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SOME 3-DIVISOR CORDIAL GRAPHS DERIVED FROM PATH

S. SATHISH NARAYANAN(1) AND M.VIJAYARAGAVAN(2)

Abstract. Let G be a (p, q) graph and 2 ≤ k ≤ p. Let f : V (G) → {1, 2, . . . , k}

be a map. For each edge xy, assign the label 1 if either f(x) or f(y) divides the

other and 0 otherwise. f is called a k-divisor cordial labeling if |vf (i)− vf (j)| ≤ 1

i, j ∈ {1, 2, ..., k} and |ef (0)− ef (1)| ≤ 1 where vf (x) denotes the number of vertices

labeled with x, where x ∈ {1, 2, . . . , k}, ef (i) denote the number of edges labeled

with i, i ∈ {0, 1}. A graph with a k-divisor cordial labeling is called a k-divisor

cordial graph. In this paper, we obtain 3-divisor cordial graphs derived from path.

1. Introduction

Throughout this paper we have considered only simple and undirected graph. The

symbols V (G) and E(G) will denote the vertex set and edge set of a graph G. The

number of vertices and edges of a graph G are called order and size of G respec-

tively. Graph labeling is one of the most studied subjects in graph theory. It is

an assignment of integers to the elements of a graph, subject to certain constraints.

In 1967, Rosa [6] initiated the study of graceful labeling. Labeled graphs serve as

useful models for a broad range of applications such as X-ray crystallography, radar,

coding theory, astronomy, circuit design and communication network addressing [3].

In 1980, Cahit [2] introduced the cordial labeling of graphs. Hovey [5] has introduced

a generalized cordial labeling, called A-cordial labeling where A is abelian. In [10],
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Varatharajan, Navanaeethakrishnan, and Nagarajan introduced a notion, called di-

visor cordial labeling and proved the standard graphs such as paths, cycles, wheels,

stars and some complete bipartite graphs are divisor cordial.Bosmia and Kanani [1]

proved that the graphs of the form G � K1 where G any of the following admits a

divisor cordial labeling: K1,n, K2,n, K3,n, a wheel, a helm, a flower, a fan, a double

fan, and a barycentric subdivision of a star.Sathish Narayanan introduced the notion

of 3-divisor cordial [7]. In [8] ,[9], 3-divisor cordiality of wheel, ladder, prism, book

graphs and Kn + 2K2 have been studied. In this paper, we have proved that union of

a connected 3-divisor cordial graph and path Pn where n 6= 2, 4 is a 3-divisor cordial

graph. Terms and definitions not defined here are used in the sense of Harary[4].

2. Preliminary Results

Definition 2.1. Let G be a (p, q) graph and 2 ≤ k ≤ p. Let f : V (G)→ {1, 2, . . . , k}

be a map. For each edge xy, assign the label 1 if either f(x) or f(y) divides the

other and 0 otherwise. f is called a k-divisor cordial labeling if |vf (i)− vf (j)| ≤ 1

i, j ∈ {1, 2, ..., k} and |ef (0)− ef (1)| ≤ 1 where vf (x) denotes the number of vertices

labeled with x, where x ∈ {1, 2, . . . , k}, ef (i) denote the number of edges labeled

with i, i ∈ {0, 1}. A graph with a k-divisor cordial labeling is called a k-divisor

cordial graph.

Definition 2.2. The union of two graphs G1 and G2 is the graph G1 ∪ G2 with

V (G1 ∪G2) = V (G1) ∪ V (G2) and E(G1 ∪G2) = E(G1) ∪ E(G2).

Theorem 2.1. [7] The path Pn is 3-divisor cordial for all values of n.

