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ON A MEASURABLE SOLUTION OF A CLASS OF

HIGHER–ORDER STOCHASTIC HEAT–TYPE EQUATION

MCSYLVESTER EJIGHIKEME OMABA

Abstract. We give a generalized measurable–predictable solution to a higher–

order stochastic parabolic initial–value problem in terms of the further generalized

Hermite polynomials. Condition and estimates on the existence and uniqueness of

the solution are given. We prove the upper second moment growth bound estimate

for the solution and consequently show that the second moment of the solution

grows exponentially in time with respect to the parameter λ at the precise rate of

2 + c3λ
2Lip2

σ
, c3 > 0 and ; c3Lip

2

σ
as the noise level increases.

1. Introduction

Consider the following higher-order stochastic heat-type equation

(1.1)







∂u(x,t)
∂t

= ∂pu(x,t)
∂xp

+ λσ(u(x, t))ẇ(x, t), p ≥ 1

u(x, 0) = φ(x), x ∈ R.

The constant λ > 0 is a noise level, σ : R → R is a Lipschitz continuous function and

ẇ(x, t) is a space–time white noise. Higher order parabolic equations have great mod-

eling properties, for example, Cauchy problems associated to Kadomtsev–Petviashili

(KP) equations having higher order dispersion in the main direction of propagation

occur naturally in the modelling of certain long dispersive waves (see [26]), also, a
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third-order diffusion equation models the rapid solidification of undercooled melts, in

which the crystallization front propagates with a high velocity, that is, a high-order

diffusion equation describes impurity distribution in the solid and liquid phases as a

function of the crystallization front velocity, (see [27]). Moreover, higher order diffu-

sion equations can find their applications in seismology (in computing the traveltime

(phase) and the amplitude in constant density acoustic media, (see [8]), in underwater

acoustics and range-dependent acoustic calculations, etc, (see [9, 10, 11])). For more

applications (see [7, 20, 30]) and therein references. The authors in [1] studied the

following Cauchy problem in R
n, n ≥ 1 for higher order (m ≥ 2 ) linear parabolic

equations















ut(x, t) + (−1)m
∑

|α|≤m,|β|≤m

Dα
{

aα,βD
β
}

u(x, t) = 0, (x, t) ∈ R
n × R+

u(x, 0) = u0(x), x ∈ R
n,

and particularly the polyharmonic heat equation

(1.2)







ut(x, t) + (−∆)mu(x, t) = 0, (x, t) ∈ R
n × R+

u(x, 0) = u0(x), x ∈ R
n.

They showed that for u0 ∈ C0 ∩ L∞(Rn), equation (1.2) admits a unique global in

time bounded solution given by

u(x, t) = αt−
n

2m

∫

Rn

u0(x− y)fm,n

( |y|
t

1
2m

)

dy, (x, t) ∈ R
n × R+

where α = αm,n > 0 is a suitable normalization constant and

fm,n(η) = η1−n

∫ ∞

0

e−s2m(ηs)
n

2 J (n−2)
2

(ηs)ds,

Jν denotes the ν-Bessel function ([22]), (see also [24]). One of the challenges of the

above solution is that the kernels are very complicated, and they do not exist in any

simple form and also depend on n. Motivation for studying equation (1.1) arises
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from the connection between the generalized Hermite polynomials
{

γp
n(x)

}

and the

initial-value problem (see [3, 28]),

(1.3)
∂u(x, t)

∂t
=

∂pu(x, t)

∂xp
, u(x, 0) = φ(x)

where p ≥ 1 is an arbitrary positive number. It is known ([3], p. 348 & [28], p. 459),

that if φ(x) = xn, n ∈ N, the solution to equation (1.3) at time t is given by

u(x, t) = (−t)
n

p γp
n

(

x

p(−t)
1
p

)

.

Extensive research works have been done on equation (1.1) for p = 2 (the classical

stochastic heat equation) and for p ∈ (1, 2) (the stochastic fractional heat equation),

(see [16, 17, 23, 29] and therein references), but to the best of our knowledge, little

or no work exist for the higher–order stochastic heat–type equation. The difficulty

in studying the above equation is that the solution is no longer given in terms of

the known heat kernel or the fractional heat kernel but in terms of the Hermite

generalized polynomials.

The solution to equation (1.1) can also be expressed in terms of the two parameter

polynomials known as the further generalized polynomials H
(p)
n (x, t) by

u(x, t) =

∞
∑

n=0

(−t)
n

p

n!
H(p)

n

(

x

(−t)
1
p

,−1

)

= exp

((

x

(−t)
1
p

+ 1

)

t− 1

)

.

