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A NEW APPROACH FOR SOLVING PARTIAL DIFFERENTIAL
EQUATIONS BASED ON FINITE-DIFFERENCE AND HAAR

WAVELET METHODS

AKMAL RAZA(1), ARSHAD KHAN(2) AND KHALIL AHMAD(3)

Abstract. The main objective of this paper is to develop a new scheme based

on finite-difference and Haar wavelet for second order diffusion equation and third

order dispersive equation. Further, we have carried out the stability of the Haar

wavelet. We solved four problems consisting linear diffusion equation and dispersive

homogeneous and non homogeneous equation to validate the developed scheme.

We have also compared our results with existing methods such as finite difference

method, global extrapolation method and non polynomial spline method.

1. Introduction

Let us consider the following linear diffusion equation:

(1.1)
∂u

∂τ
= α

∂2u

∂x2
, x ∈ (0, 1)

with initial condition

u(x, 0) = φ(x),(1.2)

and boundary conditions

u(0, τ) = φ0(τ), u(1, τ) = φ1(τ), τ > 0.(1.3)
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The solution of (1.1) gives the temperature at a distance x from one end of a thin

uniform rod after some time. Temperature changes occur through heat conduction

along its length and heat transfer due to the rod is heat insulated. Numerical solution

of (1.1) based on finite difference method has been proposed by G.D. Smith [1], M.K.

Jain [2] and Hilberman [3]. Cubic spline method has been proposed by Sallam et al [4]

and non-polynomial cubic spline method has been proposed by J. Rashidinia et al [5].

Further, we consider the following linear dispersive equation:

(1.4)
∂u

∂τ
+ µ

∂3u

∂x3
= f(x, τ), x ∈ (0, 1),

with initial conditions

u(x, 0) = g(x),(1.5)

and

u(0, τ) = φ0(τ), ux(0, τ) = φ1(τ), uxx(0, τ) = φ2(τ), τ > 0.(1.6)

It is well known that many physical phenomena can be described by Korteweg-de

Vries equation such as model of a fluid in elastic tube, water waves and collision free

hydro magnetic waves, turbulence, flow of liquids containing gas bubbles, viscous

fluid, unindirectional propagation of small but finite amplitude waves, long waves in

which dispersive effects are present, liquid with small bubbles, see ([6]- [9]).

Numerical solution of (1.4) has been proposed by various researchers via different

approaches such as, parametric septic spline, adomain decomposition method, ex-

ponential finite difference method, pseudo spectral method, finite element method,

global extrapolation method , exponential quartic spline method and heat balance

integral methods see ([10]- [15]).

Lepik et al. solved integral and differential equations in [16], partial differential equa-

tions in [17] and a concise study on applications of Haar wavelet can be seen in [18].
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Imran aziz et al [19] and Siraj-ul Islam et al [20] used Haar and Legendre wavelet to

solve elliptic and parabolic partial differential equations respectively. Siraj-ul Islam

et al [21] solved second order boundary value problems by collocation method with

Haar wavelets. Imran aziz et al [22] solved delay partial differential equation using

Haar wavelet finite difference method. Muhammad Ahsan et al [23], Saleem et al [24]

used finite difference Haar wavelet method to solve non linear schrodinger equation

and nonlinear parabolic partial differential equations, respectively. Omer Oruc ([25],

[26]) used Hermite wavelet to solve 2D hyperbolic equation and long wave equation

in fluid respectively. Omer Oruc et al used chebyshev wavelet for coupled Berger

equation [27], nonuniform Haar wavelet for convection dominated equation and sin-

gular elliptic equation [28], KdV and coupled nonlinear schrodinger-KdV equation by

Haar wavelet in [29], [30]. M. Kumar and Sapna Pandit [31] solved coupled Berger

equation and Pandit and Kumar [32] solved two parameters singularly perturbed

boundary value problems using Haar wavelet. A. Raza and Khan ([33]-[36]) solved

neutral delay differential equation, Higher order two point boundary value problem

and singularly perturbed delay difference equation using uniform and non-uniform

Haar wavelet. Shah et al [37] solved singularly perturbed boundary value problem

using uniform Haar wavelet. In this paper, we described Haar wavelet in section 2

and the solution of diffusion and dispersive equation using Haar wavelet and finite

difference method is described in section 3. Further, the stability of Haar wavelet

is described in sub-section 3.3 and the numerical illustration has been presented in

section 4.