Let Pn : u1u2 . . . un be the path. Recall the labeling of the vertices of Pn given in

Theorem 2.1 [S–SN]. For n = 1 the vertex u1 has the label 1. The vertices of P2 are

labeled by 1, 2. The numbers 1, 2, 3 respectively are given to the vertices u1, u2, u3

of P3. The integers 1, 2, 3, 2 respectively are assigned to the vertices u1, u2, u3, u4
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of P4. For P5, the vertices u1, u2, u3, u4, u5 respectively received the labels 1, 2, 3,

3, 2. If n = 6s and s > 0, then assign the labels 1, 2, 3, 2, 3, 1 to the vertices u1,

u2, u3, u4, u5, u6 respectively and assign the same sequence of labels to the next six

consecutive vertices. Repeat the process and finally we have assigned all the vertices

with the above sequence of labels. Import the same idea upto the vertex u6s of Pn

when n = 6s+1. Now, the non labeled end vertex u6s+1 is labeled by 1. This labeling

is taken upto the vertex u6s+1 of Pn when n = 6s + 2. Then put the number 2 to

u6s+2. The labeling pattern for Pn when n = 6s + 3 is similar to that of the case

n = 6s + 2 upto the vertex u6s+2. Then the vertex u6s+3 is labeled by the integer 3.

For n = 6s+ 4, assign the labels to the vertices upto u6s+3 as in the case n = 6s+ 3.

As in case n = 6n+ 3, assign the labels to the vertices of P6s+5 upto the vertex u6s+3.

The last two non labeled vertices are now labeled by 3, 2 respectively. If g denotes

the above said labeling, one can easily verify the vertex and edge conditions given in

Table 1.

Table 1

Values of n vf (1) vf (2) vf (3) ef (0) ef (1)

6s 2s 2s 2s 3s 3s− 1

6s + 1 2s + 1 2s 2s 3s 3s

6s + 2 2s + 1 2s + 1 2s 3s 3s + 1

6s + 3 2s + 1 2s + 1 2s + 1 3s + 1 3s + 1

6s + 4 2s + 1 2s + 1 2s + 2 3s + 1 3s + 2

6s + 5 2s + 1 2s + 2 2s + 2 3s + 2 3s + 2

3. Main Results

With the help of Theorem 2.1, we now prove the following theorem.
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Theorem 3.1. Let G be a (p, q) connected 3-divisor cordial graph and n 6= 2, 4, then

G ∪ Pn is a 3-divisor cordial graph.

Let f be a 3-divisor cordial labeling of G and g be a 3-divisor cordial labeling of Pn

given in Theorem 2.1. Use the labeling f for G and g for Pn and relabel the vertices

of Pn whenever required in several cases discussed below results a new labeling called

h. In each case we produce the evidence that h satisfy the requirements of a 3-divisor

cordial labeling.

Case 1. p ≡ 0 (mod 3), q ≡ 0 (mod 2).

Let p = 3t where t > 0 and q = 2r where r > 0. Then f should satisfy the vertex

condition vf (1) = vf (2) = vf (3) = t and the edge condition ef (0) = ef (1) = r.

Subcase 1a. n = 6s where s > 0.

In this case vh(1) = vh(2) = vh(3) = t + 2s, eh(0) = r + 3s and eh(1) = r + 3s− 1.

Subcase 1b. n = 6s + 1 where s ≥ 0.

Here vh(1) = t + 2s + 1, vh(2) = vh(3) = t + 2s and eh(0) = eh(1) = r + 3s.

Subcase 1c. n = 6s + 2 where s ≥ 1.

In this case we have vh(1) = vh(2) = t + 2s + 1, vh(3) = t + 2s, eh(0) = r + 3s and

eh(1) = r + 3s + 1.

Subcase 1d. n = 6s + 3 where s ≥ 0.

In this case vh(1) = vh(2) = vh(3) = t + 2s + 1 and eh(0) = eh(1) = r + 3s + 1.

Subcase 1e. n = 6s + 4 where s ≥ 1.

In this case vh(1) = vh(2) = t + 2s + 1, vh(3) = t + 2s + 2, eh(0) = r + 3s + 1 and

eh(1) = r + 3s + 2.

Subcase 1f. n = 6s + 5 where s ≥ 0.

Here vh(1) = t + 2s + 1, vh(2) = vh(3) = t + 2s + 2 and eh(0) = eh(1) = r + 3s + 2.

Case 2. p ≡ 0 (mod 3), q ≡ 1 (mod 2). Let p = 3t where t ≥ 0 and q = 2r + 1
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where r ≥ 0. Then f should satisfy the vertex condition given in case 1 and any one

of the edge condition ef (0) = r, ef (1) = r + 1 (or) ef (0) = r + 1, ef (1) = r.

Subcase 2a. n = 6s where s > 0.

