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SOME NEW RESULTS ON CONTROLLABILITY AND

OBSERVABILITY FOR IMPULSIVE DYNAMIC SYSTEMS

SAFIA MIRZA (1), AWAIS YOUNUS (2) AND ASIF MANSOOR (3)

Abstract. This paper introduces a new transition matrix for impulsive dynamic

systems on time scales and establishes some properties of them for the study of the

controllability and observability of such systems.

1. Introduction

Many interesting natural phenomenons are represented by smooth differential equa-

tions. But the situation becomes quite different when a physical phenomenon has

sudden changes in its state as mechanical systems with impact, biological systems

like heartbeats, blood flows, population dynamics [2, 29], chemistry, engineering and

control theory [3, 11]. Mathematical models of such processes are systems of differ-

ential equations that undergo instantaneous changes in the state are called impulsive

systems.

We describe an impulsive differential equation by three components: a continuous-

time differential equation, which governs the state of the system between impulsive;

an impulse equation, which models an impulsive jump defined by a jump function at

the instant an impulse occurs; and a jump criterion, which defines a set of jump events

in which the impulsive equation is active. Impulsive differential equations involving

impulse effect appear as a natural description of observed evolution phenomena of
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several real-world problems. The theory of impulsive systems has been given extensive

attention [17, 23, 32].

In recent years, some research dealing with the study of controllability and observ-

ability for impulsive systems [24, 27, 33, 34]. Interest in impulsive control systems has

grown in recent years due to its theoretical and practical significanc [3, 8, 15, 25, 34].

Some authors studied the stability, controllability, and observability for dynamical

systems on time scales [4, 5, 9, 10, 13, 17, 30, 31], but the few authors have stud-

ied the controllability and observability of impulsive dynamic systems on time scales

[12, 24, 27, 28]. Some authors studied and established new results on controllability

for Volterra integro-dynamic systems [22, 35].

Nevertheless, the necessary and sufficient conditions on controllability and observ-

ability were not addressed for the impulsive adjoint dynamic system. Moreover,

the Gramian matrices for controllability and observability are independent impulsive

conditions.

We should note that research in this paper is strongly motivated by the work of

Lupulescu [28], and [26]. In [28], the authors examine the following dynamic system



















x∆ = Ak (t)x+Bk (t) u, t ∈ [tk−1, tk)T0
,

x
(

t+k
)

= (I + ck) x (tk) , t = tk, k = 1, 2, · · · ,

x (t0) = x0,

with scalars impulse ck.

In this paper, we give some results of controllability and observability for an im-

pulsive dynamic system of the form

(1.1)































x∆ = Ak (t) x+Bk (t) u (t) , t ∈ [tk−1, tk)T0
,

x
(

t+k
)

= (I + Ck)x (tk) , t = tk, k = 1, 2, · · · ,

y (t) = Dk (t) x+ Ek (t)u (t) ,

x (t0) = x0,
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and its adjoint dynamic system

(1.2)































x (t)∆ = −AT
k (t) xσ (t) +Bk (t) u (t) , t ∈ [tk−1, tk)T0

,

x
(

t+k
)

= (I + Ck)x (tk) , t = tk, k = 1, 2, · · · ,

y (t) = Dk (t) x+ Ek (t)u (t) ,

x (t0) = x0,

with the following conditions:

(i) Time scale T is unbounded above with bounded graininess (i.e. supT = ∞ and

µ(t) < ∞), [tk−1, tk)T0
⊂ T0 := [t0,∞) ∩ T.

(ii) t0 < t1 < t2 < · · · tk < · · · , with limk→∞ tk = ∞, where , tk ∈ T0 are right-

dense.

(iii) x(t+k ) := limh→0+ x(tk + h), x(t−k ) := limh→0+ x(tk − h)

(iv) Ak (·) ∈ CrdR(T0,Mn(R)), Bk (·) ∈ CrdR(T0,Mn×m(R)), Ck (·) ∈ Mn(R),

Dk (·) ∈ CrdR(T0,Mp×n(R)), Ek (·) ∈ CrdR(T0,Mp×m(R)), x (·) ∈ Rn is the state

variable, and u (·) ∈ Rm is the control input and y (·) ∈ Rp is the output.

The primary purpose of this paper is to derive Gramian matrices with relates

impulsive conditions. The fundamental difficulty is to drive conditions for impulsive

systems in time-varying coefficient matrices.

We organize the rest of this paper: Section 2 presents the preliminary results.

Section 3 and Section 4 investigate the controllability and observability of linear

impulsive dynamic systems and its adjoint systems, respectively. We present some

numerical examples to show the effectiveness of the proposed methods. We present

the conclusion in the last section.

2. Preliminaries:

In what follows, we recall some notions about time scale analysis. We can find an

extensive study of the analysis on time scales in [1, 6, 7].
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A time scale, denoted by T, is an arbitrary, non-empty closed subset of real

numbers. The operator σ : T → T called the forward jump operator is defined

by σ(t) := inf{s ∈ T, s > t}. The step size function µ : T → R+ is given by

µ(t) := σ(t) − t. We say a point t ∈ T is right dense if σ(t) = t i.e. (µ(t) = 0),

and right scattered if µ(t) > t i.e. (µ(t) > 0). The operator ρ : T → T called the

backward jump operator is defined by ρ(t) := sup{s ∈ T, s < t}. A point t ∈ T

is said to be left dense if ρ(t) = t and left scattered if ρ(t) < t. A point t ∈ T is

called dense if it is left and right dense at the same time. That is ρ(t) = t = σ (t) . A

point t ∈ T is called isolated if ρ (t) < t < σ (t) . If T has a left-scattered maximum

M , then Tk = T −{M} ; otherwise set Tk = T.