2. Haar Wavelet

The Haar Wavelet is very simple wavelet in comparison of the other wavelets such as

Legendre wavelet, Hermite wavelet, Chebyshev wavelet, Laguerre wavelet and Battle-

Lamare (B-spline) wavelet. The advantages of Haar wavelet are symmetry, compact
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support, flexibility and orthogonality. Haar wavelet allow us to approximate any

square integrable function at different resolution level ([38] - [43]). The Haar wavelet

family for x ∈ [0, 1] is defined as follows:

(2.1) Hi(x) =


1, µ1(i) ≤ x < µ2(i),

−1, µ2(i) ≤ x < µ3(i),

0, otherwise,

where i indicates the wavelet number and

µ1(i) =
k

m
, µ2(i) =

k + 0.5

m
, µ3(i) =

k + 1

m
,

m = 2j, j = 0, 1, 2, . . . , J, k = 0, 1, . . . ,m− 1.

Here J indicates the level of resolution and k represents the translations parameter.

Index i is calculated as i = m+ k + 1 which is true for i ≥ 2.

For i = 1, the Haar wavelet is given by

H1(x) =


1, 0 ≤ x < 1,

0, otherwise.

(2.2)

The integration Pi(x) of Haar wavelet can be obtained as follows:

Pi(x) =


x− µ1(i), µ1(i) ≤ x < µ2(i),

µ3(i)− x, µ2(i) ≤ x < µ3(i),

0, otherwise.

(2.3)
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Furthermore, the double integrationQi(x) of Haar wavelet can be obtained as follows:

Qi(x) =



1
2
(x− µ1(i))

2, µ1(i) ≤ x < µ2(i),

1
4m2 − 1

2
(µ3(i)− x)2, µ2(i) ≤ x < µ3(i),

1
4m2 , µ3(i) ≤ x < 1,

0, otherwise.

(2.4)

The triple integration of Haar wavelet can be obtained as follows:

Ri(x) =



0, x < µ1(i),

1
3!

[x− µ1(i)]
3, µ1(i) ≤ x < µ2(i),

1
3!

[(x− µ1(i))(x− µ2(i))
3], µ2(i) ≤ x < µ3(i),

1
3!

[(x− µ1(i))(x− µ2(i))
3 + (x− µ3(i))

3], µ3(i) ≤ x.

(2.5)

The collocation grid is given as

X(i) =
2i− 1

m
, i = 1, 2, . . . ,m

and the time disctetization is given by

τ(i) =
i

N
, i = 0, 1, 2, . . . , N.

3. Treatment of Higher Order Linear Partial Differential Equation

3.1. Method for Solving Linear Diffusion Equation. To solve linear diffusion

equation we apply finite difference method to discretize time derivative and Haar

wavelet to approximate space derivative.

Let us consider the following linear diffusion equation

(3.1)
∂u

∂τ
= α

∂2u

∂x2
, x ∈ (0, 1)
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with initial condition

u(x, 0) = φ(x),(3.2)

and boundary conditions

u(0, τ) = φ0(τ), u(1, τ) = φ1(τ), τ > 0,(3.3)

To solve this problem, we assume that

uxx(x, τ) =
N∑
i=1

ai(τ)Hi(x).(3.4)

Now, integrating from 0 to x, we get

ux(x, τ) =
N∑
i=1

ai(τ)Pi(x) + ux(0, τ).(3.5)

Again integrating from 0 to x, we get

u(x, τ) =
N∑
i=1

ai(τ)Qi(x) + xux(0, τ) + u(0, τ).(3.6)

Further to find ux(0, τ) we integrate the equation (3.5) from 0 to 1 and we get

ux(0, τ) = u(0, τ)− u(1, τ)−
N∑
i=1

ai(τ)Ci(1),(3.7)

Putting the values of u(0, τ) and u(1, τ) from (3.3), we get

ux(0, τ) = φ0(τ)− φ1(τ)−
N∑
i=1

ai(τ)Ci(1).(3.8)

