Jordan Journal of Mathematics and Statistics (JJMS) 14(2), 2021, pp 351 - 375

MULTILINEAR STRONGLY SINGULAR CALDERON-ZYGMUND
OPERATORS AND COMMUTATORS ON MORREY TYPE
SPACES

YAN LINM) AND HUIHUI YAN @

ABSTRACT. In this paper, the authors establish the boundedness of multilinear
strongly singular Calderén-Zygmund operators and their multilinear commutators
with BMO functions or Lipschitz functions on the product of generalized Morrey
spaces and weighted Morrey spaces, respectively. Moreover, the boundedness of the
multilinear iterated commutators generated by the multilinear strongly singular
Calderon-Zygmund operators and BMO functions on the product of generalized

Morrey spaces and weighted Morrey spaces is also obtained, respectively.

1. INTRODUCTION

The boundedness of operators and their commutators is one of the important topics
in harmonic analysis. And many researchers did many results about this topic.

The classical Morrey space was originally introduced by Morrey in [14] to study
the local behavior of solutions of second order elliptic partial differential equations.
In [13], Mizuhara not only introduced the definition of the generalized Morrey space
but also discussed the boundedness of some classical operators on generalized Morrey
spaces in harmonic analysis. The authors [5] defined the weighted Morrey space and

studied the boundedness of the Hardy-Littlewood maximal operator, the fractional
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integral operator, and the classical Calderon-Zygmund singular integral operator on
these weighted spaces.

Alvarez and Milman [1] discussed the boundedness of the strongly singular Calderén-
Zygmund operator on Lebesgue spaces. In [7], Lin proved the boundedness of the
strongly singular Calderén-Zygmund operator on classical Morrey spaces and gener-
alized Morrey spaces. Moreover, Lin and Sun studied the boundedness on weighted
Morrey spaces in [11]. Lin [8] established the sharp maximal pointwise estimate for
the multilinear strongly singular Calderén-Zygmund operator.

The boundedness of the commutator [b, '] on Morrey spaces when b is a BMO func-
tion or a Lipschitz function was discussed by Lin in [7]. Lin and Sun [11] established
the boundedness of commutators generated by strongly singular Calderén-Zygmund
operators and weighted BMO functions on weighted Morrey spaces. The authors gave
the sharp maximal pointwise estimates for the multilinear commutators generated
by multilinear strongly singular Calderén-Zygmund operators and BMO functions
or Lipschitz functions in [10], respectively. Moreover, Lin and Han [9] showed the
boundedness of multilinear iterated commutators generated by multilinear strongly
singular Calderén-Zygmund operators on the product of weighted Lebesgue spaces.

Based on the above results, in this paper we are interested in the boundedness
of multilinear strongly singular Calderén-Zygmund operators and their multilinear
commutators on generalized Morrey spaces and weighted Morrey spaces.

Now we review briefly the definition of the multilinear Calderén-Zygmund operator.
A systematic treatment of multilinear Calderén-Zygmund operators was discussed in
[4]. Let m € Ny and K (yo,y1,---,Ym) be a function defined away from the diagonal
Yo=1Y1 == Y in (R")™FL T is an m-linear operator defined on product of test

functions such that for K, the integral representation below is valid

(1.1) T(fla"'vfm)(x):/n'” - K(%yl,--',ym)Hfj(yj)dyl"'dym,

j=1
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where f; (j = 1,...,m) are smooth functions with compact support and = ¢ ML supp fj.
Especially, we call K a standard m-linear Calderon-Zygmund kernel if it satisfies the

following size and smoothness conditions.

C
(ZZ?Z:O [y — wi])m”

for some C' > 0 and all (yo, y1, ..., ym) € (R*)™! away from the diagonal. And

(12) |K(y05y17"'aym)| S

Cly; — jI°

—o lyk — wl)re

(13) |K(y0aay]aaym)_K(yOaay;aaym”S m
(> k.

for some £ > 0, whenever 0 < j < m and |y; — yj| < S MaXo<p<m |Y; — Yil-

If an m-linear operator 1" defined by (1.1) associated with a standard m-linear
Calderén-Zygmund kernel K, and satisfies either of the following two conditions for
given numbers 1 < ty,to,... ¢y, t < oo with 1/t = 1/t; + 1/ta + -+ + 1/t,,,

(1) T maps L' x -+« x Lt into Lb>> if ¢ > 1,

(2) T maps L'*! x -+~ x Lt into L' if t = 1,

where L1 .. L'm! and L»* are Lorentz spaces, then T is called a standard m-
linear Calderon-Zygmund operator.