Example 2.1. Let T = R, then for any t ∈ T

σ (t) = inf {s ∈ T : s > t} = inf (t,∞) = t

and

ρ (t) = sup {s ∈ T : s < t} = sup (−∞, t) = t.

So every point of T is dense. Also µ (t) = 0 for every t ∈ T.

Let T = Z then for any point t ∈ T

σ (t) = inf {s ∈ T : s > t} = inf {t + 1, t+ 2, t+ 3, ...} = t + 1 > t

and

ρ (t) = sup {s ∈ T : s < t} = sup {..., t− 3, t− 2, t− 1} = t− 1 < t.

So every point t ∈ T is an isolated point. Also in that case µ (t) = 1.

If T = {2n : n ∈ Z} ∪ {0} then for any t = 2n 6= 0 ∈ T

σ (t) = inf {s ∈ T : s > t} = inf
{

2n+1, 2n+2, 2n+3, ...
}

= 2n+1 > t

and

ρ (t) = sup {s ∈ T : s < t} = sup
{

..., 2n−3, 2n−2, 2n−1
}

= 2n−1 < t.
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So every t 6= 0 ∈ T is an isolated point of T. But for t = 0 ∈ T we have

σ (t) = inf {s ∈ T : s > 0} = inf {2n : n ∈ T} = 0

hence 0 ∈ T is right dense point.

The delta derivative of a function f : T → R at a point t ∈ Tk is defined by

f∆(t) = lim
s→t

s 6=σ(t)

f(σ(t))− f(s)

σ(t)− s
.

A function f is called rd-continuous provided that it is continuous at right dense

points in T, and has a finite limit at left-dense points, and the set of rd-continuous

functions are denoted by Crd(T,R). The set of functions C1
rd(T,R) includes the

functions f whose derivative is in Crd(T,R) too.

For s, t ∈ T and a function f ∈ Crd(T,R), the ∆-integral is defined to be

∫ t

s

f(τ)∆τ = F (t)− F (s),

where F ∈ C1
rd(T,R) is an anti-derivative of f , i.e., F∆ = f on Tk.

A function f ∈ Crd(T,R) is called regressive if 1 + µ(t)f(t) 6= 0 for all t ∈ Tk,

and f ∈ Crd(T,R) is called positively regressive if 1 + µ(t)f(t) > 0 on Tk. The set

of regressive functions and the set of positively regressive functions are denoted by

CrdR(T,R) and CrdR
+(T,R), respectively.

Let f ∈ CrdR(T,R) and s ∈ T, then the generalized exponential function

ef(·, s) on a time scale T is defined to be the unique solution of the following initial

value problem






x∆(t) = f(t)x(t)

x(s) = 1.

For h ∈ R+, set Ch := {z ∈ C : z 6= −1/h}, Zh := {z ∈ C : −π/h < Im(z) ≤ π/h},

and C0 := Z0 := C. For h ∈ R
+
0 and z ∈ Ch, the cylinder transformation ξh : Ch → Zh
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is defined by

ξh(z) : =







z, h = 0

1
h
Log(1 + zh), h > 0,

and we can also write the exponential function in the form

ef(t, s) : = exp

{
∫ t

s

ξµ(τ)(f(τ))∆τ

}

for s, t ∈ T.

A function f : T → Rn is piecewise rd-continuous (we write f ∈ Cprd(T,R
n)) if it is

regulated and if it is rd-continuous at all, except possibly at finitely many, right-dense

points t ∈ T.

We denote by C1
rd(T,R

n) the set of all functions f : T → Rn that are differentiable

on T and its delta-derivative f∆ ∈ Crd(T,R
n). The set of rd-continuous (respectively

rd-continuous and regressive) matrix-valued functions A : T →Mn(R) is denoted by

Crd(T,Mn(R)) (respectively by CrdR(T,Mn(R))). We recall that a matrix-valued

function A is said to be regressive if I + µ(t)A(t) is invertible for all t ∈ Tk, where I

is the n× n identity matrix.

In order to define the solution of

(2.1)



















x∆ = Ak (t) x, t ∈ [tk−1, tk)T0
,

x
(

t+k
)

= (I + Ck)x (tk) , t = tk, k = 1, 2, · · · ,

x (t0) = x0,

we introduce the following spaces

Ω :=







x : T0 → Rn; x ∈ C
(

(tk, tk+1)T0
,Rn

)

, k = 0, 1, · · · , x
(

t+k
)

and x
(

t−k
)

exist with x
(

t−k
)

= x (tk) , k = 0, 1, · · · ,







and

Ω(1) :=
{

x ∈ Ω : x ∈ C1
(

(tk, tk+1)T0
,Rn

)

, k = 0, 1, · · ·
}

,
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where C
(

(tk, tk+1)T0
,Rn

)

is the set of all continuous functions on (tk, tk+1)T0
and

C1 ((tk, tk+1) ,R
n) is the set of all continuously differentiable functions on (tk, tk+1)T0

, k =

0, 1, · · · .

A function x ∈ Ω(1) is said to be a solution of (2.1), if it satisfies x∆ (t) = Ak (t) x (t),

everywhere on Tτ\
{

τ, tk(τ), tk(τ)+1, · · ·
}

and for each j = k (τ) , k (τ) + 1, · · · satisfies

the impulsive conditions x
(

t+j
)

= (I + Cj) x (tj) and the initial condition x (τ) = x0,

where k (τ) := min {k = 1, 2, · · · : τ < tk} .

Consider the following system on time scales:

(2.2) x∆ = A (t) x (t) ,

where A (·) ∈ CrdR (T,Mn (R)) . This is a homogenous linear dynamic system on

time scales. Now we present some auxiliary propositions to prove our major results.

