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ON THE NORMS OF SOME SPECIAL MATRICES WITH
PADOVAN AND PELL-PADOVAN-LIKE SEQUENCE

ZAHID RAZA (U M. S. BATAINEH (® AND M. ASIM ALI

ABSTRACT. The focus of this paper is to define some special matrices like r—circulant,
circulant, semi-circulant, Hankel and Toeplitz matrices with the help of integer
sequences. In particular, this work is focusing on obtaining norms of the afore-
mentioned types of matrices that are involved with Pell-Padovan-like sequences.
Furthermore, the upper and lower bounds of spectral norms of those matrices have

been also determined.

1. INTRODUCTION AND PRELIMINARIES

Toeplitz matrices arise in many different theoretical and applicative fields, such
as their applications in the mathematical modeling of all problems where some sort
of shift-invariant occurs in terms of space or time. This type of matrices is widely
used in the computation of spline functions, time series analysis, signal and image
processing, queueing theory, polynomial and power series computations and in many
other areas, where, the outcome of numerical solutions of certain differential and
integral equations has been modeled by Toeplitz matrices, see for example [7] and
[8]. Many articles have been written about the estimation of the spectral norms of
Toeplitz matrices which have connections to signal and image processing, time series

analysis and many other problems [9].
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The Fibonacci sequence in [3] is defined by
(11) Fo=F, 1+ F,

with initial conditions Fy = 0 and F; = 1. Kalman [2] generalized Fibonacci sequence

as follows:

(1.2) Foon=aF, +a1Fi+asF, o+ ...+ apFyin_1.

In [18], third order recurrence relation is given, which is defined as Padovan sequence
(1.3) P, =P, 2+ P,3

with the initial conditions Py = P, = P, = 1.

The generalized form of the sequence (1.3) is given as
(1.4) P,=rP, o+5sP, 3

for every integer n > 1 with the initial conditions Py = a, P, = b, P, = ¢ where a,
b, ¢, r and s are non- negative integers. Let us consider a =1,b=0,c=2,r =2
and s = 1 in (1.4), we have a third order recurrence relation which is defined as
Pell-Padovan -like sequence [1] . For every integer n > 3, this sequence satisfies the

folllowing

(15) Qn = 2Qn—2 + Qn—B

with initial conditions @y = 1,Q, = 0,Q5 = 2.

Many papers were published on some special matrices associated with the Fibonacci
and Lucas numbers [6, 10, 11, 12, 14, 15, 16]. These special two numbers are particu-
larly popular with astonishing properties [17]. Many authors investigated the norms
of special matrices with these numbers. For example, Solak [15] has found the norms
of circulant matrices with these numbers. In [11] authors have found the upper and

lower bounds of some special matrices with tribonacci sequence.
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In this paper, circulant, r—circulant, semi -circulant, Hankel and Toeplitz matrices
associated with third order recurrence relation specially Padovan and Pell-Padovan-
like sequence will be investigated. Furthermore, the upper and lowers bounds of
those special matrices are obtained. This work is initiated by stating some related
preliminaries to our study.

Let U; be any integer sequence. We define some special matrices on this sequence,
in particular the ones which are defined in (1.3) and (1.5).

Matrix A = A, = (a;;) € M,,,(C) is called r—circulant on any integer sequence U, if
it is of the form

Ui Jj=t
(16) Ai5 = !

PUpsjes  J<i
where r € C. If r=1, then matrix A is called circulant.

Matrix A = (a;;) € M, ,(C) is called semi-circulant on U; if it is of the form

Ujipn 1<y
aij = )
0 otherwise.

Hankel matrix on integer sequence U; is defined as H = (h;;) € M, ,(C), where
hij = Ui

Similarly, matrix A = (a;;) € M,,»(C) is Toeplitz matrix on integer sequence if it is
of the form a;; = U;_;

The ¢, norm of a matrix A = (a;;) € M, ,(C) is defined by

m n l/P
IA[l, = (ZZ Iaij|p> (1<p<o0).

i=1 j=1
If p = oo, then [|Al| . = lim [|A||, = max |A;].
p—00 2y

The Euclidean (Frobenius) norm of the matrix A is defined as

Al = (sz>/

i=1 j=1
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The spectral norm of the matrix A is given as
Al = /max Tl

where v; are the eigenvalues of the matrix (fl)tA.