Let T be an m-linear operator defined by (1.1), given a collection of locally inte-

grable functions b= (b1, ...,bn), then the m-linear commutator of 7" with b is defined
by
Tl;(fla e afm) = ZTEJ( )7
j=1
where

ng(f) =b0;T(fr,- s fm) =T(f1,- - fim1, 0515, fivns s fm)-
The notations b € BMO™ will stand for bj € BMO(R"™) for j = 1,...,m, and
b € Lipy will stand for b; € Lipg(R") for j = 1,...,m. We denote by ||bl|pyrom =
maxi<j<m [[b; || Barogn) and [ iy = maxi<jcm [1b;]|Lipy(en), Tespectively.
Before stating our main results, let us first recall some necessary definitions and

notations.
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Definition 1.1. Let T : S — S’ be a bounded linear operator. T is called a strongly
singular Calderon-Zygmund operator if the following conditions are satisfied.

(1) T can be extended into a continuous operator from L?(R") into itself.

(2) There exists a function K (z,y) continuous away from the diagonal {(z,y) : © =
y} such that

ly—z|°

J
B

K(e.9) = K@ 2)| + 1K) = K ()| < 02

if 2ly — 2|* < |z — 2| for some 0 < § <1 and 0 < a < 1. And

(Tf,g) = / / K(x,y)f(y)g(x)dydz,

for f,g € S with disjoint supports.
(3) For some n(1 — «)/2 < < n/2, both T and its conjugate operator T* can be

extended into continuous operators from L? to L?, where 1/q = 1/2+ 3/n.

Definition 1.2. Let 7" be an m-linear operator defined by (1.1). T is called an
m-linear strongly singular Calderon-Zygmund operator if the following conditions are
satisfied.

(1) For some ¢ > 0 and 0 < a < 1,

Clz —2'|f

([ =yl 4 o =y [ Jrentele”

|K(l‘,y1,...,ym)—K(l'/,yl,...,ym)‘ <

whenever |z — 2/|* < L maxi<j<m |z — y;].

(2) For some given numbers 1 <7ry,...,7, <oowith 1/r=1/r +---+1/r,, T
maps L™ X ---x L™ into L"*°.

(3) For some given numbers 1 < ly,...,l, < oo with 1/l =1/l + -+ 1/l;,, T

maps L't x -+ x L' into L9 where 0 < [/q < a.
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Definition 1.3. A function f € L} (R™) is said to belong to the classical Morrey

loc

space MI(R™), 1 < p < ¢q < oo, if

| fllazg@ny = sup [Bla"» (/ \f(x)\pdx) < oo0.
BCR"® B

Remark 1. It can be seen from the special case MP(R") = LP(R"™), with 1 < p < oo

that Morrey space is the generalization of the Lebesque space.

Definition 1.4. For a general positive function ¢ on R” xR™, the generalized Morrey

space LP¥ with 1 < p < oo is defined as follows:

LP? = {f € Lipo(R"), [[f[| v < o0},

loc

where

1 1/p
D, — Ssu — Pd .
£z IEW%O(MM) /B )| y)

Remark 2. For the case p(xz,r) = r"3P/9 we have L% = MI(R"), 1 <p < g <
0o. Thus, the generalized Morrey space is the generalization of the classical Morrey

space.

Definition 1.5. Let 1 < p < 00,0 < k <1 and w be a weighted function. Then the

weighted Morrey space LP*(w) is defined by

LM (w) = {f € Li,o(w) : | fllmn) < o0},

where

1 1/p
[ £l 2oy = Sgp (W /Q |f(9€)|pw(x)dx) ,

and the supremum is taken over all cubes ) in R™.
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Definition 1.6. Let 1 < p < oo and 0 < k < 1. Then for two weighted functions p

and v, the weighted Morrey space LP*(u, v) is defined by

Lp,k(,u, V) = {f € Lfoc(:u) : ”fHLp’k(,u,,l/) < OO},

where
1 1/p
[ f ok () = sup (—/ \f(x)\p,u(x)dx) .
(:v) o \v(Q)F 0
Definition 1.7. Let T be an m-linear operator , b= (b1, -, by) is a group of locally
integrable function and f = (f1,--+, fm). Then the m-linear iterated commutator

generated by T and b is defined to be

T(froe - fm) = b1y [b2, -+ (bt [, TlinJm—1 -+ J2]1 (f)-

If T is connected in the usual way to the kernel K studied in this paper, then we can

write

THI;(fl’ ’ 7fm)(l')
_ /(Rn)m TL0s(0) — by DK G ) Fr01) - o) =i

Definition 1.8. Take positive integers j and m satisfying 1 < j < m, and C}" be
a family of all finite subsets ¢ = {¢(1),---,¢(j)} of {1,--- ,m} with j different
elements. If & <[, then ¢(k) < ¢(l). For any ¢ € C7*, let ¢ ={1,---,m}\¢ be the
complementary sequence. In particular, C" = @. For an m-tuple b and ¢ € C7", the
j-tuple l;(b = (bg(1), " -+, by(j)) is a finite subset of b= (b, -, bn).