In this paper, we study some properties of a generalized solution to equation (1.1)

for p = m, m ∈ N and consider therefore

(1.4)







∂u(x,t)
∂t

= ∂mu(x,t)
∂xm + λσ(u(x, t))ẇ(x, t)

u(x, 0) = xn = H
(m)
n (x, 0), m ∈ N.

Proposition 1.1 ([4], Proposition 4). The polynomials H
(m)
n (x, t), n,m ∈ N satisfy

the following partial differential equation

∂H
(m)
n (x, t)

∂t
=

∂mH
(m)
n (x, t)

∂xm
.
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In what follows, we aim to study some properties and behaviours of the solution

to equation (1.4).

Remark 1. The case of the generalized solution of equation (1.1) for p ≥ 1 will be

left for further research.

Therefore, the fundamental solution of

∂u(x, t)

∂t
=

∂mu(x, t)

∂xm

is given by

u(x, t) = H(m)
n (x, t) = n!

[ n
m
]

∑

k=0

tkxn−mk

k!(n−mk)!
,

which is known as further Hermite generalized polynomials with the generating func-

tion

(1.5)
∞
∑

n=0

H(m)
n (x, α) = ext+αtm .

Some connections and relations between various generalized polynomials are given

below, (see [3, 4, 5, 6, 15, 28]). If one considers a class of generalized Hermite

polynomials
{

γm
n (x)

}

defined by the generating function

(1.6) emxt−tm =
∞
∑

n=0

γm
n (x)tn,

then equation (1.5) gives equation (1.6) when x ∼ mx and α = −1, that is,

γm
n (x) = H(m)

n (mx,−1).

Also, if one considers the polynomials
{

hn,m(x)
}∞
n=0

defined by hn,m(x) = γm
n

(

2x
m

)

with the generating function

(1.7) F (x, t) = e2xt−tm =
∞
∑

n=0

hn,m(x)t
n,
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then equation (1.6) gives equation (1.7) when x ∼ 2x
m
, and also have the following

relations

hn,m(x) =
1

n!
H(m)

n (x)

and

Hn(x) = H(2)
n (2x,−1).

For the classical series expansions

exp(αx− α2

2
t) =

∞
∑

n=0

αn

n!
Hn(x, t),

where Hn(x, t) = t
n

2 hn(
2√
t
) with (hn) the classical Hermite polynomials. Other repre-

sentations of both the classical and the generalized Hermite polynomials can be found

in ([12, 13, 18, 21]), (see also [19]) for a distributional properties of the generalized

Hermite polynomials, ([25]) for an application of generalized Hermite polynomials to

oscillator calculus, generalized Hermite polynomial as a family of orthogonal system

in ([2]), and some characterizations of the generalized Hermite polynomials in ([14]).

Now we attempt to make sense of the solution to equation (1.4) by giving the

following definitions, (see [16, 23, 29]).

Definition 1.1. We say that a process {u(x, t)}x∈R,t>0 is a mild solution of (1.4) if

a.s, the following is satisfied

u(x, t) =

∫

R

H(m)
n (x− y, t)u0(y)dy + λ

∫ t

0

∫

R

H(m)
n (x− y, t− s)σ(u(s, y))w(dyds).

If {u(x, t)}x∈R, t>0 satisfies the following additional condition

sup
0≤t≤T

sup
x∈R

E|u(x, t)|2 < ∞,

for all T > 0, then we say that {u(x, t)}x∈R, t>0 is a random field solution to (1.4).

Remark 2. The above solution u(x, t) is a function of n (depends on n), so rather

than constructing a Picard iteration that converges to u(x, t) uniformly over n; we
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assume a measurability condition on the solution by multiplying through by 1
n!

and

sum over n ∈ [0,∞) (expressing the solution in terms of a generating function), thus

with c0 :=
∞
∑

n=0

1

n!
< ∞, we have

∞
∑

n=0

1

n!
u(x, t) =

∫

R

∞
∑

n=0

yn

n!
H(m)

n (x− y, t)dy

+ λ

∫ t

0

∫

R

{ ∞
∑

n=0

1

n!
H(m)

n (x− y, t− s)

}

σ(u(s, y))w(dyds).

Definition 1.2. We say that a process {u(x, t)}x∈R, t>0 is a measurable predictable

mild solution of (1.4) if a.s, the following is satisfied

u(x, t) =
1

c0

∫

R

e(x−y).y+tymdy +
λ

c0

∫ t

0

∫

R

e(x−y)+(t−s)σ(u(s, y))w(dyds).

If {u(x, t)}x∈R, t>0 satisfies the following condition

sup
0≤t≤T

sup
x∈R

E|u(x, t)|2 < ∞,

for all T > 0, then we say that {u(x, t)}x∈R,t>0 is a measurable predictable random

field solution to (1.4).