Now, using equation (3.8) in equation (3.6), we get

u(x, τ) =
N∑
i=1

ai(τ)Qi(x) + x(φ0(τ)− φ1(τ)−
N∑
i=1

ai(τ)Ci(1)) + φ0(τ).(3.9)

u(x, τ) =
N∑
i=1

ai(τ)(Qi(x)− xCi(1)) + x(φ0(τ)− φ1(τ)) + φ0(τ).(3.10)
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Equation (3.10) is Haar wavelet approximate solution of the diffusion equation (3.1)

with initial condition(3.2) and boundary conditions (3.3). Now, our aim is to find

the unknown Haar wavelet coefficients ai(τ), to obtain approximate solution of lin-

ear diffusion equation. Therefore, we discretize time derivative by finite-difference

method as follows,

uτ (xk, τj+1) =
u(xk, τj+1)− u(xk, τj)

4τ
.(3.11)

Using (3.10) and (3.11) in (3.1), we get,

u(xk, τj+1)− u(xk, τj)

4τ
= α

N∑
i=1

ai(τj+1)Hi(xk).(3.12)

Now, using the values of u(xk, τj+1) and u(xk, τj) from equation (3.10) in equation

(3.12), we get

N∑
i=1

ai(τj+1)(Qi(xk)− xkCi(1)) + xk(φ0(τj+1)− φ1(τj+1)) + φ0(τj+1)−
N∑
i=1

ai(τj)(Qi(xk)

−xkCi(1)) + xk(φ0(τj)− φ1(τj)) + φ0(τj) = 4τα
N∑
i=1

ai(τj+1)Hi(xk).(3.13)

N∑
i=1

ai(τj+1)(Qi(xk)− xkCi(1)−4ταHi(xk))−
N∑
i=1

ai(τj)(Qi(xk)− xkCi(1))

= xk(φ1(τj+1)− φ0(τj+1))− φ0(τj+1) + xk(φ1(τj)− φ0(τj))− φ0(τj).(3.14)

Now, we assume that

W = Qi(xk)− xkCi(1)−4ταHi(xk),

A = Qi(xk)− xkCi(1)

V = xk(φ1(τj+1)− φ0(τj+1))− φ0(τj+1) + xk(φ1(τj)− φ0(τj))− φ0(τj)

where the matrices H, Q and C for eight collocation points are given as follows
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H=



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 −1,



,Q= 1
512



1 9 25 49 81 121 169 225

1 9 25 49 79 103 119 127

1 9 23 31 32 32 32 32

0 0 0 0 1 9 23 31

1 7 8 8 8 8 8 8

0 0 1 7 8 8 8 8

0 0 0 0 1 7 8 8

0 0 0 0 0 0 1 7



,

C = 1
64



32 32 32 32 32 32 32 32

16 16 16 16 16 16 16 16

4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1,



.

On expanding the system (3.14), we get the following matrix formulation

−A W 0 0 0 0 ... 0 0

0 −A W 0 0 0 ... 0 0

0 0 −A W 0 0 ... 0 0

0 0 0 −A W 0 ... 0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . −A W 0

0 0 0 . . . 0 −A W





a0

a1

a2

.

.

.

.

aN

aN+1



=



V0

V1

V2

.

.

.

.

VN

VN+1



(3.15)
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where a0, a1, a2 ... aN+1 and V0, V1,....VN+1 are vectors of size N × 1. We solve

system (3.15) and obtained unknown finite difference Haar wavelet coefficients ai(τj)

at each time level and then we put them in equation (3.10) to find the approximate

finite-difference Haar wavelet solution of linear diffusion equation (3.1) with initial

condition (3.2) and boundary conditions (3.3).

3.2. Method for Solving Linear dispersive Equation. To solve linear dispersive

equation, we apply finite difference method to discretize time derivative and Haar

wavelet to approximate space derivative.