Proposition 2.1. [6] If A (·) ∈ CrdR (T,Mn (R)) and h ∈ Crd (T,R
n), then for each

(τ, η) ∈ T× Rn the initial value problem

x∆ = A (t) x+ h (t) , x (τ) = η,

has a unique solution given by

x (t) = ΦA (t, τ) η +

t
∫

τ

ΦA (t, σ (s)) h (s)∆s, t ≥ τ,

where ΦA (t, τ) is the transition matrix at initial time τ ∈ T.

Along with (2.2), consider its adjoint equation

(2.3) y∆ = −AT (t) yσ.

If A (·) ∈ CrdR(T+,Mn(R)) and h ∈ Crd(T+,R
n), then the initial value problem y∆ =

−A(t)yσ, y(τ) = η, has a unique solution y : T0 → Rn is given by y(t) = Φ⊖AT (t, τ)η,

t ≥ τ.
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Proposition 2.2. [6] If A ∈ CrdR(T+,Mn(R)), and h ∈ Crd(T0,R
n), then for each

(τ, η) ∈ T0 × Rn the initial value problem

y∆ = −AT (t)yσ + h(t), y(τ) = η,

has a unique solution y : T0 → Rn, is given by

y(t) = Φ⊖AT (t, τ)η +
∫ t

τ
Φ⊖AT (t, s)h (s)∆s, t ∈ T0.

If A ∈ Mn(R) is a constant matrix, then we use the notation eA(t, τ) instead of

ΦA(t, τ).

Proposition 2.3. [6] For the system (2.2) with A ∈ Mn(R) constant matrix, there

are scalar functions γ0(t, τ), · · · , γn−1(t, τ) ∈ C∞
rd(T0,R) such that the unique solution

has representations

eA(t, τ) =
n−1
∑

j=0

γj(t, τ) (A)
j .

Let us define a matrix SAk
(t, τ) , t ∈ [tk−1, tk)T0

associated with {Ck, tk}
∞
k=1 ,given

by:

(2.4) SAk
(t, τ) :=































































ΦAk
(t, τ) , if tk−1 < τ < t < tk.

ΦAk

(

t, t+k
)

(I + Ck−1)ΦAk−1
(tk, τ) ,

if tk−1 ≤ τ < tk < t < tk+1.

ΦAk

(

t, t+k−1

)

[

∏

τ<tj≤t

(I + Cj) ΦAk−1

(

tj , t
+
j−1

)

]

× (I + Ci)ΦAi
(ti, τ) ,

if ti−1 ≤ τ < ti < · · · < tk < t < tk+1,

where ΦAk
(t, τ) , 0 ≤ τ ≤ t, is the transition matrix of system (2.2) at initial time

τ ∈ T0.
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If Ak (·) = Ak and Bk (·) = Bk are constants matrices, then we use the notation

S̃Ak
(t, τ) instead of SAk

(t, τ) and written as:

(2.5) S̃Ak
(t, τ) :=































































eAk
(t, τ) , if tk−1 < t < τ ≤ tk.

eAk

(

t, t+k
)

(I + Ck−1) eAk−1
(tk, τ) ,

if tk−1 ≤ τ < tk < t < tk+1.

eAk

(

t, t+k−1

)

[

∏

τ<tj≤t

(I + Cj) eAk−1

(

tj , t
+
j−1

)

]

× (I + Ci) eAi
(ti, τ) ,

if ti−1 ≤ τ < ti < · · · < tk < t < tk+1

Remark 2.1. If Ak(I + Ck) = (I + Ck)Ak, for all k, then

SAk
(t, τ) (I + Ck) = (I + Ck)SAk

(t, τ) ,

and also

eAk
(t, τ) (I + Ck) = (I + Ck)eAk

(t, τ) .

Remark 2.2. By equations (2.4) and (2.5), for ti−1 ≤ τ < ti < · · · < tk < t < tk+1,

we obtain

(2.6) SAk
(t, τ) = ΦAk

(

t, t+k
)

(I + Ck)SAk
(tk, τ) ,

and

(2.7) S̃Ak
(t, τ) = eAk

(

t, t+k
)

(I + Ck) S̃Ak
(tk, τ) .

Moreover, the following properties hold:

(i) SAk

(

t+k , τ
)

= (I + Ck)SAk
(tk, τ) , tk ≥ τ, k = 1, 2, · · · .

(ii) SAk

(

t, t+k
)

= SAk
(t, tk) (I + Ck)

−1, tk ≤ t, k = 1, 2, · · · .

(iii) SAk

(

t, t+k
)

SAk

(

t+k , τ
)

= SAk
(t, τ) , t0 < τ ≤ tk ≤ t, k = 1, 2, · · · .

By using mathematical induction we have the following results for the solutions of

systems (1.1) and (1.2).
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Theorem 2.1. If Ak (·) ∈ CrdR (T0,Mn (R)). Then for each (t0, x0) ∈ T0 × Rn, the

initial value problem (1.1) has a unique solution given by

(2.8) x (t) =



















SAk
(t, t0) x0 +

k−1
∑

i=1

ti
∫

ti−1

SAk
(t, σ (τ))Bi (τ) u (τ)∆τ

+
t
∫

tk−1

SAk
(t, σ (τ))Bk (τ) u (τ)∆τ.

Remark 2.3. If T = R, Ak (t) = A (t) , and Bk (t) = 0, then we obtain results of

[34].

Theorem 2.2. If Ak (·) ∈ CrdR (T0,Mn (R)), Bk (t) and Ck ∈ Mn×m (R) , x ∈ Rn is

the state variable, and u ∈ Rm is the control input for k = 1, 2, · · · . Then for each

(t0, x0) ∈ T0 × Rn, the initial value problem (1.2) has a unique solution given by

(2.9) x (t) =



















ST
Ak

(t0, t)x0 +
k−1
∑

i=1

ti
∫

ti−1

ST
Ak

(τ, t)Bi (τ) u (τ)∆τ

+
t
∫

tk−1

ST
Ak

(τ, t)Bk (τ) u (τ)∆τ.