Let T' be an m-linear operator, ¢ € C7*, and l;¢ = (bp(1), -, bg(jy). The iterated

commutator is given by

Tz, (155 fm) = (oo, [Boc@)s - - [bo(-1): [Psi), Tloh]o-1) - - - lo@ o) (f)-
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It can also be written as

T, (fio o fo) (@)
= Sy H(bqs(z‘)(@ — by Wo)) K (2,91, -+ Ym) Fry) -+ fon (Yom) AT,

where dy = dy; - - - dy,,. Obviously, T, = T when ¢ = {1,2,--- ;m}, and T, =
Tg] when ¢ = {j}.

2. MAIN RESULTS

Inspired by [7], in this paper we will give the boundedness of multilinear strongly
singular Calderon-Zygmund operators and their multilinear commutators with BMO

functions or Lipschitz functions on the product of generalized Morrey spaces.

Theorem 2.1. Let T' be an m-linear strongly singular Calderon-Zygmund operator.
Let s = max{ry,...,"m,l1,...,ln}, where r; and l; are given as in Definition 1.2,
j=1,...,m. Let p; be a positive function on R™ x R™ and suppose there exists
0 < C; < 2" such that pj(z,2r) < Cjpi(z,7) for allz € R, r > 0, and ¢'/? =
H;nzl cp;/pj, Ip=1/pr+--+1/pm, p> 1. If s < p; < oo, then T can be extended

into a bounded operator from LPV¥#1 X ... x LPm¥m qinto LP?.
Remark 3. Theorem 2.1 is the generalization of Theorem 3.1 in [7].

Theorem 2.2. Let T' be an m-linear strongly singular Calderon-Zygmund operator
and 0 < 1/q < a in (3) of Definition 1.2. Let sg = max{ry,...,"m,l1,...,ln}, where
rj and l; are given as in Definition 1.2, j = 1,...,m. Let ¢; be a positive function on
R"™ x RT and suppose there exists 0 < C; < 2" such that p;(x,2r) < Cjp;(x, 1) for all
r€ R, r >0, and p'/? = | cp;/pj, 1/p=1/p1+--+1/pm, so <p; <oo,p>1.If
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be BMO™, then Ty can be extended into a bounded operator from LP1#1 x . . . [Pm:@m

into LP%.

Theorem 2.3. Let T' be an m-linear strongly singular Calderon-Zygmund operator.
Let s = max{ry,...,"m,l1,...,ln}, wherer; and l; are given as in Definition 1.2, j =
1,...,m. Suppose be Lip}y', 0 < B <min{l,n/s}, s <p; <n/B, 1/p=1/p. — B/n,
pi+--+1/pm =1/ps, p« > 1, 1/k; = 1/p; — B/n. Let p; be a positive function on
R™ x R* and suppose there exists 0 < C; < 2™i/%i such that p;(x,2r) < Cip;(x, 1)
forallz € R, r >0, and p'/? = H;nzl gp}/pj. Then Ty can be extended into a bounded

operator from LPL#1 X - . x LPm®m qnto LP¥.
Remark 4. Theorem 2.3 generalized Theorem 3.2 in [7].

Now, let us consider the boundedness of the multilinear iterated commutators gen-
erated by the multilinear strongly singular Calderén-Zygmund operators and BMO

functions on the product of generalized Morrey spaces.

Theorem 2.4. Let T' be an m-linear strongly singular Calderon-Zygmund operator
and 0 < l/q < « in (3) of Definition 1.2. Let so = max{ri,...,"m,l1,...,ln},
where v; and l; are given as in Definition 1.2, j = 1,...,m. Suppose sy < p; < 00,
1/p=1/p1+--+1/pm, p > 1. Let @; be a positive function on R™ x R* and suppose
there exists 0 < C; < 2" such that ¢;(z,2r) < Cjp;(x,r) for allx € R", r > 0, and
QP = H;nzl gp}/pj. [fl;E BMO™, then Ty; can be extended into a bounded operator

from LPV#1 ... x LPm¥m qnto LP¥.

Moreover, we will consider the boundedness of multilinear strongly singular Calderén-
Zygmund operators and the multilinear commutators or the multilinear iterated com-

mutators generated with BMO functions on the product of weighted Morrey spaces.

Theorem 2.5. Let T' be an m-linear strongly singular Calderén-Zygmund operator.