If ef (0) = r, ef (1) = r + 1 then eh(0) = eh(1) = 3s + r and if ef (0) = r + 1,

ef (1) = r then interchange the labels of the vertices un−1, un of the path Pn and we get

eh(0) = eh(1) = 3s+r. In either case, we observe that vh(1) = vh(2) = vh(3) = t+2s.

Subcase 2b. n = 6s + 1 where s ≥ 0.

In this case, we have vh(1) = t + 2s + 1, vh(2) = vh(3) = t + 2s and eh(0) = 3s + r,

eh(1) = 3s + r + 1 (or) eh(0) = 3s + r + 1, eh(1) = 3s + r.

Subcase 2c. n = 6s + 2 where s ≥ 1.

If ef (0) = r+1, ef (1) = r then eh(0) = eh(1) = 3s+r+1 and vh(1) = vh(2) = t+2s+1,

vh(3) = t + 2s. If ef (0) = r, ef (1) = r + 1 then relabel the vertex u1 by 3. Here we

note that vh(1) = t + 2s, vh(2) = vh(3) = t + 2s + 1 and eh(0) = eh(1) = 3s + r + 1.

Subcase 2d. n = 6s + 3 where s ≥ 0.

Here we observe that vh(1) = vh(2) = vh(3) = t + 2s + 1 and eh(0) = 3s + r + 2,

eh(1) = 3s + r + 1 (or) eh(0) = 3s + r + 1, eh(1) = 3s + r + 2.

Subcase 2e. n = 6s + 4 where s ≥ 1.

If ef (0) = r, ef (1) = r + 1 then eh(0) = eh(1) = 3s + r + 2 and if ef (0) = r + 1,

ef (1) = r then interchange the labels of the vertices un−1, un of the path Pn and we get

eh(0) = eh(1) = 3s+ r+ 2. In either case, we observe that vh(1) = vh(3) = t+ 2s+ 1,

vh(2) = t + 2s + 2.

Subcase 2f. n = 6s + 5 where s ≥ 0.

If ef (0) = r, ef (1) = r + 1 then eh(0) = 3s + r + 2, eh(1) = 3s + r + 3 and if

ef (0) = r + 1, ef (1) = r then eh(0) = r + 3s + 3, eh(1) = 3s + r + 2. In either case,

we note that vh(1) = t+ 2s+ 1, vh(2) = vh(3) = t+ 2s+ 2. Case 3. p ≡ 1 (mod 3),

q ≡ 0 (mod 2).
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Let p = 3t + 1 where t ≥ 0 and q = 2r where r > 0. Then f should satisfy any one

of the following vertex conditions

(1) vf (1) = t + 1, vf (2) = vf (3) = t.

(2) vf (2) = t + 1, vf (1) = vf (3) = t.

(3) vf (3) = t + 1, vf (1) = vf (2) = t.

and the edge condition ef (0) = ef (1) = r.

Subcase 3a. n = 6s where s > 0.

In this case h satisfies the edge condition eh(0) = r + 3s, eh(1) = r + 3s − 1 and it

satisfies any one of the following vertex conditions.

(1) vh(1) = 2s + t + 1, vh(2) = vh(3) = t + 2s.

(2) vh(2) = 2s + t + 1, vh(1) = vh(3) = t + 2s.

(3) vh(3) = 2s + t + 1, vh(1) = vh(2) = t + 2s.

Subcase 3b. n = 6s + 1 where s ≥ 0.

If f satisfies vertex condition (1), then relabel the vertices u1, u2 by 2, 3 respectively.

Then we have vh(1) = vh(3) = 2s+ t+ 1, vh(2) = t+ 2s. For s = 0, relabel the vertex

u1 by 2. Then vh(1) = vh(2) = t+1, vh(3) = t. If f satisfies vertex condition (2), then

vh(1) = vh(2) = 2s + t + 1, vh(3) = t + 2s. Suppose f satisfies vertex condition (3),

then vh(1) = vh(3) = 2s + t + 1, vh(2) = t + 2s. In each case, eh(0) = eh(1) = 3s + r.

Subcase 3c. n = 6s + 2 where s ≥ 1.