3. Controllability

Definition 3.1. The impulsive system (1.1) (or (1.2))is called controllable on [t0, tf ]T0
,

with tf > t0, if given any initial state x0 ∈ Rn, there is a piecewise rd-continuous

input signal u (·) : [t0, tf ]T0
→ Rmsuch that the corresponding solution of (1.1) or

(1.2)satisfies x (tf) = 0.
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Let us define the following Gramian matrices for (1.1), which are adopted from

[10]:

(3.1)

G1 := G1 (t0, tf , tf ) =
tf
∫

t0

SA1
(tf , σ (τ))B1 (τ)B

T
1 (τ)

×ST
A1

(tf , σ (τ))∆τ, tf ∈ [t0, t1]T0
.

For 2 ≤ l ≤ k − 2, and tf ∈ [tl−1, tl)T0

Gl := Gl (tl−1, tf , tf) =
tf
∫

tl−1

SAl
(tf , σ (τ))Bl (τ)B

T
l (τ)ST

Al
(tf , σ (τ))∆τ.

Gk−1 := Gk−1 (tk−2, tf , tf ) =
tf
∫

tk−2

SAk−1
(tf , σ (τ))Bk−1 (τ)

×BT
k−1 (τ)S

T
Ak−1

(tf , σ (τ))∆τ, tf ∈ [tk−2, tk−1)T0
.

Gk := Gk (tk−1, tf , tf) =
tf
∫

tk−1

SAk
(tf , σ (τ))Bk (τ)

×BT
k (τ)ST

Ak
(tf , σ (τ))∆τ, tf ∈ [tk−1, tk)T0

.

Similarly, for the adjoint system (1.2), the Gramian matrices are as follows:

(3.2)

Ḡ1 :=
tf
∫

t0

ST
A1

(τ, tf)B1 (τ)B
T
1 (τ)SA1

(τ, tf)∆τ, t ∈ [t0, t1]T0
.

For 2 ≤ l ≤ k − 2, and tf ∈ [tl−1, tl)T0

Ḡl :=
tf
∫

tl−1

ST
Al
(τ, tf)Bl (τ)B

T
l (τ)SAl

(τ, tf)∆τ.

Ḡk−1 :=
tf
∫

tk−2

ST
Ak−1

(τ, tf)Bk−1 (τ)

×BT
k−1 (τ)SAk−1

(τ, tf )∆τ, tf ∈ [tk−2, tk−1)T0
.

Ḡk :=
tf
∫

tk−1

ST
Ak

(τ, tf )Bk (τ)B
T
k (τ)SAk

(τ, tf)∆τ, tf ∈ [tk−1, tk)T0
.

Theorem 3.1. (I) If for all l ∈ {1, 2, · · · , k} , rank (Gl) = n, then the impulsive

system (1.1) is controllable on ([t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) .

(II) If the impulsive system (1.1) is controllable on [t0, tf ]T (tf ∈ [tk−1, tk)T0
), and

assume that (I + Ci) are invertible for i = 1, 2, ..., k, then rank (G1 · · ·Gk) = n.
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Proof. (I) Let l ∈ {1, 2, 3, · · · , k} be such that rank (Gl) = n, that is G (t0, tl−1, tl) is

invertible. Then for a given x0 ∈ Rn, choose a control function u (t) define as

u (t) :=







































































−BT
1 (τ)ST

A1
(tf , σ (τ))G−1

1 SA1
(tf , t0) x0; k = 1

−SAl
(tf , t0)B

T
l (τ)ST

Al
(tf , σ (τ))G−1

l x0, if t ∈ [tl−1, tl)T0
for 2 ≤ l ≤ k − 2

0, if t ∈ [t0, tf ]T0
\[tl−1, tl)T0

−SAk−1
(tf , t0)B

T
k−1 (τ)S

T
Ak−1

(tf , σ (τ))G−1
k−1x0, if t ∈ [tk−2, tk−1)T0

0, if t ∈ [t0, tf ]T0
\[tk−2, tk−1)T0

−SAk
(tf , t0)B

T
k (τ)ST

Ak
(tf , σ (τ))G−1

k x0, if t ∈ [tk−1, tk)T0

0, if t ∈ [t0, tf ]T0
\[tk−1, tk)T0

.

Subtituting t = tf and input u (t) in the solution of equation (2.8), we obtain

x (tf ) = SA1
(tf , t0)x0 −

tf
∫

t0

SA1
(tf , σ (t))B1 (τ)B

T
1 (τ)ST

A1
(tf , σ (τ))

×G−1
1 SA1

(tf , t0) x0∆τ

= SA1
(tf , t0)x0 −

tf
∫

t0

SA1
(tf , σ (t))B1 (τ)B

T
1 (τ)ST

A1
(tf , σ (τ))∆τ

×G−1
1 SA1

(tf , t0) x0

= SA1
(tf , t0)x0 −G1G

−1
1 SA1

(tf , t0) x0

= 0,

and for t ∈ [tl−1, tl)T0
, 2 ≤ l ≤ k − 2, we obtain

x (tf) = SAl
(tf , t0)x0 −GlG

−1
l SAl

(tf , t0) x0

= 0.

Similarly, for all other cases, we have x (tf) = 0. Thus the system (1.1) is controllable

on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

)
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(II) Suppose that (1.1) is controllable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) . We have to

prove that rank (G0 G1 ... Gk) = n. Suppose the contrary that rank (G0 G1 ... Gk) <

n, then there exist a nonzero xα ∈ Rn such that

xT
αGixα = 0, i = 1, 2, ..., k.