Let s = max{ry,...,7,l1,...,ln}, where r; and l; are given as in Definition 1.2,



MULTILINEAR STRONGLY SINGULAR CALDERON-ZYGMUND OPERATORS 359

ji=1...om 1/p=1/pi+ -+ 1/pn, p>1 WP = H;”lejl-/pj, (wy, ..., wy) €
(Ap /sy Apnys). If s <pj <o00,0<k <1, then T can be exstended into a bounded

operator from LPVF(wy) x -+ x LPmF(w,,) into LPF(w).

Theorem 2.6. Let T' be an m-linear strongly singular Calderon-Zygmund operator
and 0 < 1/q < v in (3) of Definition 1.2. Let so = max{ry,...,"m,l1,...,ln}, where
r; and l; are given as in Definition 1.2, j = 1,...,m, 1/p = 1/p1 + -+ + 1/pm,
so < pj < 00, p > 1, WP = H?l:lel./p", (w1, ...y wm) € (Apyjses-- s Apnsse)- If
b€ BMO™, 0 < k < 1, then T; can be extended into a bounded operator from

LPYE(wp) x oo x LPmF(w,,) into LPRE(w).

Theorem 2.7. Let T be an m-linear strongly singular Calderon-Zygmund operator
and 0 < l/q < v in (3) of Definition 1.2. Let sg = max{ry,...,"m,l1,...,ln}, where
r; and l; are given as in Definition 1.2, j = 1,...,m, 1/p = 1/p1 + -+ + 1/pm,
so < p; <00, p>1, wP = [T, wjl./pj, (Wi, ..., ww) € (Apy/sos- > Apn/so)- Suppose
b BMO™, 0 < k < 1, then Ty can be extended into a bounded operator from

LPYF(wy) x oo x Pk (w,,) into LPF(w).

Since the classical Morrey space is the special case of the generalized Morrey space,

we can get the corresponding results on classical Morrey spaces as corollaries.

Corollary 2.1. Let T be an m-linear strongly singular Calderén-Zygmund operator.
Let s = max{ry,...,"m,l1,...,ln}, where r; and l; are given as in Definition 1.2,
J=1....m /qg=1/q1++1/qm, 1/p=1/p1+-+1/pp,p> 1. If s <p; < q; <
00, then T' can be extended into a bounded operator from MI(R") x --- x MI™(R")

into MI(R").

Corollary 2.2. Let T be an m-linear strongly singular Calderon-Zygmund operator
and 0 < l/q < v in (3) of Definition 1.2. Let sg = max{ry,...,"m,l1,...,ln}, where

r; and l; are given as in Definition 1.2, j = 1,....m, 1/q¢ = 1/q1 + -+ + 1/qm,
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Ip=1/p1+ -+ 1/pm, so <p; < g <oo,p>1 [fl;e BMO™, then Ty can be
extended into a bounded operator from M@ (R™) x - - x MI™(R") into MI(R").

Corollary 2.3. Let T be an m-linear strongly singular Calderén-Zygmund operator.
Let s = max{ry,...,"m,l1,...,ln}, where r; and l; are given as in Definition 1.2,
j=1,...,m. Ifbe Lip}y', 0 < 8 <min{l,n/s}, s <p; < q; <n/B, 1/p. —1/p =
B/n, 1/p1+-++1/pm=1/p ps > 1, 1/q1 + -+ 1/¢n — B/n =1/q, then Ty can
be extended into a bounded operator from M (R") x --- x MIm(R") into MJ(R"™).

Corollary 2.4. Let T be an m-linear strongly singular Calderon-Zygmund operator
and 0 < l/q < ain (3) of Definition 1.2. Let sg = max{ry,...,"m,l1,...,ln}, where
r; and l; are given as in Definition 1.2, j = 1,....m, 1/q¢ = 1/q1 + -+ + 1/qm,
p=1/pr+--+1/pm, so <pj < q; < oo, p>1 [fl;e BMO™, then Tz can be
extended into a bounded operator from M@ (R™) x - - x MI™(R") into MI(R").

3. NECESSARY LEMMAS

Lemma 3.1. ([8]) Let T' be an m-linear strongly singular Calderdn-Zygmund operator
and s = max{ry,...,"m,l1,...,ln}, where r; and l; are given as in Definition 1.2,

j=1,...,m. If0 <6 < 1/m, then

for all m-tuples f: (f1,-- -, fm) of bounded measurable functions with compact sup-

port.

Lemma 3.2. ([10]) Let T' be an m-linear strongly singular Calderdn-Zygmund oper-
ator and 0 < l/q < « in (3) of Definition 1.2. Let so = max{r,...,"m,l1,...,ln},
where r; and l; are given as in Definition 1.2, j = 1,...,m. [fg € BMO™,
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0<d<1/m,d<t<ooandsy<s< oo, then
M) < Clilmsion (M(T(7)) + [ M)

for all m-tuples f: (f1,..., fm) of bounded measurable functions with compact sup-

port.

