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ON A MEASURABLE SOLUTION OF A CLASS OF
HIGHER-ORDER STOCHASTIC HEAT-TYPE EQUATION

MCSYLVESTER EJIGHIKEME OMABA

ABSTRACT. We give a generalized measurable—predictable solution to a higher—
order stochastic parabolic initial-value problem in terms of the further generalized
Hermite polynomials. Condition and estimates on the existence and uniqueness of
the solution are given. We prove the upper second moment growth bound estimate
for the solution and consequently show that the second moment of the solution
grows exponentially in time with respect to the parameter A at the precise rate of

2+ 03)\2Lip3, c3 > 0 and ; 03Lip3 as the noise level increases.

1. INTRODUCTION
Consider the following higher-order stochastic heat-type equation

Ou(x, OPu(zx, .
(L.1) St = e 4 o (u(, 0)ie, 1), p 21

u(z,0) = ¢(z), x € R.

The constant A > 0 is a noise level, 0 : R — R is a Lipschitz continuous function and
w(x,t) is a space—time white noise. Higher order parabolic equations have great mod-
eling properties, for example, Cauchy problems associated to Kadomtsev—Petviashili
(KP) equations having higher order dispersion in the main direction of propagation
occur naturally in the modelling of certain long dispersive waves (see [26]), also, a

2010 Mathematics Subject Classification. 35R60, 60H15, 82B44.
Key words and phrases. Generalized Hermite polynomials, growth moment, generalized solution,

measurable solution, mild solution, higher-order initial-value problems.
Copyright (©) Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: Sept. 9, 2019 Accepted: Jan. 6, 2020 .
253



254 MCSYLVESTER EJIGHIKEME OMABA

third-order diffusion equation models the rapid solidification of undercooled melts, in
which the crystallization front propagates with a high velocity, that is, a high-order
diffusion equation describes impurity distribution in the solid and liquid phases as a
function of the crystallization front velocity, (see [27]). Moreover, higher order diffu-
sion equations can find their applications in seismology (in computing the traveltime
(phase) and the amplitude in constant density acoustic media, (see [8]), in underwater
acoustics and range-dependent acoustic calculations, ete, (see [9, 10, 11])). For more
applications (see [7, 20, 30]) and therein references. The authors in [1] studied the
following Cauchy problem in R™, n > 1 for higher order (m > 2 ) linear parabolic
equations

w(z,t) + (1™ > D*{assD’}bu(z,t) =0, (x,t) € R" x Ry

la|<m,|B|<m

u(z,0) = up(x), z € R",
and particularly the polyharmonic heat equation

(1.2) ug(x,t) + (=A)"u(x, 1) = 0, (z,1) € R" x Ry
u(z,0) = up(z), v € R™

They showed that for uy € C° N L>®°(R"), equation (1.2) admits a unique global in

time bounded solution given by

u(x,t) = at "2 / up(z — y)fm,n(!yi)dy, (x,t) e R" x Ry
Rn

2m

where o = o, , > 0 is a suitable normalization constant and

Fonn ) = 7 / " (15)% T (n3)ds,
0 2

J, denotes the v-Bessel function ([22]), (see also [24]). One of the challenges of the
above solution is that the kernels are very complicated, and they do not exist in any

simple form and also depend on n. Motivation for studying equation (1.1) arises
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from the connection between the generalized Hermite polynomials {’yﬁ(x)} and the
initial-value problem (see [3, 28]),

ou(x,t)  OPu(x,t)
ot Oxr

(1.3) u(x,0) = 6(x)

where p > 1 is an arbitrary positive number. It is known ([3], p. 348 & [28], p. 459),

that if ¢(x) = 2", n € N, the solution to equation (1.3) at time ¢ is given by

Extensive research works have been done on equation (1.1) for p = 2 (the classical
stochastic heat equation) and for p € (1,2) (the stochastic fractional heat equation),
(see [16, 17, 23, 29] and therein references), but to the best of our knowledge, little
or no work exist for the higher—order stochastic heat—type equation. The difficulty
in studying the above equation is that the solution is no longer given in terms of
the known heat kernel or the fractional heat kernel but in terms of the Hermite
generalized polynomials.