The following inequality between Euclidean and spectral norm holds [19]

(1.7) < [ All, < 1Al

1Al
\F "o
Definition 1.1. [13] Let A = (a;;) and B = (b;;) be m x n matrices. Then, the

Hadamard product of A and B is given by
AoB = (aijbl-j).

Definition 1.2. [15] The maximum column length norm ¢;(.) and maximum row

length norm 7 (.) for m x n matrix A = (a;;) is defined ¢;(A) = , /max 3" |a;;|* and
J i
r1(A) = [max 3 |a;|* respectively.
g

Theorem 1.1. [5] Let A = (a;;), B = (b;j) and C = (c¢;j) be p x q matrices. If
C = Ao B, then ||C|, < ri(A)a(B).

The following lemmas describes the properties Padovan sequence.
Lemma 1.1. The sum of first n terms of Padovan sequence is given by:
D Pu=Pus— 2.
m=0
Lemma 1.2. The sum of square of first n terms of Padovan sequence is given as:
ZP2 - n+2 Pfl—Pig-
Lemma 1.3. For every n > 0 the following identity is hold.

ZZP2 Pl +2P2+ P2 +2P2  +P2,—n—4

k=1 m=1
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Proof.
n k n
ZPT%L: (P13+2 Pk21 P/?—g 1)
k=1 m=1 k=1
n k n n n
Zzpzzzprirz_zpifl ZPT%*:«‘,_”’
-1 m= k=1 k=1 k=1

by using lemma (1.2), we have

n k
>N P =P, +2P]+ Pl +2P) + Pl ,—n—A4
k=1 m=1

U

There is a connection between Pell-Padovan -Like sequence and the Fibonacci

sequence given in the following lemmas.

Lemma 1.4. [1] For everyn > 0, we have Q,, = F,+(—1)" where F,, is the sequence
defined in (1.1).

Lemma 1.5. For every n > 0 the following identity is holds:

n—1
50— (FuaF+ 21 Fra ).

=0

Lemma 1.6. [1] The Sum of first n terms of Pell-Padovan-Like numbers is given by:
n 1 .
ZQZ‘ =3 [Fat2 + Fopr + B+ (=1)" = 1].
i=0

Lemma 1.7. The sum of square of first n terms of Pell-Padovan-like numbers is.

k=1 =1

Proof. Using lemma (1.4)
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n k n k
S =33 (Fe1+2-1)'F)
k=1 i=1 kooi=1
n k n n n
Q= <ZFE+k+22<—1)ZE>
k=1 i=1 k=1 =1 =1
we know that
(1.8) S (-1)TE = ()" Fo 41

so we have
n

n k
Z Z Qi = Z <Fka+1 +2(=1) Fyoy + k- 2)

k=1 i=1 k=1
again using the results we have

z”: z’“: o (Fgﬂ 4 FyFpia+n(n+1)—4n+4(=1)""(F,y — F,) + 3)

i
k=1 i=1

Lemma 1.8. For any n > 0 the following identity is hold

iiQQ - Fsﬂ + Foo(F,—4) —2F, 1 +4n+4n(n+1)+5
k= .

2
k=1 i=1

Proof. From lemma (1.4) we have
Q= ()" F + (-1

implies that
Q> = (F}—2F,+1)

Taking Double sum on both sides
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ZZQ ZFka+1—2(Fk+2—1)+k)

=1 =1 =1

F?2  +F,F -1
ZQ%k: (( ntl 2 )—2(2Fn+2+Fn+1—3)—|—2n+n(n+1))

i 2 = F2 o 4 Fopo(Fy—4) = 2F, 1 +4n+4n(n+ 1) +5
o . .

2. PADOVAN SEQUENCE

In this section we will obtain the norms of r—circulant, circulant, semi-circulant

and Hankel matrices associated with the Padovan sequence (1.3).