If f satisfies vertex condition (1), then relabel the vertex u1 by 3. Then vh(1) =

vh(2) = vh(3) = 2s+ t+ 1 and eh(0) = 3s+ r + 1, eh(1) = 3s+ r. Suppose f satisfies

vertex condition (2), then vh(1) = vh(2) = vh(3) = 2s + t + 1 and eh(0) = 3s + r,

eh(1) = 3s + r + 1. If f satisfies vertex condition (3), then vh(1) = vh(2) = vh(3) =

2s + t + 1 and eh(0) = 3s + r, eh(1) = r + 3s + 1.

Subcase 3d. n = 6s + 3 where s ≥ 0.
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In this case h satisfies the edge condition eh(0) = eh(1) = r + 3s + 1 and it satisfies

any one of the following vertex conditions.

(1) vh(1) = 2s + t + 2, vh(2) = vh(3) = t + 2s + 1.

(2) vh(2) = 2s + t + 2, vh(1) = vh(3) = t + 2s + 1.

(3) vh(3) = 2s + t + 2, vh(1) = vh(2) = t + 2s + 1.

Subcase 3e. n = 6s + 4 where s ≥ 1.

If f satisfies vertex condition (1), then vh(1) = vh(2) = 2s + t + 2, vh(3) = 2s + t + 1

and eh(0) = 3s+r+2, eh(1) = 3s+r+1. Suppose f satisfies vertex condition (2), then

relabel the vertex u2 by 3, and then we have vh(1) = 2s+t+1, vh(2) = vh(3) = 2s+t+2

and eh(0) = 3s + r + 1, eh(1) = 3s + r + 2. If f satisfies vertex condition (3), then

vh(1) = 2s+t+1, vh(2) = vh(3) = 2s+t+2 and eh(0) = 3s+r+2, eh(1) = r+3s+1.

Subcase 3f. n = 6s + 5 where s ≥ 0.

If f satisfies vertex condition (1), then vh(1) = vh(2) = vh(3) = 2s + t + 2. Suppose

f satisfies vertex condition (2), then relabel the vertices un−2, un−1, un by 3, 2,

1 respectively. Then we have vh(1) = vh(2) = vh(3) = 2s + t + 2. If f satisfies

vertex condition (3), then relabel the vertices un−1, un by 2, 1 respectively. Here

vh(1) = vh(2) = vh(3) = 2s + t + 2. In each case eh(0) = eh(1) = r + 3s + 2.

Case 4. p ≡ 1 (mod 3), q ≡ 1 (mod 2).

Let p = 3t + 1 where t ≥ 0 and q = 2r + 1 where r ≥ 0. Then f should satisfy

any one of the vertex conditions given in case 3 and any one of the edge conditions

ef (0) = r, ef (1) = r + 1 (or) ef (0) = r + 1, ef (1) = r.

Subcase 4a. n = 6s where s > 0.

If ef (0) = r, ef (1) = r + 1 then eh(0) = eh(1) = r + 3s and if ef (0) = r + 1,

ef (1) = r then interchange the labels of the vertices un−1, un of Pn. This gives

eh(0) = eh(1) = r + 3s. In this case h satisfies any one of the vertex conditions given

in subcase 3a.

Subcase 4b. n = 6s + 1 where s ≥ 0.
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If f satisfies vertex condition (1) of case 3, then relabel the vertices u1, u2 by 2, 3

respectively. This gives vertex condition vh(1) = vh(3) = 2s + t + 1, vh(2) = 2s + t

and h satisfies any one of the edge conditions eh(0) = 3s + r, eh(1) = 3s + r + 1 (or)

eh(0) = 3s + r + 1, eh(1) = 3s + r. If s = 0, vh(1) = vh(2) = t + 1, vh(3) = t and h

satisfies any one of the edge conditions eh(0) = r, eh(1) = r + 1 (or) eh(0) = r + 1,

eh(1) = r. Suppose f satisfies vertex condition (2), then we have vh(1) = vh(2) =

2s+ t+1, vh(3) = 2s+ t and eh(0) = 3s+r, eh(1) = 3s+r+1 (or) eh(0) = 3s+r+1,

eh(1) = 3s + r. If f satisfies vertex condition (3), then vh(1) = vh(3) = 2s + t + 1,

vh(2) = 2s + t and eh(0) = 3s + r, eh(1) = r + 3s + 1 (or) eh(0) = 3s + r + 1,

eh(1) = r + 3s.