The solution to equation (1.1) can also be expressed in terms of the two parameter
polynomials known as the further generalized polynomials HY (x,t) by

u(z,t) = i (_tREHflp)( ’ 1,—1) = exp (( ’ : +1)t— 1).
=0 v (—t)» (=t)?

In this paper, we study some properties of a generalized solution to equation (1.1)

for p =m, m € N and consider therefore

Ou(z,t) _ O u(x
(14) ot ox™
u(x,0) = 2" = H,Sm)(x,O), m € N.

it) + Ao (u(zx, t))w(zx,t)

Proposition 1.1 ([4], Proposition 4). The polynomials HY"™ (z,t), n,m € N satisfy
the following partial differential equation

OH™ (x,t) O™ H (1)
ot N oxm
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In what follows, we aim to study some properties and behaviours of the solution

to equation (1.4).

Remark 1. The case of the generalized solution of equation (1.1) for p > 1 will be
left for further research.

Therefore, the fundamental solution of

ou(x,t)  O™u(z,t)
ot Oxm

is given by

) = H(m’m‘"'zm

which is known as further Hermite generalized polynomials with the generating func-

tion

(1.5) > HM(x,0) = e,

n=0
Some connections and relations between various generalized polynomials are given
below, (see [3, 4, 5, 6, 15, 28]). If one considers a class of generalized Hermite

polynomials {%’l”(:p)} defined by the generating function

(16) mzt tm Z’yn ’

then equation (1.5) gives equation (1.6) when z ~ mx and o = —1, that is,
() = H™ (ma, —1).

m

Also, if one considers the polynomials {hn,m(x)}zozo defined by hy,pm(z) = 47 (2—x)

with the generating function

(1.7) F(x,t) = 2t Zhnm "
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then equation (1.6) gives equation (1.7) when z ~
relations
1
— —gm
() = —H,™ (2)
and

For the classical series expansions

2 Oooén

2x

=, and also have the following

a
exp(ax — 71&) = Z ' H,(z,t),

n=0

where H,(z,t) =t2 hn(%) with (h,,) the classical Hermite polynomials. Other repre-

sentations of both the classical and the generalized Hermite polynomials can be found

in ([12, 13, 18, 21]), (see also [19]) for a distributional properties of the generalized

Hermite polynomials, ([25]) for an application of generalized Hermite polynomials to

oscillator calculus, generalized Hermite polynomial as a family of orthogonal system

in ([2]), and some characterizations of the generalized Hermite polynomials in ([14]).

Now we attempt to make sense of the solution to equation (1.4) by giving the

following definitions, (see [16, 23, 29]).

Definition 1.1. We say that a process {u(z,t)}.er >0 is a mild solution of (1.4) if

a.s, the following is satisfied

u(a, 1) = / HI (@ — . t)uo(y)dy + A / / HO(x — gt — s)o(u(s, y))w(dyds).

If {u(x,t)}rer, >0 satisfies the following additional condition

sup sup E|u(z,t)|* < oo,

0<t<T z€R

for all T > 0, then we say that {u(x,?)}ser t>0 is a random field solution to (1.4).

Remark 2. The above solution u(x,t) is a function of n (depends on n), so rather

than constructing a Picard iteration that converges to u(x,t) uniformly over n; we
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assume a measurability condition on the solution by multiplying through by # and

sum over n € [0,00) (expressing the solution in terms of a generating function), thus

1
with ¢y := Z — < 00, we have

n!
n=0
Zau(x,t) = /RZEH” (x —y,t)dy
n=0 n=0
t > 1
oo [ {2 = = 9 fotuts.utas)
0o JR n!