Lemma 3.3. ([10]) Let T be an m-linear strongly singular Calderdén-Zygmund oper-
ator and so = max{ry,...,"m,l1,...,ln}, where r; and l; are given as in Definition

1.2,j=1,...,m. Ifb€ Lip}, 0 < B <1 and 0 < & < 1/m, then

MUTH(f))(x) < ClIb] Lipy Z(Mﬁ,é(T( ) (@) + Mp,oo(f) () [1 Mso(fz)(iv)>,
j=1 i=1,i#j
for all m-tuples f: (f1,---, fm) of bounded measurable functions with compact sup-

port.

Lemma 3.4. ([9]) Let T' be an m-linear strongly singular Calderdn-Zygmund operator
and 0 < l/q < v in (3) of Definition 1.2. Let sg = max{ry,...,"m,l1,...,ln}, where
rj and l; are given as in Definition 1.2, 7 =1,...,m. [fl;e BMO™, 0<§ < 1/m,

0 <t<ooand sy < s < oo, then

Mj(Tyg(f))(z) < CHIIb Mo (HM (fi) () + M(T (3)(%))

—l—CZ Z Hwa | o My( wa,(q)( ),

Jj=1 ¢eCimi=1
for all m-tuples f: (fi,.-., fm) of bounded measurable functions with compact sup-

port.

Lemma 3.5. ([12]) Let ¢ be a positive function on R™ x R and suppose there exists

0 < Cy < 2™ such that

(3.1) o(x,2r) < Cop(x,r)  for all ze€R" r>0.
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If 1 < p < oo, then
M fllpee < Cllflloe,

where C' 1s independent of f.
Lemma 3.6. ([7]) Let 1 be a positive function on R™ x R, Suppose 0 < a < n, 1 <

I <p <n/a, 1/ps =1/p1 —a/n and (p;/m = goi/pl. If there exists 0 < Cy < 271/pz
such that (1) holds for @1 and Cy, then

”Man”LPQ#PQ < C”fHLm»m s
where C' 1s independent of f.

Lemma 3.7. ([15]) Let 0 < d <1, 1<p<oo and 0 < k < 1. If u,v € Aw, then we

have
IMs(F)| Loy < CHMECE) | Lok

for all functions f such that the left hand side is finite. In particular, when p =v = w

and w € Ay, we have

IMs ()| oy < CIME) o)
for all functions f such that the left hand side is finite.

Lemma 3.8. ([5]) If 1l <p < o0, 0 <k <1, andw € A,, then M is bounded on
LPF(w).

Lemma 3.9. ([3]) For (wy,...,wm) € (A,,,..., Ap,,) with1 <py,...,p, < oo, and

for0<0y,...,0,, <1 suchthat01+---+6,, =1, we have wfl = Amax{pr,....pm}-

Lemma 3.10. ([6]) Let 0 < 6,p < 0o and w € A. Then there exists a constant

C > 0 depending only on the Ay constant of w such that

/ n[M(;( H@)Pw(z)de < C / [ME(f) (2)]Pw(z)de,

n

for every function f such that the left-hand side is finite.
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Lemma 3.11. Let ¢ be a positive function on R™ x R and suppose there exists
0 < Cy < 2" such that p(x,2r) < Cop(x,r), for allx € R*, r > 0. Ifé > 0,

1 <p< oo, then

1M5(f)llzre < CUME(S) e,

where C' 1s independent of f.

Proof. For any ball B = B(x,r) C R", since Mxp € A; in [2], Mxp < 1 and

Mxp(y) < B if y € B¢, by Lemma 3.10, we have

= (ly— :v\

/ | Ms(f)(y)|Pdy

< / MO PMxa)y < [ @M xa()dy

n

<C /\Mﬁ Y Mxs(y dy+z |Mj(f )(y)\prB(y)dy>

2k+1B\2k B
<c /uwﬁ |pdy+2/

< C ([ IMED ool ) + Z (o) It QWT))

|M; (f)(y)\pdy>

k+1B |?J_$| )n

<C ||M§( N peo(z,r +ZQ lmHMﬁ prcvk:—f—l (xar)>

1\ kn
o C;
< CIME()[ o, 7) ( ; )

k=0

< CIME) oo (7).