The present paper is organized in three sections as follows. The introduction which

contains the problem formulation, some preliminary concepts and definitions are in

Section 1. Section 2 gives statements and proofs of the main results. A very brief

summary of results obtained were given in Section 3.

2. Main Results

Define the following norm on L2(P) by

‖u‖2,T =

{

sup
0≤t≤T

sup
0≤x<1

e−2t
E|u(t, x)|2

}1/2
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and assume that x 7→ E|u(t, x)|2 is supported on [0, 1) for all t ≥ 0.

We state the existence and uniqueness result which follow by the following condition:

Condition 2.1. The function σ : R → R satisfies |σ(0)| = 0 with

|σ(x)− σ(y)| ≤ Lipσ|x− y|.

Theorem 2.1. Given that σ satisfies Condition 2.1 and 0 < c3Tλ
2Lip2

σ < 1, then

there exists a unique measurable predictable random field solution u ∈ L2([0, 1)) to

equation (1.4).

Proof of Theorem 2.1. Define the operator

Au(x, t) =
1

c0

∫

R

e(x−y).y+tymdy +
λ

c0

∫ t

0

∫

R

e(x−y)+(t−s)σ(u(s, y))w(dyds),

then the fixed point of the operator A gives the solution of equation (1.4). Therefore,

the proof of Theorem 2.1 follows by fixed point theorem, given the following propo-

sitions below, (see [23], Theorem 3.1.1, Proposition 3.1.4 and Proposition 3.1.5).

Proposition 2.1. Let u be some measurable predictable random field solution with

support on L2([0, 1)). Then there exist some positive constant

C2,m,T := sup
0≤x<1

1

c1
√

2(1− x)
2−

1
2mT− 1

2m

√

Γ

(

1 +
1

m

)

such that

‖Au‖22,T ≤ C2,m,T + c3Tλ
2Lip2

σ‖u‖22,T .

Proof. Multiply through by 1
n!
, n ∈ N and take sum over n in [0,∞):

∞
∑

n=0

1

n!
Au(x, t) =

∫

R

∞
∑

n=0

yn

n!
H(m)

n (x− y, t)dy

+ λ

∫ t

0

∫

R

{ ∞
∑

n=0

1

n!
H(m)

n (x− y, t− s)

}

σ(u(s, y))w(dyds).
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By the generating function of the further Hermite generalized polynomials, and since

c0 :=

∞
∑

n=0

1

n!
< ∞,

c0Au(x, t) =

∫

R

e(x−y).y+tymdy + λ

∫ t

0

∫

R

e(x−y)+(t−s)σ(u(s, y))w(dyds).

Take second moments of both sides and by Itô isometry,

c1E|Au(x, t)|2 ≤








∫

R

e(x−y).y+tymdy









2

+ λ2

∫ t

0

∫

R

e2
{

(x−y)+(t−s)
}

E|σ(u(s, y))|2dyds.

Using the Lipschitz condition on σ and the fact that −y2 ≤ −y we have

c1E|Au(x, t)|2 ≤








∫

R

e(x−1).y+tymdy









2

+ λ2Lip2
σ

∫ t

0

∫

R

e2
{

(x−y)+(t−s)
}

E|u(s, y)|2dyds.

≤
(
∫

R

e2(x−1)ydy

)1/2(∫

R

e2ty
m

dy

)1/2

+ λ2Lip2
σ

∫ t

0

∫

R

e2
(

(x−y)+(t−s)
)

E|u(s, y)|2dyds.

≤
√

1

2− 2x

√

2−
1
mΓ

(

1 +
1

m

)

(−t)−
1

2m

+ λ2Lip2
σ

∫ t

0

dse2(t−s) sup
0≤y<1

E|u(s, y)|2
∫ 1

0

e2(x−y)dy,

where the last inequality follows from the assumption that E|u(x, t)|2 is supported

on x ∈ [0, 1). Thus

E|Au(x, t)|2 ≤ C2,m(x)(−t)−
1

2m + λ2Lip2
σ

(1− 1
e2
)

2c1
e2x

∫ t

0

e2(t−s) sup
y∈[0,1)

E|u(s, y)|2ds,

with C2,m(x) := 1

c1
√

2(1−x)
2−

1
2m

√

Γ(1 + 1
m
). Now take sup over x ∈ [0, 1) of both sides,

then

sup
x∈[0,1)

E|Au(x, t)|2 ≤ C2,m × (−t)−
1

2m + c3λ
2Lip2

σ

∫ t

0

e2t sup
y∈[0,1)

e−2s
E|u(s, y)|2ds,
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where C2,m := sup
x∈[0,1)