Definition 1.2. We say that a process {u(z,t)}.er +>0 is @ measurable predictable

mild solution of (1.4) if a.s, the following is satisfied

1 ™ A
u(z,t) = C_/e(zy)-erty dy+—/ /e(f”y”(ts)a(u(s,y))w(dyds).
0 JR € Jo JRr

If {u(x,t)}rer, 10 satisfies the following condition

sup sup E|u(z,t)|* < oo,
0<t<T zeR

for all T > 0, then we say that {u(x,?)}.er >0 is a measurable predictable random

field solution to (1.4).

The present paper is organized in three sections as follows. The introduction which
contains the problem formulation, some preliminary concepts and definitions are in
Section 1. Section 2 gives statements and proofs of the main results. A very brief

summary of results obtained were given in Section 3.

2. MAIN RESULTS

Define the following norm on L?(IP) by

1/2
_ 2t 2
2 - )
w27 { sup sup e “E|u(t,z)] }

0<t<T 0<z<1
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and assume that z — Elu(t,z)|? is supported on [0,1) for all ¢ > 0.

We state the existence and uniqueness result which follow by the following condition:
Condition 2.1. The function o : R — R satisfies |0(0)| = 0 with
|o(2) = o(y)| < Lipy|z —yl.

Theorem 2.1. Given that o satisfies Condition 2.1 and 0 < csTA’Lip2 < 1, then
there exists a unique measurable predictable random field solution u € L?([0,1)) to

equation (1.4).
Proof of Theorem 2.1. Define the operator

1 m A [t
Au(z,t) = —/e(m_y)'y”y dy—i——/ /e(x_y”(t_s)a(u(s,y))w(dyds),
R € Jo Jr

Co
then the fixed point of the operator A gives the solution of equation (1.4). Therefore,
the proof of Theorem 2.1 follows by fixed point theorem, given the following propo-
sitions below, (see [23], Theorem 3.1.1, Proposition 3.1.4 and Proposition 3.1.5).

Proposition 2.1. Let u be some measurable predictable random field solution with
support on L*([0,1)). Then there exist some positive constant
1 1
Com1 = Sup 9 mT F(l + _)
0<a<1 c14/2(1 — ) m
such that

lAul3.7 < Conyr + s TALipZ [[ull3 1

Proof. Multiply through by %, n € N and take sum over n in [0, 00):

nl?

I
%\
3|s

]

|

<
=
.

<

=1
Z H.Au(x, t)
n=0
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By the generating function of the further Hermite generalized polynomials, and since
o0

cO::Z%<oo,

n=0

t
coAu(z,t) :/e(“y)'y+tymdy+)\/ /e(xy)“ts)a(u(s,y))w(dyds).
R 0o Jr

Take second moments of both sides and by [to isometry,

2 t
aElAu(z,t)]? < ‘ /e(“y)'y“ymdy +)\2/ /62{($_y)+(t_8)}E|a(u(s,y))\Qdyds.
R 0o Jr

Using the Lipschitz condition on ¢ and the fact that —y? < —y we have

2 t
aElAu(z, t)]? < ‘/e(zl)-yﬂymdy +)\2Lip(2,/ /62{($_y)+(t_8)}E|u(s,y)|2dyds.
R 0o JR

1/2 1/2
(/62(m—1)ydy) (/e2tymdy)
R R

¢
+ )\2Lip(27/ /62((m_y)+(t_s)>E|u(s,y)|2dyds.
0o Jr

Ve D

t 1
+ )\2Lip(2,/ dse*=*) sup E\u(s,y)\Q/ 2@V dy,
0 0

0<y<1

IN

IN

where the last inequality follows from the assumption that E|u(z,t)|? is supported

on x € [0,1). Thus

L 1— 1 t
E|lAu(z, t)|> < Copn()(—t) 2 + )\QLipigezx/ =) sup E|u(s,y)|*ds,
2¢ 0 yelo,1)

with Co () I'(1+ ). Now take sup over z € [0, 1) of both sides,

T ey/2(1-3)

