d
)

.
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Theorem 3.2. Let d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free integer with

d
′ ≡ 1 (mod 4). If O = Z[

√
d], then O : OK =

(

2m,m+
√
d
)

is a non-principal ideal

in O = Z[
√
d].

Proof. Let N =
(

2m,m + m
√
d′
)

. As N2 =
(

4m2, 2m2 + 2m2
√
d′, m2 + m2d

′
+

2m2
√
d′
)

. Since d
′ ≡ 1 (mod 4), so N =

(

4m2, 2m2 + 2m2
√
d′ , m2 + m2(4k +

1) + 2m2
√
d′
)

=
(

4m2, 2m2 + 2m2
√
d′, 4km2 + 2m2 + 2m2

√
d′
)

=
(

4m2, 2m2 +

2m2
√
d′ , 4km2

)

. Now N = 2m
(

2m, 2m+2m
√
d′
)

. This implies N2 = 2mN . Suppose

N is principal; i.e. N = αZ[
√
d] for some 0 6= α ∈ Z[

√
d] . So α2Z[

√
d] = 2mαZ[

√
d].

This implies αZ[
√
d] = 2mZ[

√
d]. Therefore N =

(

2m
)

and so m +m
√
d′ ∈

(

2m
)

;

i.e. 2m | m+m
√
d′ , a contradiction. �

Corollary 3.2. Let d ∈ Z−{0, 1} be square-free with d ≡ 1 (mod 4). If O = Z[
√
d],

then O : OK =
(

2, 1 +
√
d
)

is a non-principal ideal in Z[
√
d].

Remark 3.1. If d = m2d
′ ∈ Z− {0, 1}, where d

′
is square-free with d

′ ≡ 1 (mod 4),

and O = Z[
√
d], then O : OK is a non-principal in O but principal in OK generated

by 2m. If m = 1, then O : OK is maximal ideal in O. Indeed, because by successively

applying the isomorphisms
√
d 7→ x : Z[

√
d] → Z[x]

/(

x2−d
)

and x 7→ −1 : Z[x]
/(

x+

1
)

→ Z, we get that Z[
√
d]
/(

2, 1 +
√
d
) ∼= Z

/(

2, 1 − d
) ∼= Z2. But in this case; i.e.

m = 1, O : OK need not to be a maximal ideal in OK . For example if d = −3, then

OK

/

O : OK = Z[(1 +
√
−3)/2]

/(

2
) ∼= Z2[x]

/(

1 + x + x2
)

is a field and so O : OK

is maximal in OK . But if d = −7, then OK

/

O : OK = Z[(1 +
√
−7)/2]

/(

2
) ∼=

Z2[x]
/(

x + x2
)

which is not a field. Hence O : OK is not a maximal ideal in OK .

However, if m > 1 then O : OK is always non-maximal in both O and OK .

From the above observations a natural question arise: For which values of square-

free integer d the ideal O : OK is maximal in OK? The answer to this question is

given in the next Theorem.
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Theorem 3.3. Let d ∈ Z−{0, 1} be a square-free with d ≡ 1 (mod 4) and O = Z[
√
d].

Then O : OK =
(

2, 1 +
√
d
)

∈ Max(OK) if and only if d ≡ 5 (mod 8).

Proof. Since d ≡ 1 (mod 4), we have OK = Z
[

1+
√
d

2

]

, cf. [1, Theorem 5.4.2] and by

Remark 3.1 above, we have O : OK =
(

2
)

in OK . Now
OK

O:OK

=
Z

[

1+
√

d

2

]

(

2
)

∼= Z2[x]
(

x2+x+ 1−d

4

) .

Note that x2+x+ 1−d

4
is irreducible in Z2[x] if and only if 1−d

4
≡ 1(mod 2). Therefore,

x2+x+ 1−d

4
is irreducible if and only if d ≡ 5 (mod 8). This implies that Z2[x]

(

x2+x+ 1−d

4

) ,

and hence OK

O:OK

, is a field if and only if d ≡ 5 (mod 8). Therefore O : OK is a

maximal ideal in OK if and only if d ≡ 5 (mod 8). �

Theorem 3.4. Let d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free with d

′ ≡
2, 3 (mod 4). If O = Z[

√
d], then O : OK =

(

m,
√
d
)

.

Proof. We have OK = Z[
√
d′]. As m(a + b

√
d′) = ma +mb

√
d′ ∈ O and m

√
d′(a +

b
√
d′) = ma

√
d′+mbd

′ ∈ O for all a+b
√
d′ ∈ OK . This implies

(

m,m
√
d′
)

⊆ O : OK .

Let β = x + ym
√
d′ ∈ O : OK , where x, y ∈ Z. Then β ·

√
d′ = x

√
d′ + ymd

′ ∈ O.

This implies x is a multiple of m and so β = mk + ym
√
d′ for some k ∈ Z. Hence

β ∈
(

m,m
√
d′
)

. Thus O : OK =
(

m,m
√
d′
)

. �

Theorem 3.5. Let d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free integer with

d
′ ≡ 2, 3 (mod 4) and m ∈ Z − {±1}. If O = Z[

√
d], then O : OK =

(

m,
√
d
)

is a

non-principal ideal in O = Z[
√
d].