For i = 1, it follows that

tf
∫

t0

xT
αSA1

(tf , σ (τ))B1 (τ)B
T
1 (τ) ST

A1
(tf , σ (τ))xα∆τ = 0.

As the integrand in this expression is the nonnegative rd-continuous function, so we

obtain

∥

∥BT
1 (t)ST

A1
(tf , σ (t))xα

∥

∥

2
= 0,

which follows that

(3.3) xT
αSA1

(tf , σ (t))B1 (t) = 0; t ∈ [t0, t1)T0
.

For 2 ≤ l ≤ k − 2

tf
∫

tl−1

xT
αSAl

(tf , σ (τ))Bl (τ)B
T
l (τ)ST

Al
(tf , σ (τ)) xα∆τ = 0,

it follows that

(3.4) xT
αSAl

(tf , σ (t))Bl (t) = 0; t ∈ [tl−1, tl)T0
.

Next for t ∈ [tk−2, tk−1)T0

(3.5) xT
αSAk−1

(tf , σ (t))Bk−1 (t) = 0,

similarly for t ∈ [tk−1, tk)T0

(3.6) xT
αSAk

(tf , σ (t))Bk (t) = 0.



56 SAFIA MIRZA, AWAIS YOUNUS AND ASIF MANSOOR

Since the impulsive system (1.1) is controllable on [t0, tf ]T0
, so choosing x0 = xα,

there exist a piecewise rd-continuous input u (·) such that

(3.7)

0 = x (tf) = SAk
(tf , t0) xα +

k−1
∑

i=1

ti
∫

ti−1

SAk
(tf , σ (τ))Bi (τ) u (τ)∆τ

+
tf
∫

tk−1

SAk
(tf , σ (τ))Bk (τ) u (τ)∆τ.

Multiply through by SAk
(t0, tf) x

T
α to the equation (3.7), we obtain

xT
αxα = 0,

‖xα‖
2 = 0,

which contradicts that xα 6= 0 and so, we conclude that

rank(G0 G1 · · · Gk) = n.

�

Let us define new matrices:

(3.8) Wi =
[

Bi AiBi · · · An−1
i Bi

]

for i = 1, 2, · · · , k.

Theorem 3.2. If Ak (t) = Ak and Bk (t) = Bk are constants matrices. Then the

impulsive system (1.1) is controllable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) if and only if

(3.9) rank (W1 W2 · · · Wk) = n.

Proof. Suppose that the system (1.1) is controllable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) . If

the rank condition (3.9) does not hold, then there exists nonzero xα ∈ Rn such that

(3.10) xT
αA

j
iBi = 0

for i = 1, 2, · · · , k, j = 0, 1, 2, · · · , n− 1.
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By using (3.1) for constant Ak and Bk and Proposition 2.3, we obtain

xT
αG1 (t0, t1, tf ) =

tf
∫

t0

xT
αeA1

(tf , σ (τ))B1B
T
1 e

T
A1

(tf , σ (τ))∆τ

= 0.

For 2 ≤ l ≤ k − 2

xT
αGl (tl−1, tf , tf) =

tf
∫

tl−1

xT
α S̃Al

(tf , σ (τ))BlB
T
l S̃

T
Al
(tf , σ (τ))∆τ,

by using the Remark 2.1, it follows that

xT
αGl (tl−1, tf , tf) =

tf
∫

tl−1

xT
α (I + Cl) eAl

(

tf , t
+
l

)

S̃Al
(tl, σ (τ))

×BlB
T
l S̃

T
Al
(tf , σ (τ))∆τ.

Again using Remark 2.1 and Proposition 2.3, we have

xT
αGl (tl−1, tf , tf ) =

tf
∫

tl−1

(I + Cl)
n−1
∑

j=0

γij
(

tf , t
+
l

)

xT
α S̃Al

(tl, σ (τ))Aj
lBlB

T
l

×S̃T
Al
(tf , σ (τ))∆τ

= 0.

Similarly,

xT
αGk−1 (tk−2, tf , tf) =

tf
∫

tk−2

xT
α S̃Ak−1

(tf , σ (τ))Bk−1B
T
k−1S̃

T
Ak−1

(tf , σ (τ))∆τ

= 0,
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and

xT
αGk (tk−1, tf , tf) =

tf
∫

tk−1

xT
α S̃Ak

(tf , σ (τ))Bk (τ)B
T
k (τ) S̃T

Ak
(tf , σ (τ))∆τ

= 0.

which is a contraction to (II) [t0, tf ]T0
(tf ∈ (tk−1, tk]T0

) , then it follows from the Thm

3.1 that the Gramian matrices defined above are not invertible. Thus there exists

nonzero xα ∈ Rn such that

0 = xT
αG1 (t0, tf , tf) xα =

tf
∫

t0

xT
α S̃A1

(tf , σ (τ))B1B
T
1 S̃

T
A1

(tf , σ (τ))xα∆τ.

Exactly as in proof of Theorem 3.1, it follows that

(3.11) xT
α S̃A1

(tf , σ (t))B1 = 0, t ∈ [t0, t1]T0
,

for 2 ≤ l ≤ k − 2

(3.12) xT
α S̃Al

(tf , σ (t))Bl = 0, t ∈ [tl−1, tl)T0
.

Similarly,

(3.13) xT
α S̃Ak−1

(tf , σ (t))Bk−1 = 0, t ∈ [tk−2, tk−1)T0

and

(3.14) xT
α S̃Ak

(tf , σ (t))Bk = 0, t ∈ [tk−1, tf )T0
.