then

¢
sup E|Au(x,t)|* < Copm X (—t)*ﬁ + 03/\2Lip(2,/ e* sup e *Elu(s,y)|*ds,
z€[0,1) 0 y€[0,1)
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-4
where Cyp, == sup Com(x) < 00, and ¢z := % with ¢, = sup €*® = e?. Next,

z€[0,1) z€[0,1)
multiply both sides by e~2! to obtain

t
sup e YElAu(x, t)[*? < Copm X (—t)?ineztjtcg)\QLipi/ sup e *E|u(s,y)|*ds
z€[0,1) 0 yelo,1)

< Com x (1) 2me ™ 4 e\ Lip} [lull3 1,
and by taking sup over t € [0,T], T' < oo, we obtain

A2 < Con T2 + e TAPLip? |2

g

Proposition 2.2. Let u and v be some measurable predictable random field solutions

such that ||ullzr + ||v|l2r < 0o. Then there exist some positive constant cz such that
[ Au — Av[[37 < esTA’Lipg |lu — vl[3 7

Proof. The proof follows the argument above. O

Now, we use the estimates of Proposition 2.1 and Proposition 2.2 to complete the

proof as follows: By fixed point theorem, we have u(z,t) = Au(z,t) and
lullr = Aull2 7 < Coma + esTNLip[lull3 1,

which follows that
CZ,m,T
— 3T A2Lip?’

and ||lulo 7 < oo whenever 1 — c3TA?Lip2 > 0.

2
U <
| HQ,T =7

Similary,
lu = vl57 = [l Au = Avl[3 7 < esTN’Lip; lu — v[f3 7,
which shows that [|u — v[|3 [l — ¢3TA’LipZ] < 0 and [Ju — v|[3; < 0 if and only
if 1 — ch)\QLip?, > 0. Thus the existence—uniqueness result follows by Banach’s

contraction principle. 0
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Now, we give the energy growth bound result of the generalized solution. We are
able to prove the upper bound for the moment estimate and the lower bound is open

for further research. The theorem is given as follows:

Theorem 2.2. Suppose Condition 2.1 on o : R — R holds, then
Efut, 2)[? < CpreZro0)t g < 4 <1
for some positive constants cs and Copr as previously defined.

Proof. Following similar steps as above, we have
) t
sup e Y Elu(z,t)]* < Cop(—t) 2me +03/\2Lip(2,/ sup e ZE|u(s,y)|*ds.
z€[0,1) 0 y€0,1)
Let F, := sup e *El|u(z,t)|?, then

z€[0,1)

t
F < Cg,m(—t)_ﬁe_%—f—@/\ZLipi/ Fids
0

t
< ComT 7 + c3ALip? / F.ds
0

forall 0 <t <T and T < oo. Thus for all ¢t > 0,

t
E S Cg’m’T + Cg)\2Lip(27/ FSdS.
0

Applying Gronwall’s inequality we have
Fy < Gy €901

and therefore

sup Blu(z, ) < oy (2rs000)?):
xz€(0,1)

and the result follows 0

Now we give an immediate consequence result of Theorem 2.2
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Corollary 2.1. There exists a positive constant cz such that

1
(2.1) lim sup i log Blu(w,t)|* < 2 + e3A\*Lip?
t—o00
and
: 1 2 .2
(2.2) lim sup v log E|u(x, )| < csLip:t.
A—+00

Equation (2.1) states that the second moment of the measurable predictable solu-
tion grows at most exponentially at a rate with respect to the parameter A (known
as the noise level) given by 2 + c3A?Lip2. We also estimate the upper bound on the
noise level. That is, in equation (2.2), as the noise level increases, the second moment

grows at most at a rate of chipit forall0 <t <T and T < oo.

3. CONCLUSION

We attempt to make sense of a solution to a higher order stochastic heat equation.
The existence and uniqueness result are given and we find an upper energy growth

bound for the integral solution.
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