Subcase 4c. n = 6s + 2 where s ≥ 1.

If f satisfies vertex condition (1) of case 3 and if ef (0) = r, ef (1) = r+1, then relabel

the vertex u1 by 3. If f satisfies vertex condition (1) of case 3 and if ef (0) = r + 1,

ef (1) = r, then relabel the vertex un−2 by 3. Suppose f satisfies vertex condition (2)

and if ef (0) = r, ef (1) = r + 1, then relabel the vertices u1, un by 3, 1 respectively.

Suppose f satisfies vertex condition (2) and if ef (0) = r + 1, ef (1) = r, then relabel

the vertex un by 3. If f satisfies vertex condition (3) of case 3 and if ef (0) = r,

ef (1) = r+1, then interchange the labels of the vertices un−2, un. If f satisfies vertex

condition (3) of case 3 and if ef (0) = r+1, ef (1) = r, assign the labels to the vertices

of G and Pn as in f and g. In each of the above cases, we have the vertex condition

vh(1) = vh(2) = vh(3) = 2s + t + 1 and edge condition eh(0) = eh(1) = 3s + r + 1.

Subcase 4d. n = 6s + 3 where s ≥ 0.

In this case h satisfies any one of the following edge conditions eh(0) = r + 3s + 1,

eh(1) = r + 3s + 2 (or) eh(0) = r + 3s + 2, eh(1) = r + 3s + 1 and any one of the

vertex conditions given in subcase 3d.

Subcase 4e. n = 6s + 4 where s ≥ 1.
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If f satisfies vertex condition (1) of case 3 and if ef (0) = r, ef (1) = r + 1, then

vh(1) = vh(2) = t + 2s + 2, vh(3) = 2s + t + 1. If f satisfies vertex condition (1)

of case 3 and if ef (0) = r + 1, ef (1) = r, then interchange the labels of the vertices

un−1, un. Here vh(1) = vh(2) = t + 2s + 2, vh(3) = 2s + t + 1. Suppose f satisfies

vertex condition (2) and if ef (0) = r, ef (1) = r + 1, then relabel the vertices u1, un

by 3, 1 respectively. In this case vh(1) = t + 2s + 1, vh(2) = vh(3) = 2s + t + 2.

Suppose f satisfies vertex condition (2) and if ef (0) = r + 1, ef (1) = r, then relabel

the vertex un by 3. Here vh(1) = t + 2s + 1, vh(2) = vh(3) = 2s + t + 2. If f satisfies

vertex condition (3) of case 3 and if ef (0) = r, ef (1) = r + 1, then vh(1) = t+ 2s+ 1,

vh(2) = vh(3) = 2s + t + 2. If f satisfies vertex condition (3) of case 3 and if

ef (0) = r + 1, ef (1) = r, then relabel the vertex un by 1. Here vh(2) = t + 2s + 1,

vh(1) = vh(3) = 2s + t + 2. In each of the above cases, we have the edge condition

eh(0) = eh(1) = 3s + r + 2.

Subcase 4f. n = 6s + 5 where s ≥ 0.

If f satisfies vertex condition (1) of case 3, then vh(1) = vh(2) = vh(3) = 2s + t + 2

and h satisfies any one of the edge conditions eh(0) = 3s + r + 2, eh(1) = 3s + r + 3

(or) eh(0) = 3s + r + 3, eh(1) = 3s + r + 2. Suppose f satisfies vertex condition (2)

of case 3, then relabel the vertices un−3, un−2, un by 3, 2, 1 respectively. Here we

have vh(1) = vh(2) = vh(3) = 2s + t + 2 and eh(0) = 3s + r + 2, eh(1) = 3s + r + 3

(or) eh(0) = 3s + r + 3, eh(1) = 3s + r + 2. If f satisfies vertex condition (3), then

then relabel the vertices un−1, un by 2, 1 respectively. Then vh(1) = vh(2) = vh(3) =

2s + t + 2 and eh(0) = 3s + r + 2, eh(1) = 3s + r + 3 (or) eh(0) = 3s + r + 3,

eh(1) = 3s + r + 2.

Case 5. p ≡ 2 (mod 3), q ≡ 0 (mod 2).