Theorem 2.1. Let A= A, (P, Py....P,_1) be r-circulant matriz.
Iflr]| > 1, then /Pl — Py — Pr_y < ||All, < |r| (P2, — P}y — P2_y)
Il <1, then |r| /Pl = Pl — Py < |[All, < \/n (P2, — P2y — PLy).

n+1

Proof. The r—circulant matrix A is given as:

(R P P o P

0 Py P Py

A= \rP,y rPy,oy Py -+ Pu_s

L Tfﬂ TFB T}% cee f% |
and from the definition of Euclidean norm, we have
n—1 n—1

(2.1) AR =D (n—k) B2+ klr[’P;
k=0 k=1

Here we have two ceases depending on r. Case 1. when |r| > 1

n—

1
JAIZ > (n—k)P? +kak —nZPk
0

k=
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Using lemma (1.5), we obtain

n—1
HAH; > ”Zpkz = n( P3+1 Py, —P}y)
k=1
by inequality (1.7)
(2.2) |All, > /P2, - P2, - P2,

On the other hand, let us define two new matrices C and D

rP 1 1 - 1 Ph PP - Py
TPn—l T’P() 1 1 1 P() P1 Pn_g
C = TPn_Q TPn—l TPQ 1 D = 1 1 P() Pn_g
_T’Pl T’PQ TPg TPQ_ _1 1 1 P()_

Such that A= C o D | then by definition (1.2)

nlC) = ma Z el = | 2 lewl” = nem b
j=1
n n—1
(D) = max Z gl = |3 lewl? = || Do P2 = /P2 — P2, - P2,
i=1 k=0
Now using theorem (1.3), we get
(2.3) 1Ally < m1(C)er(D) = |r[ (Pfy = Py = Pry)

combine equations (2.2) and (2.3), we have

VP2 — Py — P2y <Al < Jr| (P, — P2y — P2)

Case 2. When |r| < 1, Then we have

:
,ﬁ

[EV= ( k) |r[* P +Zk|7“| Pk—nZITI P

B
Il
o
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n|7"| ZPQ ”‘7"| n+1 P372_P374)

1
Al > Irl PR~ P - PR

Then, by inequality (1.7)

(2.4) |All2 > rl /B2 — B2y — P2y,

Let us define two new matrices ¢’ and D' as )
R 1 1 --- 1 By P B --- P,
T PQ 1 1 Pn—l PQ P1 Pn_g

¢C'=\lr r P - 1|,D=|Py Py P P,_3
T T T P() P1 P2 P3 PQ ]

1Al < (¢

Tl

(2.5) Al < \/n (P2, — P2y~ P2)

using equations (2.4) and (2.5), we have

PPy = P2y = P2y < I|All, < /0 (P2 — P2y — PLY).
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Theorem 2.2. Let A be a circulant matriz and || Al , = \/n (P2,,— P>,—P2,).
Then

VB, — PR, — P2 <A, < (P2, — P2, — P2,

Proof. Since circulant matrix on Padovan sequence is defined by

Py P P - Py
P,y P P - P,
A=|P,_y P,y By --- P,
| P P P R
Let matrices B and C be defined as
B bij = Pl mod (j—im) 1<) and, 0= ) G Plmod (j—im)) 1<
bij =1 1< cij =1 1>

It is easy to see that A = B o C, then by definition (1.2)

by theorem (1.3),we get
(2.6) 1All, < Pl — Pioy = Pry

For the Euclidean norm of the matrix A, we have

JAllp = \/n (P2, — P2, — P2)

by inequality (1.9)

(2.7) VP2 — Pl — P2y < Al
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so by equations (2.6) and (2.7), we obtain

\/P73+1_P73—2 < ||A||2 <P3+1 PS—Q_P3—4-
U

Theorem 2.3. The Euclidean norm of n x n semi-circulant matric A = (a;;) with

the Padovan numbers is given as
|A||} = P2 +2P+ P2, +2P2  + P’ ,—n—4

Proof. For the semicirculant matrix A = (a;;) with the Padovan numbers we have

P 1<
aij =
0 otherwise.