Let us consider the following linear dispersive equation:

(3.16)
∂u

∂τ
+ µ

∂3u

∂x3
= f(x, τ), x ∈ (0, 1)

with initial conditions

u(x, 0) = g(x),(3.17)

and

u(0, τ) = φ0(τ), ux(0, τ) = φ1(τ), uxx(0, τ) = φ2(τ), τ > 0,(3.18)

To solve this problem, we assume that

uxxx(x, τ) =
N∑
i=1

ai(τ)Hi(x).(3.19)

Now, integrating from 0 to x, we get

uxx(x, τ) =
N∑
i=1

ai(τ)Pi(x) + uxx(0, τ).(3.20)

Again integrating from 0 to x, we get

ux(x, τ) =
N∑
i=1

ai(τ)Qi(x) + xuxx(0, τ) + ux(0, τ).(3.21)
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Further integrating, we get

u(x, τ) =
N∑
i=1

ai(τ)Ri(x) +
x2

2
uxx(0, τ) + xux(0, τ) + u(0, τ).(3.22)

Putting the values of u(0, τ), ux(0, τ) and uxx(0, τ) from equation (3.17) and (3.18)

in equation (3.22), we get

u(x, τ) =
N∑
i=1

ai(τ)Ri(x) +
x2

2
φ2(τ) + xφ1(τ) + φ0(τ).(3.23)

Equation (3.23) is Haar wavelet approximate solution of the diffusion equation (3.16)

with initial condition (3.17) and (3.18). Now, our aim is to find the unknown Haar

wavelet coefficients ai(τ), to obtain approximate solution of linear diffusion equa-

tion. Therefore, we discretize time derivative of diffusion equation by finite-difference

method as follows:

uτ (xk, τj+1) =
u(xk, τj+1)− u(xk, τj)

4τ
.(3.24)

Now, using (3.19) and (3.24) in (3.16), we get,

u(xk, τj+1)− u(xk, τj)

4τ
+ µ

N∑
i=1

ai(τj+1)Hi(xk) = f(xk, τj).(3.25)

Using the values of u(xk, τj+1) and u(xk, τj) from equation (3.23) in equation (3.25),

we get

N∑
i=1

ai(τj+1)Ri(xk) +
x2k
2
φ2(τj+1) + xφ1(τj+1) + φ0(τj+1)− (

N∑
i=1

ai(τj)Ri(xk) +

x2k
2
φ2(τj) + xφ1(τj) + φ0(τj)) +4τµ

N∑
i=1

ai(τj+1)Hi(xk) = f(xk, τj).(3.26)

On simplification, we get the following system of linear equations,

N∑
i=1

ai(τj+1)(Ri(xk) +4τµHi(xk))−
N∑
i=1

ai(τj)Ri(xk) = 4τf(xk, τj)−

(
x2k
2
φ2(τj+1) + xφ1(τj+1) + φ0(τj+1))− (

x2k
2
φ2(τj) + xφ1(τj) + φ0(τj)).(3.27)



A NEW APPROACH FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS BASED ON...317

Now, we assume that

W = Ri(xk) +4τµHi(xk),

A = Ri(xk)

V = 4τf(xk, τj)− (
x2k
2
φ2(τj+1) +xφ1(τj+1) +φ0(τj+1))− (

x2k
2
φ2(τj) +xφ1(τj) +φ0(τj))

where matrix H is same as in section (3.1) and matrix R is given as follows:

R= 1
24576



1 27 125 343 729 1331 2197 3375

1 27 125 343 727 1277 1947 2689

1 27 123 289 480 672 864 1056

0 0 0 0 1 27 123 289

1 25 72 120 168 216 264 312

0 0 1 25 72 120 168 216

0 0 0 0 1 25 72 120

0 0 0 0 0 0 1 25


On expanding the system (3.27), we get the following matrix formulation



−A W 0 0 0 0 ... 0 0

0 −A W 0 0 0 ... 0 0

0 0 −A W 0 0 ... 0 0

0 0 0 −A W 0 ... 0 0

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

0 0 0 . . . −A W 0

0 0 0 . . . 0 −A W





a0

a1

a2

.

.

.

.

aN

aN+1



=



V0

V1

V2

.

.

.

.

VN

VN+1



(3.28)
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where a0, a1, a2 ... aN+1 and V0, V1,....VN+1 are vectors of size N×1. We solve system

(3.28) and obtained unknown finite difference Haar wavelet coefficients ai(τj) at each

time level and then we put them in equation (3.23) to finding out the approximate

finite-difference Haar wavelet solution of equation (3.16) with initial conditions (3.17)

and (3.18).