By continuity of S̃Ai
(ti, ·) and density of σ

(

[ti−1, ti]T0

)

in the interval [σ (ti−1) , σ (ti))T0
=

[ti−1, ti)T0
for all t ∈ [ti−1, ti)T0

, we obtain

(3.15) xT
α S̃Ai

(ti, τ)Bi = 0 τ ∈ [ti−1, ti)T0
, i = 1, 2, · · · , k − 1.
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Also, by continuity of S̃Ak
(tf , ·) and density of σ

(

[tk−1, tf ]T0

)

in the interval

[σ (tk−1) , σ (tf ))T0
= [tk−1, tf )T0

for all t ∈ [tk−1, tf)T0
, we obtain that

(3.16) xT
α S̃Ak

(tf , t)Bk = 0, t ∈ [tk−1, tf)T0
.

In particular, if we are taking t = ti in (3.15) and t = tf in (3.16), then it follows

that xT
αBi = 0 for i = 1, 2, · · · , k. Since S̃Ai

(ti, ·) is delta differentiable [26], then

subsequent derivatives and density arguments as above gives

(3.17) (−1)j xT
α S̃Ai

(ti, t)A
j
iBi = 0; t ∈ [ti−1, ti)T0

,

for i = 1, 2, · · · , k − 1, and j = 0, 1, 2, · · · , n− 1. Similarly,

(3.18) (−1)j xT
α S̃Ak

(tf , t)A
j
kBk = 0; t ∈ [tk−1, tf)T0

for j = 1, 2, · · · , n− 1. If we take t = ti in (3.17) and t = tf in (3.18), then it follows

that xT
αA

j
iBi = 0 for i = 1, 2, · · · , k, and j = 0, 1, 2, · · · , n− 1. Therefore,

xT
α

[

Bi AiBi · · ·A
n−1
i Bi

]

= 0.

Which implies that the rank condition (3.9) fails, which gives contradiction. So the

impulsive system (1.1) is controllable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) . �

Our next results are for controllability of the adjoint system (1.2) for both time-

variant and time-invariant cases. Proofs are like the proofs of Theorems 3.1 and

3.2.
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Using the following control function u (·)

u (t) :=







































































−BT
1 (t)SA1

(t, tf) Ḡ
−1
1 ST

A1
(t0, tf) x0; k = 1

−BT
l (t)SAl

(t, tf ) Ḡ
−1
l ST

Al
(t0, tf) x0, for 2 ≤ l ≤ k − 2; t ∈ [tl−1, tl]T0

0 if t ∈ [t0, tf ]T0
\[tl−1, tl)T0

−BT
k−1 (t)SAk−1

(t, tf) Ḡ
−1
k−1S

T
Ak−1

(t0, tf) x0 if t ∈ [tk−2, tk−1]T0

0 if t ∈ [t0, tf ]T0
\[tk−2, tk−1)T0

−BT
k (t)SAk

(t, tf ) Ḡ
−1
k ST

Ak
(t0, tf) x0 if t ∈ [tk−1, tk]T0

0 if t ∈ [t0, tf ]T0
\[tk−1, tk)T0

.

Theorem 3.3. (I) If for all l ∈ {1, 2, · · · , k} rank
(

Ḡl

)

= n, then the impulsive

adjoint system (1.2) is controllable on[t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) .

(II) If the impulsive adjoint system (1.2) is controllable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

),

and assume that (I + Ci) are invertible for i = 1, 2, · · · , k, then rank
(

Ḡ1 Ḡ2 · · · Ḡk

)

=

n.

Let us define the following matrices for adjoint dynamic system (1.2)

W̄i :=
[

BT
i BT

i Ai · · · BT
i A

n−1
i

]

for i = 1, 2, · · · , k.

Theorem 3.4. The time invariant impulsive system (1.2) is controllable on [t0, tf ]T0

(tf ∈ [tk−1, tk)T0
) if and only if

(3.19) rank
(

W̄1W̄2 · · · W̄k

)

= n

Example 3.1. Consider the following time-invariant impulsive dynamic system:

(3.20)



















x∆ = Ak (t) x+Bk (t) u, t ∈ [tk−1, tk)T0
,

x
(

t+k
)

= (I + Ck)x (tk) , t = tk, k = 1, 2, 3,

x (0) = x0,
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where

A1 =





2 0

1 3



 , B1 =





3

0



 ,(3.21)

A2 =





1 2

0 3



 , B2 =





0

3



 ,

A3 =





−3 −2

3 4



 , B3 =





0

−2



 .

We have to compute rank[W1 W2 W3], where

W1 = [B1 A1B1] =





3 6

0 3





W2 = [B2 A2B2],=





0 6

3 9





similarly,

W3 =





0 4

−2 −8



 .

By using equation (3.19) we obtain rank[W1 W2 W3] = 2. It follows that the system

(3.20) is controllable.

Example 3.2. Let us consider the following population model with impulse

P∆ (t) = rkP (t) + ckU (t) , t 6= tk

P
(

t+k
)

= (rk+1 − rk)P (tk)

P (0) = P0,

where P (t) is the rate of population growth between two consecutive impulsive points

and U(t) is the control input. Such a model can describe the evaluation of Cicada
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Magicicada Septendecim. Using the Theorem 3.2 it is easy to see that the system is

controllable.

4. Observability:

In this section, we establish the results of observability for the systems (1.1) and

it’s adjoint system (1.2) for both time-variant and time-invariant cases.

Definition 4.1. The impulsive system (1.1) (or system (1.2))is said to be completely

observable on [t0, tf ]T (tf > t0) if any initial state x(t0) = x0, ∈ R
n, is uniquely de-

termined by the corresponding system input u(t) and the system output y(t) for

t ∈ [t0, tf ]T.