From the definition of Euclidean norm, we have

A =3 S (P =SS

7j=1 =1 7j=1 k=

J

Using lemma (1.6) , we have

HAHE_ R 2P+ Pl 2P+ P, —n—4

Theorem 2.4. Let A = (a;;) be n x n Hankel matriz with a;; = Pi4;_1.

Then ||All; = | All o = Panta — Posa.
Proof. From the definition of the matrix A |, we can write

140 = s 3 | = o |+ Jon] 4 fay 4+ o}

|All; = Py + Poy1r + Poga + -+ Popy
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2n—1 n—1
1Al = ZP > P
i=1

by lemma (1.4), we have
”AHl = P2n+4 - Pn+4

similarly the row norm of the matrix A can be computed as

Al = max Z|aw| |Ally = Papa — Prya.

1<i<n

Theorem 2.5. If A = (a;;) is n x n Hankel matriz with a;; = Py;_1, then

||A||F:\/P22n+l_P22nf2_P2n 4 —2P2 +2P2 ,+2P2  +1.

Proof. Since

P1 PQ P3 Pn—l Pn
P2 P3 P4 Pn Pn+1
P Py B - Py Pupo
A=
Pn—l Pn Pn+1 T PZn—3 P2n—2
| Pn Pn+1 Pn+2 T P2n—2 P2n—1_
1
n n n+1 2n—1 2
= (3 |aij|2) (oS Xn)
i=1 j=1 k=2

n n+1 2n—1 n—1 k %
bty = (e 3o+ 302 - ( > )

n n+1 2n—1 n—1 k %
i = ((Sore Soree s Snz) - (302

|Allp = | (My + M1 + Myyo+ - Moyy) — M,
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where My, is defined in lemma (1.6)

2n—1 n—1
1A = | D My —2) M,
k=1 k=1

|Allp = \/Pauss = Phua — Baaos — 2P20 + 2P0, + 2P0, +1

Theorem 2.6. If A =(a;;) is n x n Hankel matriz with a;; = P,;_1 then,

[Allp < 1Al < Plis — Py — By — 1.

oy
NG n

Proof. From theorem (2.5),and inequality (1.7)

1
(2.8) %HAHF < [l All,.
Let us define two new matrices
P 1< Py 1 1>
U, = +j—1 J and V, — +j—1 J
1 i> ] 1 1< 7.

29

It is easy to see that A = U, o V,,. Thus we obtain the result from definition (1.2)

and

Using the theorem (1.3)

(2.9) 1All, < Py = Proy = Pry— 1.

n

By combine (2.8) and (2.9), we have get the required result.
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Example 2.1. Now, we validate our results for particular values of n, see table below

Matrices n=>5 n==6 n=9
r— circulant [r] > 1, V11 < ||A]|2 < 11|r| [r| > 1, v20 < ||A]|2 < 20|r| [r| > 1, v110 < ||A||2 < 110|r|

Il <1, [rVIT < [JAlls < VB35 Jr| < 1, [r[v20 < [|All2 < V120 |r| < 1, [r|V/IT0 < [|Al2 < v/090

circulant VII < ||A]]2 <11 V20 < |]A]|2 < 20 V110 < ||Al|]2 < 110
semi-circulant HAHF:\/% HAHF:\/ﬁ HAHF:\/@

Hankel [[AllL = [[Allo = 28 Al = || Allec = 53 [[All1 = [|Alloo = 323
1AllF = V170 ||AllF = v/552 [|AllF = V16988

VB3I < [|All2 < 19 V02 < [|All2 < 35 V55 <[ A]J2 < 190

3. PELL -PADOVAN -LIKE SEQUENCE

In this section we will obtain norms of r—circulant, circulant, semi-circulant, Han-

kel and Toeplitz matrices with Pell-Padovan- like sequence (1.5).

Theorem 3.1. Let B = B, (Qo, Q1,...Qn—1) be r—circulant matriz.

