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GENERALIZED DISTRIBUTION ASSOCIATED WITH

QUASI-SUBORDINATION IN TERMS OF ERROR FUNCTION

AND BELL NUMBERS

S. O. OLATUNJI (1) AND S. ALTINKAYA (2)

Abstract. Generalized distribution is a statistical tools used in geometric function

theory in recent time because of its application to real life problems. In this present

work, the generalized distribution associated with quasi-subordination in terms of

error function and bell numbers were studied. The first few coefficient bounds were

obtained which are used to obtain the Fekete-Szegö inequality.

1. Introduction

Let Γ denote the class of functions of the form

(1.1) f(z) = z +
∞
∑

n=2

anz
n

which are analytic and univalent in the open unit disk U = {z : |z| < 1} with

condition f(0) = 0 and f ′(0) = 1. The well-known subclasses of (1.1) are starlike and

convex functions which satisfies Re(
zf ′(z)

f(z)
) > 0 and Re(1+

zf ′′(z)

f ′(z)
) > 0 respectively.

For two analytic functions f and g such that f(0) = g(0), we say f is subordinate

to g in U written f(z) ≺ g(z), if there exists a Schwartz function w(z)(analytic in U

with w(0) = 0 and |w(z)| ≤ |z| ) such that f(z) = g(w(z)), z ∈ U . Furthermore, if

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent function, analytic function, error function, bell-numbers,quasi-

subordination, distribution series, probability, q-starlike, q-convex.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: May 15, 2019 Accepted: March 3, 2020 .

97



98 S. O. OLATUNJI AND S. ALTINKAYA

g is univalent in U , then we have the following equivalence

(1.2) f(z) ≺ g(z)←→ f(0) = g(0) and f(U) ⊂ g(U),

(see [22]).

Also, f is said to be quasi-subordinate to g in U and denoted as f(z) ≺q g(z), z ∈ U ,
if there exists an analytic function ϕ(z) with |ϕ(z)| ≤ 1(z ∈ U) such that f(z)

ϕ(z)
is

analytic in U and

(1.3)
f(z)

ϕ(z)
≺ g(z)(z ∈ U),

that is there exists a Schwartz function ω(z) such that f(z) = ψ(z)g(w(z)), z ∈ U ,
(see concepts in [30]).

MacGregor [18] revealed that if ϕ(z) ≡ 1(z ∈ U), then the quasi-subordination ≺q

becomes the usual subordination, and for the Schwartz function ω(z) = z(z ∈ U),

the quasi-subordination ≺q becomes the majorization ”<<”. In this case

f(z) ≺q g(z) −→ f(z) = ϕ(z)g(ω(z)) −→ f(z) << g(z).

Several authors have engaged themselves on quasi-subordination for different sub-

classes of functions and their interesting results are too voluminous to discuss. Just

to mention but a few [13, 14, 19, 20, 21, 23, 24, 25, 31].

Recently, Porwal [26] studied and introduced the generalized discrete probability

distribution in geometric function theory. He obtained the results for moments, mean,

variance and moment generating function.

Let S denote the sum of the convergent series of the form

(1.4) S =
∞
∑

n=0

an,
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where an ≥ 0 for n ∈ N . The generalized discrete probability distribution whose

probability mass function is given as

(1.5) p(n) =
an

S
, n = 0, 1, 2, 3, ...,

p(n) is a probability mass function because p(n) ≥ 0 and
∑

n

pn = 1.

Also, denote

(1.6) ψ(x) =

∞
∑

n=0

anx
n,

then from S =
∑

∞

n=0 an, series ψ(x) is convergent for both |x| < 1 and x = 1.

If X is a discrete random variable that takes values x1, x2, ... associated with proba-

bilities P1, P2, ...then expected X denoted by E(X) is defined as

(1.7) E(X) =

∞
∑

n=0

Pnxn.

The moment of a discrete probability distribution (rth) about x = 0 is defined by

(1.8) µ′

r = E(Xr),

where µ′

1 is the mean of the distribution and the variance is given as

(1.9) µ′

2 − (µ′

1)
2.

Moment about the origin is given as

(1.10) Mean = µ′

1 =
ψ′

S

and

(1.11) V ariance = µ′

2 − (µ′

1)
2 =

1

S

[

ψ′′(1) + ψ′(1)− (ψ′(1))2

S

]

.