3.3. Stability, Convergence and Error Analysis. In this section, we have shown

the stability and convergence analysis of the developed method.

A multiresolution analysis consists of a sequence {Vj : j ∈ Z} of embeded closed

subspace of L2(R) that satisfy the following properties ([37]- [42]) :

(1) Increasing: Vj ⊂ Vj+1 : j ∈ Z

(2) Density:
⋃
j∈Z Vj = L2(R)

(3) Separation :
⋂
j∈Z Vj = {0}

(4) Scaling : f(x) ∈ Vj if and only if f(2x) ∈ Vj+1

(5) Orthonormal basis: ∃ a scaling function φ ∈ V0 such that {φ0,k(x) =

φ(x− k) : k ∈ Z} is an orthonormal basis for V0.

In our case the scaling function φ is Haar function which is given in equation (2.1)

and hence H is basis function for the spaces Vj. The function given by (2.2) is

considered as a scaling function of the multi-resolution analysis property (5) or father

wavelet. Consider the space Vj of all functions in L2([0, 1]) which is generated by the

Haar wavelet (2.1) i.e. Vj = {Hj,k = 2j/2Hj,k(2
jx − k) : j, k ∈ Z}. Obviously

V0 is the closed subspace of L2([0, 1]) on the intervals [k, k + 1) for k ∈ Z and

V1 consists the Haar function on the intervals [k
2
, k+1

2
) and so on. Clearly, the set

{Hj,k = 2j/2Hj,k(2
jx− k) : j, k ∈ Z} forms an orthonormal set.

Now our aim is to show the stability of the Haar wavelet by considering the following

lemma.
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Lemma 3.1. Let f ∈ L2(R) and {Hj,k : j, k ∈ Z } be a Haar wavelet basis of

the space {Vj: j, k ∈ Z }. Then, Haar wavelet basis {Hj,k: j, k ∈ Z} satisfies the

following inequality, i.e. there exists 0 < A < B ∈ R such that

(3.29) A‖f‖2 ≤
∑
j∈Z

∑
k∈Z

|〈f,Hj,k〉|2 ≤ B‖f‖2, for all f ∈ L2(R)

Proof. To prove the above inequality we use Parseval identity and Fourier transform.

Parseval identity for f, g ∈ L2(R) is given by

(3.30) 〈f, g〉 =
1

2π
〈f̂ , ĝ〉

where f̂ is the Fourier transform of a function f , which is given by

(3.31) f̂(ω) =

∫ ∞
−∞

f(x)e−iωxdx

Let us assume that the Fourier transform of the Haar wavelet is ĝ, i.e. Ĥ = ĝ

(3.32) |ĝ(ω + 2kπ)|2 =
sin2(ω/2 + kπ)

(ω/2 + kπ)2
, for all ω ∈ [0, 2π]

Taking summation on both sides, we get

(3.33)
∑
k∈Z

|ĝ(ω + 2kπ)|2 =
∑
k∈Z

sin2(ω/2 + kπ)

(ω/2 + kπ)2
, for all ω ∈ [0, 2π]

since 2
π
≤ sinω

ω
.

Therefore, we have

(3.34)
( 2

π

)2
≤
(sinω/2

ω/2

)2

(3.35)
( 2

π

)2
≤
(sinω/2

ω/2

)2
+
( sinω/2
π − ω/2

)2

(3.36)
( 2

π

)2
≤
(sinω/2

ω/2

)2
+
( sinω/2
π − ω/2

)2
≤
∑
k∈Z

( sinω/2

ω/2 + kπ

)2
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This implies

(3.37)
( 2

π

)2
≤ |ĝ(ω + 2kπ)|2

Since we know that

(3.38) |sinx| ≤ |x| and
1

sin2ω
=

1∑
k∈Z(ω + 2kπ)2

we have

(3.39)
∑
k∈Z

( sin2(ω/2)

(ω/2 + kπ)2

)2
=
∑
k∈Z

(sin2(ω/2 + kπ)

(ω/2 + kπ)2

)2
= 1

Now, combining (3.37) and (3.39), we get

(3.40)
( 2

π

)2
≤
∑
k∈Z

|ĝ(ω + 2kπ)|2 ≤ 1.