Iflr] > 1, then \/(Fn,an F2A=1)" F, gyt — 2) <|IBll, < Ir| (Fn,an +2=1)"" Fy gt — 2)

If Ir| < 1, then |r| \/(Fn_an +2(-1)" ' F_o - 2) <||Bl, < \/n (Fn_an +2(-1)"" ' F_a+n— 2)

Proof. The r—circulant matrix B is of the form

Qo @ Q2 - Qe
TQn—l QO Ql e Qn—Q
B = TQn—2 TQn—l QO U Qn—3

Q1 rQ2 Qs - Qo |

Then by definition of Euclidean norm

n—1

n—1
(3.1) IBI: =" (n—k) Q2+ kr’Q.
k=1

k=0
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Here we have two ceases depending on r.

Case 1. when |r| > 1

[y

n—1 n—1
IBI[F > (n—k)QF+ ) _kQi =n)d_ QF
k=1 k=0

0

3

B
Il

Using he lemma (1.8), we get

[y

IBI7>n> QF =n(Fu1Fu+2(-1)""'F s+ n—2)
0

3

i

1 _
=Bl > V (Fur By 4 2(-1)"""Fy 1 2)

by inequality (1.7), we have

(3.2) 1Blly =/ (Fucr B 4+ 2(=1)" " Foy 41— 2).

On the other hand, let the matrices C and D be defined as

Q1 1 e 1] Q0 Q1 Q2 -+ Quo
TQn—l TQO 1 1 1 QO Ql Qn—Q
C=1rQus rQuy Qo - 1 [.D=[1 1 Q - Qus
Q1 rQs 1Qs -+ TQq 111 Q|

Such that B = Co D , then by definition (1.2) we have

n

2 2

7’1(0)22%52 E |cij|” = E 1|an|
j=

n n n—1

(D) = max | > |di* = | Y lews* = Q2 = \/(Fn,an +2(=1)" " Fy 0 —2)

1<j<n
i=1 =1 k=0
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using theorem (1.3), we have

I1Bll, < r1(C)er(D) = [r| (Fa-aFu +2(=1)"""Frg +n = 2)

(3.3) IBlly < |r| (Fue1F +2(=1)""Fop +n—2)

Now using the equations (3.2) and (3.3), we get the required result

V(BB + 21" Fug +1—2) < [Blly < |rl (BB 4+ 2(-1)" " F 41— 2)

Case 2.When |r| <1, Then we have

—_

n— n—1 n—1
IBI[F > (n—=k) [rfQ2 + > klrfQi =n > _|r[*Q7
k=0 k=0

0

b
Il

by using the lemma (1.8), we have
nlrl” Y QF = nfr[* (Fact By +2(=1)" " Fyy + 10— 2) |
0

3
—

i

Thus

1 -
S lBlp > Py (Faci B+ 2(-1)" " Fog 10— 2)

by inequality (1.7)

(3.4) 1Blly = e/ (Fus B+ 2(-1)" " g 10— 2)

Let us define two new matrices C’ and D’ be as )
Qp 1 1 - 1 Qo Q1 Q2 -+ Qna
r Qo 1 - 1 Q-1 Qo P Qne

' = r r QO te 1 and? D' = Qn72 anl QO o Qn*3
r..r.ro-- Qo_ L @1 R @ -+ Qo ]

It is clear that B = C" o D’ then we obtain by definition (1.2)

n(C') = max
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n—1
er(D') = max Z | = > Q2 =\ (FarFu 4 2(~1)" " Fy + 11— 2),
So by theorem (1.3) we obtain
1Bll, < ri(C)er(D) = V) (Fuor o+ 2(-1)"" Fyg +n — 2)
(3.5) | B, < \/ Foi By +2(=1)"""Fyy + 1 —2)

So we have the result by using the equations (3.4) and (3.5)

P/ (Fas B+ 2(-1)" " F b = 2) < |Blly < \/n (Fus B+ 2(-1)" " Fg 4+ — 2)

Theorem 3.2. Let B be a circulant matriz such that

1Bl = \/n (Fuct P+ 2(=1)" " Fo g +1— 2))

then

V(BB +2(-1"" Fys 40— 2) < 1B,

and

1Bll, < A/ (Fact B+ 2(-1)"" Fus 1 = 2)/ 1+ (Fuca Fo - 2(=1)" " Fua 40— 2).