Thus,

Il = sup (

zER™ r>0

= [ M) < -

which completes the proof of Lemma 3.11.
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Lemma 3.12. Let ¢ be a positive function on R™ x R and suppose there exists
0 < Cy < 2" such that o(x,2r) < Cop(x,r), for allz € R*, r > 0. If0 < f < n,
0<d<l<t<p<n/p, then

| Mg 5(f)lee < ClUMai(f)l|oe,
where C' 1s independent of f.
Proof. For any ball B = B(x,r) C R", we have
/ | Mpas(f) ()P dy
< [ MO0 sy < [ M P Mxati)dy
<c{ [ MNPty dy+2/
B 2k+1B\2k B

<c( [ |pdy+z /2k+lBW|Mﬁ,t<f><y>|pdy>

< O (1Mol D)o@ ) + 3 (i) 1Ml S >|rmc’f“so<x,r>>
k=0

|M6 ()W) Mxp (y)dy)

0 C% kn
SOHMBt HLMJ‘P"ET Z( 20>

k=0
< OHMﬁt( )||Lp¢<P(IE r

Thus,

zGR"r>O

1/p
|Mss(f)llme = sup ( / Mas(f \pdy) < CMaa ()]s

which completes the proof of Lemma 3.12.
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Lemma 3.13. Let ¢; be a positive function on R" x RT. If 1 < p; < oo, f; € LPi%5,

jzla , T, and(pl/p:HJ 190j1/p] 1/p1++1/pm:1/p7p> 17 then

m
< CTTWfillzrs s,
j=1

Lp:¥

where C is independent of f;.

Proof. By Holder’s inequality, we have

1
dy)

H fi(y) de> p

/l;(x r)

= sup (,0 X, T’
zeR™,r>0 (z,r)

= sup
Lo reR™,r>0

L

< (C su xrii / p7d)
xER”I1)">O(p 1;[< )| Y
= ¢ o MM(oas [ b))
TER™r>0 wj(x,7) B(x,r)
<

m
CLLIilrses,
j=1

which completes the proof of Lemma 3.13.

Lemma 3.14. If1 < p; < oo, L—|—~~—i-1!%=%,p>1,O</€<1,wj 15 a weight
1
function, andw%:HTl , i € LPiR(w;), j=1,--+,m, then

1175

Jj=1

< CTT Ml i,
j=1

Lr:k(w)

where C' is independent of f;.
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Proof. By Holder’s inequality, we have

1
]Hlf] W (w(@)k/Q

< CH ||fj||LPj”“(w )
j=1

which completes the proof of Lemma 3.14.

4. PROOF OF MAIN RESULTS

Now we are able to prove our main results.

Proof of Theorem 2.1. Let Cy = max{C1,---,C,,}, we have
(4.1)

m 1 m 1 1

o(z,2r)r = H(pj(x,Qr )P < H i(wy )P

7j=1 7j=1

OMH
'UM—‘

H )t = Cj 80(33 e,

thus ¢(z,2r) < Cop(z,r) and 0 < Cp < 2". Take 0 < § < -, from Lemma 3.11,

Lemma 3.1, Lemma 3.13 and Lemma 3.5, we have

IT(Plre < IM(T(F)ire < CUMET(F))ire

IN
Q

Lpse

< GH 1M (f5) | s
j=1
s\ (11/s snl/s
= CTLIMABIL,.., < CTTINAFI ..,
j=1 j=1

m
= CTT 1l
j=1

This completes the proof of Theorem 2.1. O
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Proof of Theorem 2.2. Take ¢ and t such that 0 < ¢ < %, 0 < t < p. Since
So < minj<j<,{p;}, there exists an s such that sy < s < min;<;j<,,{p;}. From (4.1),

Lemma 3.11 and Lemma 3.2, we have

ITs(Pllzne < IM5(THF)lne < ClME(T5()) | oo

IIJM&(EJ

< C|bllparon (HMt(T(JF))HW +

Lmo)

Applying Lemma 3.5, and Theorem 2.1, we have
= 261 2ty
IM(T (D ere = IMAT) O e < CNTE e

- C”T(]F)HL"’” < CH "fj"LPijj.

j=1

Applying Lemma 3.13, and Lemma 3.5, we have

I]}N@(fﬂ

Lp®

< CTIIMDNies = CTLIMALHINNL,,
j=1 j=1

IN

m m
1
CTINAENS o, = CTT IS0
=1 e

In conclusion,
IT5(Nzre < Clbzarom [T I5illzrses.
j=1
This completes the proof of Theorem 2.2. O
Proof of Theorem 2.3. Since %* =1- gp*, z—; =1- gpj, and p, < p; for j =

1,---,m, thus %* > maxi<j<m{it}. Let Cp = max{Ci,---,Cy}, then 0 < Cj <
- J
ne;
max;<j<m{2 % }. We have

S

1 1

gp(x,?r)% = ﬁ (x,2r)7 < H o
i=1 i=1
1

m

< G [l e =G5 pla,r),

j=1

'BI'i
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thus,
o(z,2r) < CF p(x,r) < 2"p(x,7).
Take 0 < 6 < %, from Lemma 3.11 and Lemma 3.3, we have

ITs(Pllve < IM(TH D lare < CUMET)) oo

< 0||5||Lipglz(||Mm< T ))IIW+HM55L T .05

j=1 i=1,i#j

)

Let p, = gop?*, then o, (z,2r) < Cop,(z,7) and 0 < Cy < 277/, We can choose an ¢
such that 1 <t < p, < % Applying Lemma 3.12, Lemma 3.6 and Theorem 2.1, we

have

|Ms.5(T(F)ene < CIMT(F)ere < CIT(f)|oer < C TS s
j=1

=1 .- 1 _ 1 g 1_ 1 B _ 1y, .1 B _ 1 m 1
For every j = 1, N e T Ty T e e e T T n—kj—i-ZZ.:L#jpi.