�

Lemma 3.2. Let u ∈ L2([0, 1]) with bounded derivative and u(x) =
∑N

i=1 aiHi(x) be

the Haar wavelet series. Then, the Haar wavelet coefficient ai satisfies the following

inequality

(3.41) ‖ai‖2 ≤ K2−(3j−2)/2, where |u′(x)| ≤ K

Proof. See [31]. �

Lemma 3.3. If u(x) is the exact and uJ(x) is the approximate solution of the equation

(3.1) and (3.16) then error norm satisfies the following inequality

(3.42) ‖EJ‖2 = ‖u(x)− uJ(x)‖ ≤ K
√
C

2−3(2
j)−1

1− 2−3/2
, where |u′(x)| ≤ K

Proof. See [31]. �
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4. Numerical Examples

In this section, we demonstrate two examples of second order linear diffusion equa-

tion and two examples of third order linear dispersive equation to show the applica-

bility, accuracy and efficiency of the Haar wavelet finite difference method. Further,

we computed maximum absolute error and compared with finite difference method

[1], global extrapolation method [13] and non polynomial spline method [14].

Problem 1. Let us consider the following parabolic PDE

(4.1)
∂u

∂τ
= α

∂2u

∂x2
, x ∈ (0, 1)

with initial condition

u(x, 0) = x(1− x),(4.2)

and boundary conditions

u(0, τ) = 0, u(1, τ) = 0, τ > 0.(4.3)

The exact solution is

u(x, τ) =
∞∑
n=1

(
2

nπ
)3sin(nπx)e(−n

2π2ατ).(4.4)

Comparison of maximum absolute errors obtained by finite-difference Haar wavelet

method with different resolutions level have been given in the Table 1.1. Also, surface

and mesh plot of exact and finite-difference Haar wavelet solution is given in Figures

1, 2, 3 and 4.
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Table 1.1 Maximum absolute errors obtained by finite-difference Haar wavelet for

different values of space resolution level J and time step level N for α = 0.2.

J/N 10 20 50 100

3 1.1348e-04 7.1893e-05 3.4722e-05 1.8636e-05

4 5.7217e-05 3.6048e-05 1.7325e-05 9.2817e-06

5 2.8615e-05 1.8037e-05 8.6843e-06 4.6559e-06

6 1.4316e-05 9.0199e-06 4.3439e-06 2.3296e-06

7 7.1583e-06 4.5102e-06 2.1719e-06 1.1650e-06

8 3.5792e-06 2.2551e-06 1.0860e-06 5.8250e-07

9 1.7896e-06 1.1276e-06 5.4299e-07 2.9125e-07

10 8.9480e-07 5.6378e-07 2.7150e-07 1.4563e-07

Figure 1. Surface plot of exact and finite-difference Haar wavelet solution of problem 1

with J = 3 and time step N = 10.

Figure 2. Surface plot of finite-difference Haar wavelet solution of problem 1 with J = 5

and time step N = 50.
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Figure 3. Mesh plot of finite-difference Haar wavelet solution of problem 1 with J = 9

and time step N = 10.

Figure 4. Mesh plot of finite-difference Haar wavelet solution of problem 1 with J = 8

and time step N = 50.

Problem 2. Let us consider the following parabolic PDE

(4.5)
∂u

∂τ
=
∂2u

∂x2
, x ∈ (0, 1)

with initial condition

u(x, 0) =


2x, 0 < x ≤ 1

2

2(1− x), 1
2
≤ x < 1

(4.6)

and boundary conditions

u(0, τ) = 0, u(1, τ) = 0, τ > 0.(4.7)

The exact solution is

u(x, τ) =
8

π2

∞∑
n=1

1

n2
sin(

nπ

2
)sin(nπx)e(−n

2π2τ).(4.8)
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Comparison of maximum absolute errors obtained by finite-difference Haar wavelet

method with different resolutions level have been given in the Table 2.1. Also, max-

imum absolute error obtained by finite-difference method [1] is 3.900E(-03) when

time level is divided into 100 points. Further, the surface and mesh plot of exact and

finite-difference Haar wavelet solution is given in Figures 5, 6, and 7.