Theorem 4.1. For i = 1, 2, · · · , k, the impulsive system (1.1) is observable on

[t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) , if and only if the matrix

M (t0, tf) := M (t0, t0, t1) +

k−1
∑

i=1

M (t0, ti−1, ti) +M (t0, tk−1, tf)

is invertible, where

M (t0, t0, t1) :=

∫ t1

t0

ST
A1

(τ, t0)D
T
1 (τ)D1 (τ)SA1

(τ, t0)∆τ,

M (t0, ti−1, ti) :=

∫ ti

ti−1

ST
Ai

(τ, t0)D
T
i (τ)Di (τ)SAi

(τ, t0)∆τ, i = 2, 3, · · · , k − 1,

and

M (t0, tk−1, tf) =

∫ tf

tk−1

ST
Ak

(τ, t0)D
T
k (τ)Dk (τ)SAk

(τ, t0)∆τ.

Proof. Suppose that M (t0, tf) is invertible. By using equation (2.8) and system (1.1),

we obtain

y (t) = D1 (t)SA1
(t, t0) x0 +D1 (t)

t1
∫

t0

SA1
(t, σ (τ))B1 (τ) u (τ)∆τ +D1 (t)u (t)
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for t ∈ [t0, t1]T0
, and

y (t) = Dl (t)SAl
(t, t0) x0 +Dl (t)

l−1
∑

i=1

ti
∫

ti−1

SAl
(t, σ (τ))Bi (τ) u (τ)∆τ

+Dl (t)
t
∫

tl−1

SAl
(t, σ (τ))Bl (τ) u (τ)∆τ + El (t) u (t)

for t ∈ [tl−1, tl)T0
, l = 2, · · · , k.

From Def 4.1, the observability of system (1.1) is equivalent to the following output

(4.1) y (t) =







D1 (t)SA1
(t, t0)x0 t ∈ [t0, t1]T0

Dl (t)SAl
(t, t0) x0, t ∈ [tl−1, tl)T0

, l = 2, ..., k,

as u (t) = 0.

Now, multiply with ST
Al
(t, t0)D

T
l (t) both sides of above equation and integrate

from t0 to tf , we get

(4.2)

tf
∫

t0

ST
Al
(t, t0)D

T
l (t) y (t)∆τ =

[

∫ t1

t0
ST
A1

(τ, t0)D
T
1 (τ)D1 (τ)SA1

(τ, t0)∆τ

+
k−1
∑

i=2

∫ ti

ti−1
ST
Ai

(τ, t0)D
T
i (τ)Di (τ)SAi

(τ, t0)∆τ

+
∫ tf
tk−1

ST
Ak

(τ, t0)D
T
k (τ)Dk (τ)SAk

(τ, t0)∆τ
]

x0,

which follows

(4.3)

tf
∫

t0

ST
Al
(t, t0)D

T
l (t) y (t)∆τ =

[

M (t0, t0, t1) +
k−1
∑

i=2

M (t0, ti−1, ti) +M (t0, tk−1, tf)

]

x0.

Since the matrix M (t0, tf) is invertible, and it can easily be seen that left side of

equation (4.3) depends on y (t) , t ∈ [t0, tf ]T0
. So from equation(4.3), we deduce

that x (t0) = x0 is uniquely determined by the corresponding system output y (t) for

t ∈ [t0, tf ]T0
.

Conversely, suppose that the matrix M (t0, tf) is not invertible, then there exist a

nonzero xα ∈ R
n, such that

(4.4) xT
αM (t0, tf) xα = 0.
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Since M (t0, t0, t1) ,M (t0, ti−1, ti) , i = 2, ..., k − 1, and M (t0, tk−1, tf) are positive

semidefinite matrices, we have

(4.5)



















xT
αM (t0, t0, t1)xα = 0,

xT
αM (t0, ti−1, ti) xα = 0, i = 2, · · · , k − 1,

xT
αM (t0, tk−1, tf) xα = 0.

Choose x0 = xα, and using the equations (4.1), which follows that

tf
∫

t0

yT (τ) y (τ)∆τ =
t1
∫

t0

xT
αS

T
A1

(τ, t0)D
T
1 (τ)D1 (τ)SA1

(τ, t0) xα∆τ

+
k−1
∑

i=2

∫ ti

ti−1
xT
αS

T
Ai

(τ, t0)D
T
i (τ)Di (τ)SAi

(τ, t0) xα∆τ

+
∫ tf
tk−1

xT
αS

T
Ak

(τ, t0)D
T
k (τ)Dk (τ)SAk

(τ, t0)xα∆τ.

Furthermore, we have

tf
∫

t0

yT (τ) y (τ)∆τ = xT
αM (t0, t0, t1) xα

+
k−1
∑

i=2

xT
αM (t0, ti−1, ti) xα + xT

αM (t0, tk−1, tf) xα.

By using equation (4.5) we obtain

tf
∫

t0

‖y (τ)‖2∆τ = 0,

it follows that y (t) = 0 for all i = 1, 2, · · · , k. Which contradict Definition 4.1, so the

given matrix M (t0, tf) is invertible. �

The next result gives a sufficient and necessary criterion for a time-invariant case.

For an impulsive system (1.1), let us defined the following matrix:

V̄ :=











V1

...

Vk











,
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where

Vi :=

















Di

...

DiAi

DiA
n−1
i

















, i = 1, 2, · · · , k.

Theorem 4.2. Assume that Ak (t) = Ak, and Dk (t) = Dk, are constant matrices.

Then impulsive system (1.1) is observable on [t0, tf ]T0
(tf ∈ (tk−1, tk]T0

) , if and only

if rank
(

V̄
)

= n.

Proof. Suppose that rank
(

V̄
)

< n. Then there is a nonzero vector xα such that

V̄ xα = 0. It implies that

(4.6) DiA
j
ixα = 0, i = 1, 2, · · · , k, j = 0, 1, · · · , n− 1.

By using equations (4.5) and (4.6)

M (t0, t0, t1) xα =
t1
∫

t0

S̃T
A1

(τ, t0)D
T
1 D1S̃A1

(τ, t0)xα∆τ

= 0.