Let p = 3t + 2 where t ≥ 0 and q = 2r where r > 0. Then f should satisfy any one

of the following vertex conditions

(1) vf (1) = vf (2) = t + 1, vf (3) = t.
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(2) vf (1) = vf (3) = t + 1, vf (2) = t.

(3) vf (2) = vf (3) = t + 1, vf (1) = t.

and the edge condition ef (0) = ef (1) = r.

Subcase 5a. n = 6s where s > 0.

In this case h satisfies the edge condition eh(0) = r + 3s, eh(1) = r + 3s − 1 and it

satisfies any one of the following vertex conditions.

(1) vh(1) = vh(2) = 2s + t + 1, vh(3) = t + 2s.

(2) vh(1) = vh(3) = 2s + t + 1, vh(2) = t + 2s.

(3) vh(2) = vh(3) = 2s + t + 1, vh(1) = t + 2s.

Subcase 5b. n = 6s + 1 where s ≥ 0.

If f satisfies vertex condition (1), then relabel the vertex un by 3. Then we have

vh(1) = vh(2) = vh(3) = 2s + t + 1 and eh(0) = eh(1) = 3s + r. If f satisfies vertex

condition (2), then relabel the vertex un by 2. This gives vh(1) = vh(2) = vh(3) =

2s + t + 1 and eh(0) = eh(1) = 3s + r. Suppose f satisfies vertex condition (3), then

vh(1) = vh(2) = vh(3) = 2s + t + 1 and eh(0) = eh(1) = 3s + r.

Subcase 5c. n = 6s + 2 where s ≥ 1.

If f satisfies vertex condition (1), then relabel the vertex u1 by 3. Here vh(1) =

vh(3) = 2s + t + 1, vh(2) = 2s + t + 2 and eh(0) = 3s + r + 1, eh(1) = 3s + r. If

f satisfies vertex condition (2), then vh(1) = 2s + t + 2, vh(2) = vh(3) = 2s + t + 1

and eh(0) = 3s+ r, eh(1) = 3s+ r + 1. Suppose f satisfies vertex condition (3), then

vh(1) = vh(3) = 2s + t + 1, vh(2) = 2s + t + 2 and eh(0) = 3s + r, eh(1) = 3s + r + 1.

Subcase 5d. n = 6s + 3 where s ≥ 0.

In this case h satisfies the edge condition eh(0) = eh(1) = r + 3s + 1 and it satisfies

any one of the following vertex conditions.

(1) vh(1) = vh(2) = 2s + t + 2, vh(3) = t + 2s + 1.

(2) vh(1) = vh(3) = 2s + t + 2, vh(2) = t + 2s + 1.
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(3) vh(2) = vh(3) = 2s + t + 2, vh(1) = t + 2s + 1.

Subcase 5e. n = 6s + 4 where s ≥ 1.

If f satisfies vertex condition (1), then relabel the vertex un by 3. Here vh(1) =

vh(2) = vh(3) = 2s + t + 2 and eh(0) = 3s + r + 1, eh(1) = 3s + r + 2. If f satisfies

vertex condition (2), then vh(1) = vh(2) = vh(3) = 2s + t + 2 and eh(0) = r + 3s + 2,

eh(1) = 3s + r + 1. Suppose f satisfies vertex condition (3), then relabel the vertex

un by 1. In this case vh(1) = vh(2) = vh(3) = 2s + t + 2 and eh(0) = 3s + r + 1,

eh(1) = 3s + r + 2.

Subcase 5f. n = 6s + 5 where s ≥ 0.

If f satisfies vertex condition (1), then vh(1) = vh(3) = 2s + t + 2, vh(2) = t + 2s + 3

and eh(0) = eh(1) = 3s + r + 2. If f satisfies vertex condition (2), then vh(1) =

vh(2) = t + 2s + 2, vh(3) = 2s + t + 3 and eh(0) = eh(1) = 3s + r + 2. Suppose f

satisfies vertex condition (3), then we assign the labels to the vertices of Pn, n > 5

as follows:

f(u2i−1) = 2, 1 ≤ i ≤ 3s+3
2

if s ≡ 1 (mod 2)