Table 2.1 Maximum absolute errors obtained by finite-difference Haar wavelet for

different values of space resolution level J and time step level N .

J/N 10 20 50 100

3 1.7000e-03 1.1000e-03 7.2486e-04 5.0419e-04

4 8.7431e-04 5.4638e-04 3.5922e-04 2.5301e-04

5 4.3682e-04 2.7358e-04 1.8022e-04 1.2619e-04

6 2.1847e-04 1.3678e-04 9.0166e-05 6.3142e-05

7 1.0924e-04 6.8391e-05 4.5086e-05 3.1574e-05

8 5.4619e-05 3.4195e-05 2.2542e-05 1.5787e-05

9 2.7310e-05 1.7098e-05 1.1271e-05 7.8935e-06

10 1.3655e-05 8.5488e-06 5.6356e-06 3.9467e-06

Figure 5. Surface plot of exact and finite-difference Haar wavelet solution of problem 2

with J = 3 and time step N = 10.
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Figure 6. Surface plot of finite-difference Haar wavelet solution of problem 2 with J = 5

and time step N = 50.

Figure 7. Mesh plot of finite-difference Haar wavelet solution of problem 2 with J = 6

and time step N = 10.

Problem 3. Let us consider the following homogeneous linear dispersive equation

(4.9)
∂u

∂τ
+ µ

∂3u

∂x3
= 0, x ∈ (0, 1), τ > 0, µ > 0,

with initial conditions,

u(x, 0) = cosx, x ∈ (0, 1)(4.10)

and

u(0, τ) = 0,
∂u

∂x
(0, τ) = −sin(µτ),

∂2u

∂x2
(0, τ) = −cos(µτ) τ ≥ 0.(4.11)

The exact solution is

u(x, τ) = cos(x+ µτ).(4.12)

Comparison of maximum absolute errors obtained by finite-difference Haar wavelet

method with different resolutions level have been given in the Table 3.1 for µ = 1.

Also, maximum absolute error obtained by global extrapolation method [13] and non
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polynomial spline method [14] is given in Table 3.2. Further, the surface and mesh

plot of exact and finite-difference Haar wavelet solution is given in Figures 8-13.

Table 3.1 Maximum absolute errors obtained by finite-difference Haar wavelet for

different values of space resolution level J and time step level N for problem 3.

J/N 10 20 50 100 500 1000

3 4.1837e-05 1.0531e-05 1.5997e-06 3.5667e-07 3.3037e-08 4.9962e-08

4 2.2247e-05 5.6879e-06 9.0933e-07 2.2279e-07 7.2884e-09 5.0845e-09

5 1.1421e-05 2.9308e-06 4.7414e-07 1.1850e-07 4.5316e-09 1.8053e-09

6 5.7804e-06 1.4846e-06 2.4089e-07 6.0493e-08 2.4058e-09 1.3507e-09

7 2.9071e-06 7.4682e-07 1.2127e-07 3.0489e-08 1.2240e-09 7.3880e-10

8 1.4577e-06 3.7449e-07 6.0823e-08 1.5297e-08 6.1554e-10 3.7900e-10

9 7.2986e-07 1.8751e-07 3.0456e-08 7.6602e-09 3.0843e-10 1.9111e-10

10 3.6519e-07 9.3822e-08 1.5239e-08 3.8330e-09 1.5435e-10 9.5858e-11

Table 3.2 Maximum absolute errors obtained by global extrapolation method [13]

and non polynomial spline method [14] for different values of space resolution level

J and time step level N for problem 3.

J/N 50 [14] 100 [14] 100 [13]

10 — — 1.7000e-03

20 1.0462e-06 8.4689e-07 —

40 5.8011e-07 4.8030e-07 —
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Figure 8. Surface plot of exact and finite-difference Haar wavelet solution of problem 3

with J = 3 and time step N = 10 for µ = 1.

Figure 9. Mesh plot of finite-difference Haar wavelet solution of problem 3 with J = 9

and time step N = 100 for µ = 1.