By the same arguments, for i = 2, · · · , k − 1, we have

M (t0, ti−1, ti) xα =
∫ ti

ti−1
S̃T
Ai

(τ, t0)D
T
i DiS̃Ai

(τ, t0) xα∆τ

=
∫ ti

ti−1
S̃T
Ai

(τ, t0)D
T
i DieAi

(

τ, t+i
)

(I + Ci)S̃Ai
(ti, t0) xα∆τ.

From Proposition 2.3, equation (4.6) and Remark 2.1, we obtain

M (t0, ti−1, ti) xα =

∫ ti

ti−1

S̃T
Ai

(τ, t0)D
T
i (I + Ci)

×

n−1
∑

j=0

γij
(

τ, t+i
)

DiA
j
i S̃Ai

(τ, t0) xαS̃Ai
(ti, τ)∆τ

= 0.

Similarly,

M (t0, tk−1, tf)xα = 0,
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and so we obtain M (t0, tf) xα = 0. Since xα is nonzero, the matrix is not invert-

ible, then system (1.1) is not observable which is contradiction to assumption. So,

rank
(

V̄
)

= n.

Conversely, suppose that rank
(

V̄
)

= n, and we have to prove that the impulsive

system (1.1) is observable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

).

Otherwise, it follows that the matrix M (t0, tf) is not invertible, then there exists

a nonzero vector xα such that xT
αM (t0, tf) xα = 0. From Theorem 4.1, we obtain

(4.7) D1S̃A1
(t, t0)xα = 0,

for i = 2, · · · , k − 1

(4.8) DiS̃Ai
(t, t0) xα = 0,

and

(4.9) DkS̃Ak
(t, t0) xα = 0.

Obviously, at t = t0, we have Dixα = 0, i = 1, 2, ..., k, and delta differentiating

equations (4.7),(4.8) and (4.9), we obtain

DiA
j
ixα = 0, i = 1, · · · , k and j = 0, 1, · · · , n− 1.

Therefore, we have V̄ xα = 0, which implies that rank
(

V̄
)

< n which leads to con-

tradiction. So system (1.1) is observable. The proof is completed. �

Example 4.1. Consider the following impulsive time-invariant dynamic system

(4.10)

x∆ = Ak (t) x+Bk (t) u (t) , t ∈ [tk−1, tk)T0
,

x
(

t+k
)

= (I + Ck)x (tk) , t = tk, k = 1, 2, 3,

y (t) = Dk (t)x+ Ek (t) u (t) ,

x (0) = x0,
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with

A1 =





2 0

1 3



 , D1 =
(

2 3
)

,

A2 =





1 2

0 3



 , D2 =
(

0 1
)

,

A3 =





−3 −2

3 4



 , D3 =
(

−2 1
)

.

We have to compute the following matrices

Vi =





Di

DiAi



 , i = 1, 2, 3.

So that

V1 =





2 3

7 9



 ,

V2 =





0 1

0 3



 ,

V3 =





−2 1

9 8



 .

Now we compute V̄ , defined as

V̄ =











V1

V2

V3











=





























2 3

7 9

0 1

0 3

−2 1

9 8





























We obtain rank
(

V̄
)

= 2. Therefore, the system (4.10) is observable.
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Our next results are for complete observability for the adjoint system (1.2).

Theorem 4.3. For i = 1, 2, · · · , k, the impulsive system (1.2) is observable on

[t0, tf ]T0
(tf ∈ (tk−1, tk]T0

) if and only if the matrix

M̄ (t0, tf) := M̄ (t0, t0, t1) +
k−1
∑

i=1

M̄ (t0, ti−1, ti) + M̄ (t0, tk−1, tf)

is invertible, where

M̄ (t0, t0, t1) =

∫ t1

t0

SA1
(t0, τ)D

T
1 (τ)D1 (τ)S

T
A1

(t0, τ)∆τ

M̄ (t0, ti−1, ti) =

∫ ti

ti−1

SAi
(t0, τ)D

T
i (τ)Di (τ)S

T
Ai

(t0, τ)∆τ, i = 2, 3, · · · , k − 1

and

M̄ (t0, tk−1, tf) =

∫ tf

tk−1

SAk
(t0, τ)D

T
k (τ)Dk (τ)S

T
Ak

(t0, τ)∆τ.

For the time invariant varsion of theorem (4.3) we define the following matrices:

Ṽ :=











Ṽ1

...

Ṽk











And

Ṽi :=

















DT
i

...

AiD
T
i

An−1
i DT

i

















, i = 1, 2, · · · , k.

Theorem 4.4. Assume that Ak (t) = Ak, and Dk (t) = Dk, are constant matrices.

Then impulsive system (1.2) is observable on [t0, tf ]T0
(tf ∈ [tk−1, tk)T0

) if and only if

rank
(

Ṽ
)

= n.
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Remark 4.1. If T = R, then we obtain results of [36] and [16] for Fk = 0. If Ak (t) =

A (t) and Bk (t) = B (t) , then we obtain the results of [27] and in [14] if T = R. We

can find the nonimpulsive versions on time scales in [4, 10]. Most of our results are

new for discrete time scales.

Remark 4.2. The Gramian matrices for time-varying sysems in [28] are without

impulsive, however, our controllability and observability criteria for time-varying sys-

tems depend on impulsive behavior.

5. Conclusion

In this paper, we addressed the controllability and observability criteria for linear

impulsive and its adjoint time-varying systems on time scales. We established sev-

eral necessary and sufficient conditions for state controllability and observability of

such systems, respectively. A comparison with some existing results shows the lower

conservativeness of the proposed results. As we have shown that we consider a large

class of systems, the results generalize some known results in [4, 10, 14, 16].
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