1 ≤ i ≤ 3s+4
2

if s ≡ 0 (mod 2)

f(u2i) = 3, 1 ≤ i ≤ 3s+3
2

if s ≡ 1 (mod 2)

1 ≤ i ≤ 3s+2
2

if s ≡ 0 (mod 2)

f(u3s+4i+1) = 3, 1 ≤ i ≤ s
2

if s ≡ 0 (mod 2)

1 ≤ i ≤ s−1
2

if s ≡ 1 (mod 2)

f(u3s+4i+3) = 2, 1 ≤ i ≤ s−2
2

if s ≡ 0 (mod 2)

1 ≤ i ≤ s−1
2

if s ≡ 1 (mod 2)

f(u3s+2i+2) = 1, 1 ≤ i ≤ s− 1

f(u5s+i+1) = 1, 1 ≤ i ≤ s + 3

and f(u6s+5) = 3. In this case vh(1) = vh(2) = 2s + t + 2, vh(3) = 2s + t + 3 and

eh(0) = eh(1) = 3s + r + 2. For n = 5, we use the labeling given in Figure 1.
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Figure 1

Case 6. p ≡ 2 (mod 3), q ≡ 1 (mod 2).

Let p = 3t + 2 where t ≥ 0 and q = 2r + 1 where r ≥ 0. Then f should satisfy

any one of the vertex conditions given in case 5 and any one of the edge conditions

ef (0) = r + 1, ef (1) = r (or) ef (0) = r, ef (1) = r + 1.

Subcase 6a. n = 6s where s > 0.

If f satisfies vertex condition (1) of case 5 and if ef (0) = r + 1, ef (1) = r, then

interchange the labels of the vertices u1, u2. Here vh(1) = vh(2) = 2s + t + 1,

vh(3) = 2s + t and if f satisfies vertex condition (1) of case 5 and if ef (0) = r,

ef (1) = r + 1, then vh(1) = vh(2) = 2s + t + 1, vh(3) = 2s + t. Suppose f satisfies

vertex condition (2) of case 5 and if ef (0) = r + 1, ef (1) = r, then interchange

the labels of the vertices u1, u2. Here vh(1) = vh(3) = 2s + t + 1, vh(2) = 2s + t.

Suppose f satisfies vertex condition (2) of case 5 and if ef (0) = r, ef (1) = r+ 1, then

vh(1) = vh(3) = 2s+ t+ 1, vh(2) = 2s+ t. If f satisfies vertex condition (3) of case 5

and if ef (0) = r + 1, ef (1) = r, then interchange the labels of the vertices u1, u2. In

this case vh(2) = vh(3) = 2s+t+1, vh(1) = 2s+t. If f satisfies vertex condition (3) of
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case 5 and if ef (0) = r, ef (1) = r+ 1, then vh(2) = vh(3) = 2s+ t+ 1, vh(1) = 2s+ t.

In each of the above cases, we have the edge condition eh(0) = eh(1) = 3s + r.

Subcase 6b. n = 6s + 1 where s ≥ 0.

If f satisfies vertex condition (1) of case 5, then relabel the vertex un by 3. This

gives vh(1) = vh(2) = vh(3) = 2s + t + 1 and eh(0) = 3s + r + 1, eh(1) = 3s + r

(or) eh(0) = 3s + r, eh(1) = 3s + r + 1. If f satisfies vertex condition (2) of case 5,

then relabel the vertex un by 2. Here also vh(1) = vh(2) = vh(3) = 2s + t + 1 and

eh(0) = 3s + r + 1, eh(1) = 3s + r (or) eh(0) = 3s + r, eh(1) = 3s + r + 1. Suppose

f satisfies vertex condition (3) of 5, then vh(1) = vh(2) = vh(3) = 2s + t + 1 and

eh(0) = 3s + r + 1, eh(1) = 3s + r (or) eh(0) = 3s + r, eh(1) = 3s + r + 1.

Subcase 6c. n = 6s + 2 where s ≥ 1.