The moment generating function of a random variable X is denoted by

(1.12) Mx(t) = E(eX(t))
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and the moment generating function of generalized discrete probability is given as

(1.13) Mx(t) =
ψ(e(t))

S
.

By specializing an, several distributions like Logarithmic distribution, Poison distri-

bution, Binomial distribution, Zeta distribution, Geometric distribution, Bernoulli

distribution and so on will be obtained which has been studied by scholars. The

reviewer can see these in Baricz [4] and [5] .

The aim of the authors is the introduction of power series whose coefficient are prob-

abilities of generalized distribution of the form

(1.14) Kφ(z) = z +

∞
∑

n=2

bn−1

S
zn,

where S =

∞
∑

n=0

an.

The fractional q−calculus is a geometrical function theory instrument used to investi-

gate and construct various subclasses of analytic functions. Researchers have studied

q−calculus in terms of derivatives and integrals and their results are in literature.

For 0 < q < 1, Jackson’s q-derivative of a function f ∈ Γ is given as follows

(1.15) Dqf(z) =















f(z)− f(qz)
(1− q)z , if z 6= 0

f ′(0), if z = 0

and D2
qf(z) = Dq(Dqf(z)) (see [15]).

From (1.15), one may have

(1.16) Dqf(z) = 1 +
∞
∑

n=2

[n]qanz
n−1,

where [n]q =
1− qn
1− q and n is the basic number, if q −→ 1−, [n]q −→ n. (See details

in [2] [10] [16], [28] and [29]).

An error function is a special function because it shows up anywhere the normal curve

appears. It occurs in diffusion for transportation, very useful in physics, chemistry,
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biology, mass flow and so on. Error function occurs in quantum mechanics to estimate

the probability of observing a particle in a particular region.

The function of the form

(1.17) erf(z) =
2√
π

∫ z

0

e−t2dt =
2√
π

∞
∑

n=0

(−1)nz2n+1

(2n+ 1)n!
,

was introduced by Abramowitz and Stegun [1]. The properties and inequalities of

error function were studied by Alzer [3] , Coman [11], Elbert [12] and so on.

Ramachandran et al. [28] and [29] simplified (1.17) to obtain

(1.18) Erf(z) = z +
∞
∑

n=2

(−1)n−1

(2n− 1)(n− 1)!
zn

and studied

(1.19) F = (f ∗ Erf)(z) = z +

∞
∑

n=2

(−1)n−1

(2n− 1)(n− 1)!
anz

n,

which is the convolution (Hadamard Product) of (1.1) and (1.19) define the class of

starlike and convex functions interms of subordination which satisfies
zF ′(z)

F(z) ≺ Pk(z)

and 1 +
zF ′′(z)

F ′(z)
≺ Pk(z) where Pk(z) is the canonical region.

The convolution of (1.14) and (1.18) gives

(1.20) Dq(Kφ ∗ Erf)(z) = 1 +
∞
∑

n=2

(−1)n−1[n]qbn−1

(2n− 1)(n− 1)!S
zn−1.

For a fixed non-negative integer n, the Bell numbers Bn count the possible disjoint

partitions of a set with n elements into non-empty subsets or, equivalently, the number

of equivalence relations on it. The Bell numbers Bn satisfy a recurrence relation

involving binomial coefficients Bn+1 =
n

∑

k=0

(

n

k

)

Bk, where B0 = B1 = 1, B2 = 2,

B3 = 5, B4 = 15 and B5 = 52. (one refers the reviewer to [6], [7],[8],[9]) and [27].

The function

(1.21) Q(z) = ee
z−1 =

∞
∑

n=o

Bn

zn

n!
= 1 + z + z2 +

5

6
z3 +

5

8
z4 + ...
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were considered by Kumar et al.[17] which is starlike with respect to 1 and its coef-

ficients generate the Bell numbers.

Motivated by earlier work by [21], [23], [28], and [9], in this work, the authors ob-

tained the first initial bounds for the class of generalized distribution associated with

quasi-subordination in terms of error function and Bell-numbers and ϕ(z) analytic in

U be of the form

(1.22) ϕ(z) = d0 + d1z + d2z
2 + ...

For the purpose of this investigation, the following Lemmas and definition shall be

considered.