Proof. Since circulant matrix for Pell-Padovan-Like sequence is defined by

Q @ Q2 - CQno
Qn—l QO Ql e Qn—2
B = Qn—Z Qn—l QO U Qn—B

Q1 Q2 @ - Qo
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Let matrices B” and C” be defined as

B — bij = Q(j—imod n) 1< o = Cij = Q(j—i,mod n) 1<

such that B = B” o C" then by definition (1.2), we have

. _\/(Fn_an +2(=1)" ' Fy_y +n — 2)

+ (ot By +2(-1)" ' Fyg + 1 — 2)

by theorem (1.3), we get

(3.6)
IB]|, < \/(Fn_an +2(-1)""'F,y +n—2) \/1 + (Bt By +2(=1)""'Fypy + 1 — 2).

For the Euclidean norm of the matrix B, we have

1Bl = /0 (FasFu+2(=1)" " Fo g+ 11— 2))

by inequality (1.7)

(3.7 VEF A2 Fuy 0 —2) < Bl

which complete the proof. 0

Theorem 3.3. The Euclidean norm of n x n semi-circulant matriz B = (b;;) with

the Pell- Padovan- like numbers numbers is given as

1B = F2 4+ FFyy+n(n—3)+3—4(-1)""F,
F — .
2

Proof. For the semi-circulant matrix B = (b;;) with the Pell- Padovan- like numbers

we have

Qj-iv1 1<

0 otherwise.

bz’j —
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From the deﬁmtlon of Euclidean norm, we have

IBIE = £ (@ = 3 (2 @k)
j=15=1 Jj=1 \k=1
Using lemma (1.7), we have

2
1Bl =

(Fnﬂ + FyFpis+n(n+1) —dn + 4(=1)" N (F,_, — F,) + 3)
: .

U

Theorem 3.4. Let B = (b;;) be n x n Hankel matriz with b;; = Q;+;j—1. Then we

have

Fony1+ Fop + Foppoy — 1 —2F, 1 + (-1)"

1Bl = .

Proof. From the definition of the matrix B , we can write

181, = max ZI%\ = max {lay| + ag;] + |as;| .. [ans |}

1<5<n

|1Bll; = Qn + Qns1 + Qnya + -+ + Qa1

by lemma (1.9), we have
2n—1

1Bl = Z Qi — ZQZ

Foptq + Fyy, + F2n 1— 1 —2F, 1+ (—1)"
2

similarly the row norm of the matrix B can be computed as

1Bl =

i |a--| B oy +Fop+ Fopy —1—2F, 11 + (_1)n
1] - ]

1Bl = max
2

1<i<n

0

Theorem 3.5. If B = (b;;) is n x n Hankel matriz with b;; = Qi4j—1, then we have
”BHF = VU1 —Upn

n k
where U, = > > Q% is given in lemma 1.7.
k=1i=1
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Proof. The Hankel matrix B on Pell-Padovan-like sequence is given by

Q Q@ Qs o Qua Q|
Q2 Q3 Qi - Qn Qnu

Qs Qi Qs - Cnpr Qnpo

Qn—l Qn Qn—l—l Q2n—3 QZn—2
_Qn Qn—l—l Qn+2 Q2n—2 QQn—l_

n n n+1 2n—1 3
Al = ( \a@-m) (z CED TS @k)
i=1 j=1

(oo o) (E50)
Al = ((ZZQ) . (ZZ@)>

[Allz = VUan-1 — Un-1.

g

Theorem 3.6. If B = b;; is n x n Hankel matriz with b;; = Q;4;-1 then, we have

1 n n
=Bl < 1Bl < VEFus + 21" Fuoy 41— 2y (FaFuy +2(-1)"Fyoy 40— 1)
where ||B||r is defined in theorem (3.5).