Let ¢} = @?j/pj, by Lemma 3.13, Lemma 3.6 and Lemma 3.5, we have

m m
HMB,SU» I v < vl e T 1Ml
i=1,i#j Lp-# 1=1,i#j
m
1
< Clfillgeses T UIMALILE, 0
i=1,i#j]
m
1
< Olfillgrses TT WEPIEL .
i=1,i#j]
m
= Clfillries T fillzoe
i=1,i#j]

m
= CILlflzse.
j=1

In conclusion,
IT5(Fllzoee < ClBl|ipyy H [ fill Leaves

This completes the proof of Theorem 2.3. O
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Proof of Theorem 2.4. From (4.1) we can get p(z, 2r) < Cop(x,r), where 0 < Cy <
2", Since sg < miny<;j<,{p;}, there exists an s such that sy < s < mini<;<m{p;}-
Take d,e1,69, -+ ,&, satisfying 0 < 0 < g1 < ey < -+ < g < % Applying Lemma
3.11 and Lemma 3.1, we can get

m

H MSo(fi)

i=1

| ey (T(Flanr < CIME (Tl < C

7.]:]-7"'am'
Lp.e

From Lemma 3.11 and Lemma 3.4, we have

—

1T (Pllre < IMs(Tig(F)lame < CIM(Tig()ll1me

< O] Ibsllsuo ( [T M) + ||M51(T(ﬂ)||Lva>
j=1 =1 Lewe
m—1 i
+CY > H||b¢(z‘)||BM0||Ma1(Tn5¢,(f))||Lw
J=1 geCr i=1
< O Ibslsao ( [T2.05) + ||M51(T(ﬂ)||Lva>
j=1 =1 Lp-e

m—1 i
+CY Y HHb¢(i)HBMO”Mgl(THEd)/(f))”LW'

j=1 ¢peC i=1

In order to reduce the dimension of the BMO function in the commutator, we apply

—

Lemma 3.4 again to [|M?, (TH5¢/(f))||Lp,w.

Let ¢ = {6(1), . 6()} and & = {6 + 1), -, 6(m)}, Ba = {61 : any finite
subset of ¢/ with different elements}, and ¢} = ¢’ — ¢;. It follows from Lemma 3.4
that

m

HMs(fl)

=1

IV, (T, (Dl < € T ||b¢(l>||BMo<

I=j+1

+ IIMEQ(T(J?))IILw>

L

m—j—1 h

+C 30 2 T IbsolsuolMe (T, ().

h=1 ¢1€By, i=1
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By putting the formula above into || M} (T ( f)) || Lr.v, We can reduce the dimension

of BMO functions. Repeating the process above and using Lemma 3.2, we can get

1M T Do < CTTNbsllmar0 (Gonamm)

J=1

[Tt
+G1(m,n) | Mo, (T(f)) | 1re + Ga(m, n)HMeQ(T(f))HLw

+ oo+ G (m,n)|| M., (T(ﬂ)”LFW))

where Gy(m,n),Ga(m,n), -+, Gpi1(m,n) are finite real numbers related to m and

n. Then, by Lemma 3.13 and Lemma 3.5, we get

1Tl < CTT s ar0 (G (m,m) ]
': =1 Lp¥
m+2 m, n H S0 f] )
j=1 Lpe
< CHHb Iaro|| [T M
_ j=1 Lps#
< CHHb HBMoHHM (Fi)ll e
= OHHijBMoHHM(\W)H;@;SW
< CHHb HBMonm 12 e

7j=1
m
= H HijBMOH [ £l zeives -

This completes the proof of Theorem 2.4. O

Proof of Theorem 2.5. We have w € A emy C Ay from Lemma 3.9. Take

max{%l,---,

0<d< %, applying Lemma 3.7, Lemma 3.1, Lemma 3.14 and Lemma 3.8, we can
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get

— —

17Ny < IMS(T DNty < CIMET )l 1ri)
HMS( j)

1 1
1A sy < OTTIGP I
J

IN
Q

3

|f] ||LpJ (wj)”