C2,m(x) < ∞, and c3 :=
c2(1− 1

e2
)

2c1
with c2 = sup

x∈[0,1)
e2x = e2. Next,

multiply both sides by e−2t to obtain

sup
x∈[0,1)

e−2t
E|Au(x, t)|2 ≤ C2,m × (−t)−

1
2m e−2t + c3λ

2Lip2
σ

∫ t

0

sup
y∈[0,1)

e−2s
E|u(s, y)|2ds

≤ C2,m × (−t)−
1

2m e−2t + c3λ
2Lip2

σ‖u‖22,T t,

and by taking sup over t ∈ [0, T ], T < ∞, we obtain

‖Au‖22,T ≤ C2,mT− 1
2m + c3Tλ

2Lip2
σ‖u‖22,T .

�

Proposition 2.2. Let u and v be some measurable predictable random field solutions

such that ‖u‖2,T + ‖v‖2,T < ∞. Then there exist some positive constant c3 such that

‖Au−Av‖22,T ≤ c3Tλ
2Lip2

σ‖u− v‖22,T .

Proof. The proof follows the argument above. �

Now, we use the estimates of Proposition 2.1 and Proposition 2.2 to complete the

proof as follows: By fixed point theorem, we have u(x, t) = Au(x, t) and

‖u‖22,T = ‖Au‖22,T ≤ C2,m,T + c3Tλ
2Lip2

σ‖u‖22,T ,

which follows that

‖u‖22,T ≤ C2,m,T

1− c3Tλ2Lip2
σ

,

and ‖u‖2,T < ∞ whenever 1− c3Tλ
2Lip2

σ > 0.

Similary,

‖u− v‖22,T = ‖Au−Av‖22,T ≤ c3Tλ
2Lip2

σ‖u− v‖22,T ,

which shows that ‖u − v‖22,T [1 − c3Tλ
2Lip2

σ] ≤ 0 and ‖u − v‖22,T ≤ 0 if and only

if 1 − c3Tλ
2Lip2

σ > 0. Thus the existence–uniqueness result follows by Banach’s

contraction principle. �
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Now, we give the energy growth bound result of the generalized solution. We are

able to prove the upper bound for the moment estimate and the lower bound is open

for further research. The theorem is given as follows:

Theorem 2.2. Suppose Condition 2.1 on σ : R → R holds, then

E|u(t, x)|2 ≤ C2,m,T e

(

2+c3(λLipσ
)2
)

t, 0 ≤ x < 1

for some positive constants c3 and C2,m,T as previously defined.

Proof. Following similar steps as above, we have

sup
x∈[0,1)

e−2t
E|u(x, t)|2 ≤ C2,m(−t)−

1
2m e−2t + c3λ

2Lip2
σ

∫ t

0

sup
y∈[0,1)

e−2s
E|u(s, y)|2ds.

Let Ft := sup
x∈[0,1)

e−2t
E|u(x, t)|2, then

Ft ≤ C2,m(−t)−
1

2m e−2t + c3λ
2Lip2

σ

∫ t

0

Fsds

≤ C2,mT− 1
2m + c3λ

2Lip2
σ

∫ t

0

Fsds

for all 0 ≤ t ≤ T and T < ∞. Thus for all t ≥ 0,

Ft ≤ C2,m,T + c3λ
2Lip2

σ

∫ t

0

Fsds.

Applying Gronwall’s inequality we have

Ft ≤ C2,m,T ec3(λLipσ)
2t

and therefore

sup
x∈[0,1)

E|u(x, t)|2 ≤ C2,m,T e

(

2+c3(λLipσ)
2
)

t

and the result follows �

Now we give an immediate consequence result of Theorem 2.2
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Corollary 2.1. There exists a positive constant c3 such that

(2.1) lim sup
t→∞

1

t
logE|u(x, t)|2 ≤ 2 + c3λ

2Lip2
σ

and

(2.2) lim sup
λ→∞

1

λ2
logE|u(x, t)|2 ≤ c3Lip

2
σt.

Equation (2.1) states that the second moment of the measurable predictable solu-

tion grows at most exponentially at a rate with respect to the parameter λ (known

as the noise level) given by 2 + c3λ
2Lip2

σ. We also estimate the upper bound on the

noise level. That is, in equation (2.2), as the noise level increases, the second moment

grows at most at a rate of c3Lip
2
σt for all 0 ≤ t ≤ T and T < ∞.

3. Conclusion

We attempt to make sense of a solution to a higher order stochastic heat equation.

The existence and uniqueness result are given and we find an upper energy growth

bound for the integral solution.
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