Proof. From Theorem (1.3), and equation inequality (1.7)

(3.8) < || All,

1
—||A
N4l
Let us define two new matrices

itji-1 1< -1 1>
U, — Q+j 1 J and V, — Q—f—] 1 J

1 i> 7 1 1< 7.
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It can easily seen that B = U,, o V,,. Thus we obtain the result from definition (1.2)

r (Uy,) = max Z | =
J
and
a (V) = max /Z |vi;|> =

Using the inequality(1.7)

> Q= \/FuFups + 2=1)"Fyoy 10— 2
=1

1+ Z Qi = \/FnFn+1 +2(-1)"F,_1+n—1.
=2

1Blly </ (FaFugs +2(-1)" Fuoy 41— 203/ (FuFuia + 2(=1)"Fuoy +0 = 1),

g

Theorem 3.7. The bounds of spectral norms of Toeplitz matriz B for Pell-Padovan-
like sequence are given as

1B, > \/2n +2F2 + Foo1Fng1 +4(=1)"(Fa—2 — Fn—1) + Fnp1(Frn—1 —4) = 2Fn + 5n(n — 1) + 8
2 =
2n

and

IBla </ (Fo a2 (o 1) <) (FosFa 2 2 Fra v 4
where ||.||, is the spectral norm and @, is the Pell-Padovan-like sequence.

Proof. The matrix B is of the form

Qo Q1 Q2 - Qo Qo
Q1 Qo Q-1 - Q3_p Qo
Q2 1 Qo - Uip Q3

Qn—Z Qn—3 Qn—4 QO Q—l
Qn—l Qn—Z Qn—B Ql QO |
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By using the equations (1.10) and (1.11)

7 n—1 1

n—1
IBII} =n@ + > > Qr + Q%

i=1 k=1 =1 k=1

(F,%+Fn71Fn+1+n<n—1)—4(n—1>+4<—1>”(anz—FnﬂHs)+(F3+Fn+1(an1—4)—2Fn+4(n—1>+4n<n—1>+s)
2

IBl% = n+ 3

1Bl = 20t 2F2 4 Fpy 1Fni1 +4(=1)"(Frnoa — Fp_1) + Fuy1(Fno1 —4) — 2Fy + 5n(n — 1) + 8
2 =
2

1B, > \/2n +2F2 4+ Fp1Fnt1 +4(—1)"(Fn—2 — Fn—1) + Fnt1(Fn—1 —4) — 2F, + 5n(n — 1) + 8
2 = .
2n

Consider the matrices

cij =1 =1 dij =1 71
C= ’ / and D = ! 7

Cij = Qi—j J#1 dij = Qi-j J=1
such that B = C o D, Then using definition 1.1 and theorem 1.1

n—1

14+Y Q= VE B = 2(Fi — ) +n
k=1

and

1Bllo < \/(Fact o = 2 (Fra = 1) + 1) (Bt B4+ 2(=1)"" Fyy 41— 4).

n

Example 3.1. Some special values of n will be taken to give the results about the

aforementioned matrices with integers sequences entries.
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Matrices n=>5 n =28 n =10
r— circulant |r| > 1, v22 < ||Bl|2 < 22]|r| |r| > 1, /263 < ||Bl|2 < 263|r| |r] > 1, /1836 < ||Bl|2 < 1836]r|

rl <1, [rlV22 < [[Bll2 < VIT0 |r| <1, |r[V263 < [[Bl2 < V2104 |r| < 1, |r[/1936 < || B]|2 < V18360

circulant V22 < ||B||2 < V506 V263 < ||B||2 < V69432 V1936 < ||B||2 < /3372732
semi-circulant ||B||r = V67 [|BllFr = V1193 [|BllF = V7999
Hankel IBll1 = [|B|oc = 80 [|Bll1 = ||Blloc = 1563 [I1Bl[1 = [|B|oc = 10857
IB||F = V1514 ||Bl|r = +/3338484 ||B||r = V22881403
& < 1Bll2 < V506 2 < ||BlJ2 < V60432 VT2 < 11BIl2 < V3372732
Toeplitz %SHBHQSM V117 < ||B||2 < V56115 \/@SHBHQSW
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