This completes the proof of Theorem 2.5. O

Proof of Theorem 2.6. We have w € A omy C Ay from Lemma 3.9. For
0

max {21
any j = 1,---,m, since w; € A, /,, there exists a t; satisfying 1 < t; < p;/so
and w; € Ay;. Since 89 < p;/t;, there exists an s; satisfying so < s; < p;/t; < p;.
Let s = minj<j<,, s;, then we have so < s < p;. Since t; < p;/s; < p;/s, then

wj € Ay, CA

p;/s> J = 1,-++,m. Choose § and ¢ such that 0 <0 <t < %,by Lemma

3.7 and Lemma 3.2,

1T (lrry < IMs(TE(F) ok < CUMETH) ok o)

HME

IN

Cl1bll srrom (HMt( (Pl

Lp’k(w)> '

Applying Lemma 3.7, Lemma 3.1, Lemma 3.14 and Lemma 3.8, we have

m

[T2.(5)

J=1

||Mt(T(]F))HLPv’“(w) < CHME(T(]F))HLP»’C(UJ)SO

Lr:k(w)

1/s
scHM4me@—OHMMLngMJ

1/s
gcqwmw;Mj=0Hmewy
j=1
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Applying Lemma 3.14 and Lemma 3.8, we have

1/s
< CTTIMGD o) —CHHM I e,
Jj=1

1/s
< eIl (. :cHufjum,k(w)
Jj=1 j=1

Lr:k(w)

In conclusion,
IT5(D ey < CllBImaom [Tl s
j=1
This completes the proof of Theorem 2.6. O
Proof of Theorem 2.7. For any j = 1,---,m, since w; € A, /s, there exists [;
satisfying 1 < I; < p;/so and w; € A;;. Since sy < p;/l;, there exists an s; satisfying

sp < 85 < p;/l; < p;. Let s = minj<;<,, s;, then we have sy < s < p;. Since [; <

pj/sj < pj/s, thenw; € A, C Ay s, j=1,---,m. Wehave w € A, g ..y C Ay
: so’ 7 s0
from Lemma 3.9. Take 9,e1,e9, -+ ,6,, satisfying 0 < § < g1 < ey < -+ <&, < %
Applying Lemma 3.7 and Lemma 3.1, we can get
1M (TN iy < CIME (T(Plir < €| [[Ma(F)]| 2 d=1.-m.
i=1 Lpk(w)

From Lemma 3.7 and Lemma 3.4, we have

1T (D lleerey < IMs(Trg(PD ior) < CIHMG(Tig(N) ok

< CH 1651l Bazo ( + ”Ma(T(f))HLP»k(w)>
j=1 1=1 LP-F(w)
m—1 J
+CZ Z H|’b¢(i)”BMOHMEI(THgd)/(f)>HLp’k(LU)
=1 ¢eCr i=1
< CH 1651l Baro ( HMs(fz) + HMH(T(JF))HLP»I@(W)>
j=1

=1 Lrk(w)

m—1 J
+0> > 11 050 | maroll ME, (Tiz,, ()|t o

j=1 ¢peCm i=1
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In order to reduce the dimension of the BMO function in the commutator, we

apply Lemma 3.4 again to |2 (T, (F)lussco Let 6 = {6(1).-++ ,6(j)} and o —
{p(j+1), -+ ,p(m)}, By, = {¢1 : any finite subset of ¢’ with different elements}, and

¢ = ¢’ — ¢1. From Lemma 3.4 we can get
1M, (T, ()l o)
<C T lbeellmaro (

r=j+1

m

[12.(5)

r=1

+ ”MEQ(T(JF))”LP’]C(W)>

Lr-k(w)

m—j—1

+C Y > HHbm(z lsarol| Me, (T, (q))HLM(w)-

h=1 ¢1€By =1

By putting the formula above into ||M(§i (Tng(f)) || Lok (), We can reduce the dimen-
sion of BMO functions. Repeating the process above and using Lemma 3.2, we can

get

IMET (Do < CTTWesllsro (Gura(m, )

j=1

Lr:k(w)

HMs(fl>
_'_Gl(m n)HME-Zl( ( _>)|’Lp’k(w) =+ G2(m7 n)HMEQ (T(]F))”Lp,k(w)

ot Gl m) | e (TP )

By Lemma 3.14 and Lemma 3.8, we have

1T lloser < CTTIbslmro (G (m,m)
j=1

Lr-k(w)

)| LI

=1

[TMmanf )
j=1 Lek(w)

HMS(fj)

(JH 1651l Baro H ||M5(fj)||ij’k(w]-)
j=1 J=1

+Gm+2 (ma TL)

IN

C T bsllsao
j=1

Lr:k(w)

IN
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— CHHb HBMOHHM I e
CHHb HBMOHM Ao

= CH 165l Baro H HfjHij,k(wj)-
j=1 g=1

This completes the proof of Theorem 2.7. O
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