Proof. LetM =
(

m,m
√
d′
)

. AsM2 =
(

m2, m2
√
d′ , m2d

′)

=
(

m2, m2
√
d′
)

= m
(

m,m
√
d′
)

⇒ M2 = mM . Suppose M is principal that is M =
(

α
)

for some 0 6= α ∈ O. Then

we have α2Z[
√
d] = mαZ[

√
d]. This implies αZ[

√
d] = mZ[

√
d]. Therefore M =

(

m
)

and so m |
√
d in O, a contradiction. �

Remark 3.2. If d ∈ Z−{0, 1} is a square-free with d ≡ 2, 3 (mod 4), then O = OK .

So there is nothing to study about conductor ideals in this case. If d = m2d
′ ∈
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Z − {0, 1}, where d
′
is square-free with d

′ ≡ 2, 3 (mod 4), m ∈ Z − {±1} and

O = Z[
√
d], then O : OK is a non-principal ideal in O but principal ideal in OK

generated by m. Moreover, O : OK is not necessarily a maximal ideal in O and in

OK . Further, we discuss that under which conditions O : OK is maximal ideal in O
and in OK, respectively.

Theorem 3.6. Let d = m2d
′ ∈ Z − {0, 1}, where d

′
is square-free with d

′ ≡
2, 3 (mod 4). Then O : OK =

(

m,
√
d
)

is maximal ideal in O = Z[
√
d] if and

only if m is prime.

Proof. The map x 7→
√
d : Z[x] → Z[

√
d] is an epimorphism which induce an iso-

morphism between Z[x]
/(

x2 − d
)

and Z[
√
d]. Applying this isomorphism, we get

that
Z[
√
d]

(

m,
√
d
)

∼=
Z[x]

/(

x2 − d
)

(

m, x, x2 − d
)/

(x2 − d)
∼= Z[x]

(

m, x, x2 − d
)

Moreover, the map x 7→ 0 (mod m) : Z[x] → Zm is an epimorphism which induce an

isomorphism between
Z[x]

(

m, x, x2 − d
) and

Z
(

m,−d
) . Hence

Z[
√
d]

(

m,
√
d
)

∼= Z
(

m,−m2d′
)

∼=

Zm. Therefore O : OK is maximal in O if and only if m is prime. �

Theorem 3.7. Let d ∈ Z − {0, 1} and d = m2d
′
, where d

′
is square-free with d

′ ≡
2, 3 (mod 4). The ideal O : OK =

(

m,
√
d
)

is maximal ideal in OK = Z[
√
d′ ] if and

only if m is prime and x2 − d
′
is irreducible in Zm[x].

Proof. We have O : OK =
(

m,
√
d
)

=
(

m
)

in OK . Therefore,

OK

O : OK

∼= Z[
√
d′]

(

m
)

∼= Zm[
√
d′]

Moreover, the map x 7→
√
d′ : Z[x] → Z[

√
d′] is an epimorphism which induce an

isomorphism between Zm[x]
/(

x2 − d
′)

and Zm[
√
d′]. Applying this isomorphism, we

get that
OK

O : OK

∼= Zm[x]
(

x2 − d′
) . Now apply well known result [2, Proposition 15 of

Section 9.5]. �
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We have noticed that the ideal
(

2, 1 +
√
d
)

is a conductor ideal in Z[
√
d], where

d ∈ Z−{0, 1} be a square-free with d ≡ 1 (mod 4). Note that
(

2, 1+
√
d
)

is maximal

ideal in Z[
√
d] for every odd integer d. Now a question arise that what happened

with the properties of the ideal
(

2, 1 +
√
d
)

if we replace 2 by any arbitrary positive

integer? By using our results, it can be easily conclude that
(

n, 1+
√
d
)

is a conductor

ideal in O = Z[
√
d] if and only if n = 2 and d ≡ 1 (mod 4). Our next results is about

maximality of the ideal
(

n, 1 +
√
d
)

in the ring Z[
√
d].

Theorem 3.8. Let d ∈ Z − {0, 1}. Then
(

n, 1 +
√
d
)

is maximal ideal in Z[
√
d] if

and only if gcd(n, 1− d) is prime.

Proof. By successively applying the isomorphisms
√
d 7→ x : Z[

√
d] → Z[x]

/(

x2 − d
)

and x 7→ −1 : Z[x]
/(

x+1
)

→ Z, we get that Z[
√
d]
/(

n, 1+
√
d
) ∼= Z[x]

/(

n, 1+x, x2−
d
) ∼= Z

/(

n, 1− d
) ∼= Zδ, where δ = gcd(n, 1− d). Hence

(

n, 1 +
√
d
)

∈ Max(Z[
√
d])

if and only if δ = gcd(n, 1− d) is prime. �

We conclude the paper with some specific remarks about quadratic orders.

Remark 3.3. Let d ∈ Z − {0, 1} be square-free with d ≡ 1 (mod 4). Then the

order O = Z[
√
d] is a one-dimensional Noetherian domain which is not integrally

closed and hence it cannot be a PID. In this case, the conductor ideal is given by

O : OK =
(

2, 1 +
√
d
)

which is non-principal. However, if d ≡ 5 (mod 8), then

O = Z[
√
d] can be described by a certain factorization property of non-principal ideals;

i.e. each non-principal ideal in O can be written as α · (O : OK) for some 0 6= α ∈ O,

cf. [5, Section 2, Example 2.13]. This shows that for d ≡ 5 (mod 8), each non-

principal ideal in O = Z[
√
d] is contained in the conductor ideal O : OK .
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