If f satisfies vertex condition (1) of case 5 and if ef (0) = r+1, ef (1) = r, then relabel

the vertex un by 3. Here vh(1) = 2s+t+2, vh(2) = vh(3) = 2s+t+1 and if f satisfies

vertex condition (1) of case 5 and if ef (0) = r, ef (1) = r + 1, then relabel the vertex

u1 by 3. In this case vh(1) = vh(3) = 2s+ t+1, vh(2) = 2s+ t+2. Suppose f satisfies

vertex condition (2) of case 5 and if ef (0) = r + 1, ef (1) = r, then vh(1) = 2s+ t+ 2,

vh(2) = vh(3) = 2s + t + 1. Suppose f satisfies vertex condition (2) of case 5 and

if ef (0) = r, ef (1) = r + 1, then relabel u1 by 3. Here vh(1) = vh(2) = 2s + t + 1,

vh(3) = 2s + t + 2. If f satisfies vertex condition (3) of case 5 and if ef (0) = r + 1,

ef (1) = r, then vh(1) = vh(3) = 2s + t + 1, vh(2) = 2s + t + 2. If f satisfies vertex

condition (3) of case 5 and if ef (0) = r, ef (1) = r + 1, then relabel u2 by 3. Here

vh(1) = vh(2) = 2s + t + 1, vh(3) = 2s + t + 2. In each of the above cases, we have

the edge condition eh(0) = eh(1) = 3s + r + 1.

Subcase 6d. n = 6s + 3 where s ≥ 0.

In this case h satisfies any one of the edge condition eh(0) = r+3s+2, eh(1) = r+3s+1

(or) eh(0) = r + 3s + 1, eh(1) = r + 3s + 2 and it satisfies any one of the following

vertex conditions given in subcase 5d.
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Subcase 6e. n = 6s + 4 where s ≥ 1.

If f satisfies vertex condition (1) of case 5 and if ef (0) = r+1, ef (1) = r, then relabel

the vertex un by 3 and if f satisfies vertex condition (1) of case 5 and if ef (0) = r,

ef (1) = r+1, then relabel the vertices un−2, un−1, un by 3, 2, 3 respectively. Suppose f

satisfies vertex condition (2) of case 5 and if ef (0) = r+1, ef (1) = r, then interchange

the labels of the vertices u2, u3. Suppose f satisfies vertex condition (2) of case 5

and if ef (0) = r, ef (1) = r + 1, then assign the labels to the vertices of G and Pn as

in f , g respectively. If f satisfies vertex condition (3) of case 5 and if ef (0) = r + 1,

ef (1) = r, then assign the labels to the vertices of G and Pn as in f , g respectively.

If f satisfies vertex condition (3) of case 5 and if ef (0) = r, ef (1) = r+ 1, then assign

the labels to the vertices of Pn as given in subcase 5f. In each of the above cases,

we have the vertex condition vh(1) = vh(2) = vh(3) = 2s + t + 2 and edge condition

eh(0) = eh(1) = 3s + r + 2.

Subcase 6f. n = 6s + 5 where s ≥ 0.

In this case h satisfies any one of the edge condition eh(0) = 3s+r+2, eh(1) = 3s+r+3

(or) eh(0) = 3s + r + 3, eh(1) = 3s + r + 2. If f satisfies vertex condition (1) of case

5 then vh(1) = vh(3) = 2s + t + 2, vh(2) = t + 2s + 3. Suppose f satisfies vertex

condition (2) of case 5 then vh(1) = vh(2) = 2s + t + 2, vh(3) = t + 2s + 3. If f

satisfies vertex condition (3) of case 5 then assign the labels to the vertices of Pn as

in subcase 5f. In this case vh(2) = vh(3) = 2s + t + 2, vh(1) = t + 2s + 1.

Hence G ∪ Pn where n 6= 2, 4 is 3-divisor cordial.

Remark 1. In Theorem 3.1, subcase 4e, if ef (0) = r+1, ef (1) = r and vf (1) = t+1,

vf (2) = vf (3) = t then we can not create a new labeling h by relabeling the vertices

of P2. In subcase 6e, if ef (0) = r, ef (1) = r + 1 and vf (1) = t, vf (2) = vf (3) = t + 1

then we can not create a new labeling h by relabeling the vertices of P4.

Corollary 3.1. Pn ∪ Pn is 3-divisor cordial.
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Figure 2 establish the existence of 3-divisor cordial labeling of P2∪P2 and P4∪P4.
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Figure 2

For n 6= 2, 4, the theorem follows from Theorems 2.1, 3.1.
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