Figure 10. Mesh plot of exact and finite-difference Haar wavelet solution of problem 3

with J = 5 and time step N = 100 for µ = 2.

Figure 11. Mesh plot of finite-difference Haar wavelet solution of problem 3 with J = 8

and time step N = 500 for µ = 5.
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Figure 12. Mesh plot of finite-difference Haar wavelet solution of problem 3 with J = 8

and time step N = 500 for µ = 10.

Figure 13. Mesh plot of finite-difference Haar wavelet solution of problem 3 with J = 8

and time step N = 500 for µ = 20.

Problem 4. Consider the following non-homogeneous linear dispersive equation

(4.13)
∂u

∂τ
+ µ

∂3u

∂x3
= −π3cos(πx)cos(τ)− sin(πx)sin(τ), x ∈ (0, 1), τ > 0, µ > 0,

with initial conditions,

u(x, 0) = sin(πx), x ∈ (0, 1)(4.14)

and

u(0, τ) = 0,
∂u

∂x
(0, τ) = πcos(τ),

∂2u

∂x2
(0, τ) = 0, τ ≥ 0.(4.15)

The exact solution is

u(x, τ) = sin(πx)cos(τ).(4.16)

Comparison of maximum absolute errors obtained by finite-difference Haar wavelet

method with different resolutions level have been given in the Table 4.1 for µ = 1.
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Also, maximum absolute error obtained by non polynomial spline method [14] is given

in Table 4.2. Further, the surface and mesh plot of exact and finite-difference Haar

wavelet solution is given in Figures 14-18.

Table 4.1 Maximum absolute errors obtained by finite-difference Haar wavelet for

different values of space resolution level J and time step level N for problem 4.

J/N 10 20 50 100 500 1000

3 1.5000e-03 3.6554e-04 5.7185e-05 3.0166e-06 1.1871e-06 1.3268e-06

4 7.5602e-04 1.9213e-04 3.0828e-05 4.1175e-07 1.7255e-07 1.8920e-07

5 3.8488e-04 9.8012e-05 1.5822e-05 2.1960e-07 6.0110e-08 2.5202e-08

6 1.9405e-04 4.9441e-05 7.9934e-06 1.2837e-07 3.3283e-08 1.2224e-08

7 9.7412e-05 2.4822e-05 4.0147e-06 6.6637e-08 1.7081e-08 6.3025e-09

8 4.8801e-05 1.2436e-05 2.0115e-06 3.3655e-08 8.6035e-09 3.1782e-09

9 2.4424e-05 6.2240e-06 1.0068e-06 1.6877e-08 4.3117e-09 1.5932e-09

Table 4.2 Maximum absolute errors obtained by non polynomial spline method [14]

for different values of space resolution level J and time step level N for problem 4.

J/N 50 [14] 100 [14]

20 6.4058e-06 6.4058e-06

40 5.2848e-07 5.2848e-06
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Figure 14. Surface plot of exact and finite-difference Haar wavelet solution of problem 4

with J = 4 and time step N = 100 for µ = 1.

Figure 15. Mesh plot of exact and finite-difference Haar wavelet solution of problem 4

with J = 4 and time step N = 100 for µ = 1.

Figure 16. Surface plot of exact and finite-difference Haar wavelet solution of problem 4

with J = 3 and time step N = 100 for µ = 1.

Figure 17. Surface plot of finite-difference Haar wavelet solution of problem 4 with

J = 5 and time step N = 200 for µ = 1.
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Figure 18. Mesh plot of exact and finite-difference Haar wavelet solution of problem 4

with J = 5 and time step N = 1000 for µ = 1.

Conclusion

We have solved diffusion and dispersive equations using finite-difference Haar wavelet

method and obtained the approximate solution. Stability and convergence of the Haar

wavelet have been shown. We compared our results with the existing methods such

as finite-difference method [1], global extrapolation method [13] and non polynomial

spline method given in [14]. The tables 1.1 − 4.2 clearly indicate that Haar wavelet

produces better results. Further, the graphs of solved examples have been given in

the figures 1− 18. The technique introduced here is easy to apply as well as the per-

formance of the present method yields more accurate results. For nonlinear problem

we recommend consulting the papers [22], [23], [24] and [31].
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