Lemma 1: If a function p ∈ P is given by

(1.23) p(z) = 1 +

∞
∑

n=1

pnz
n z ∈ U,

then |pn| ≤ 2(k ∈ N), where P is the class of Caratheodory functions analytic in U

for which p(0) = 1 and Rep(z) > 0, z ∈ U .
Lemma 2: et the Schwartz function ω(z) be given by

(1.24) ω(z) = ω1(z) + ω2z
2 + ω3z

3 + ... (z ∈ U),

then

|ω1| ≤ 1, |ω2 − tω2
1| ≤ 1 + (|t| − 1)|ω1|2 ≤ max1, |t|,

where t ∈ C.

Definition: Let Q(z) ∈ P be univalent in Q(U) symmetrical about the real axis and

Q′(z) > 0. For a function F ∈ Γ is said to be in the class φSq(Q, β) if

(1.25)

z(Dq(Kφ∗Erf)(z))

(Kφ∗Erf)(z)
− β

1− β − 1 ≺q Q(z)− 1,

where 0 ≤ β < 1 and other parameters as define above.
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2. Main Results

Theorem 2.1. Let Erf ∈ Γ of the form (1.18) belong to the class φSq(Q, β), then

(2.1) |b1
S
| ≤ 3(1− β)
|1− [2]q|

and for some µ ∈ C

(2.2) |b2
S
− µ b

2
1

S2
| ≤ 10(1− β)
|1− [3]q|

max

{

1,

∣

∣

∣

∣

1− (1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2

∣

∣

∣

∣

}

,

where 0 < q < 1 and 0 ≤ β < 1.

Proof. Let Erf ∈ φSq(Q, β), then for a Schwartz function ω(z) and for an analytic

ϕ(z) given by (1.22), we have

(2.3)

z(Dq(Kφ∗Erf)(z))

(Kφ∗Erf)(z)
− β

1− β − 1 = ϕ(z)(Q(ω(z))− 1), z ∈ U.

In view of (1.21), one will get

(2.4)

ϕ(z)(Q(ω(z))−1) = (d0+d1z+d2z
2+...)(ω1z+(ω2

1+ω2)+...) = d0ω1z+d0(ω
2
1 + ω2) + ω1d1+...

Using the series expansion of Kφ ∗ F from (2.3), one will obtain

(2.5)

z(Dq(Kφ∗Erf)(z))

(Kφ∗Erf)(z)
− β

1− β − 1 =
b1(1−[2]q)

3S

1− β z +

b2
1
(1−[2]q)

9S2 − b2(1−[3]q)
10S

1− β z2 + ...

From the expansions (2.4) and (2.5), on equating the coefficients of z and z2 in (2.3),

one find that

(2.6)
b1(1− [2]q)

3S
= (1− β)d0ω1

and

(2.7)
b21(1− [2]q)

9S2
− b2(1− [3]q)

10S
= (1− β)[d0(ω2

1 + ω2) + ω1d1].
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Now (2.6) yields

(2.8)
b1

S
=

3(1− β)d0ω1

1− [2]q

which in view of (2.7) gives that

(2.9)
b2(1− [3]q)

10S
=

(1− β)2d20ω2
1

1− [2]q
− (1− β)[d0(ω2

1 + ω2) + ω1d1]

and therefore

(2.10)
b2

S
=

10(1− β)
(1− [3]q)

[

−ω1d1 − d0
{

ω2 +

(

−(1− β)d0
1− [2]q

+ 1

)

ω2
1

}]

.

For some µ ∈ C, we obtain from (2.8) and (2.9).

(2.11)
b2

S
−µ b

2
1

S2
=

10(1− β)
1− [3]q

[

−ω1d1 − (ω2 + ω2
1)d0 +

(

10(1− [2]q)− 9(1− [3]q)µ

10(1− [2]q)2

)

(1− β)d20ω2
1

]

.

Since, ϕ(z) given by (1.22) is analytic and bounded in U , therefore, on using [22], we

obtain for some y(|y| ≤ 1)

(2.12) |d0| ≤ 1 and d1 = (1− d20)y.

On putting the value of d1 from (2.12) into (2.11), one may get

(2.13)

b2

S
− µ b

2
1

S2
=

10(1− β)
1− [3]q

[

−yω1 − (ω2 + ω2
1)d0

+

(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
ω2
1 + yω1

)

d20

]

.

If d0 = 0 in (2.13), one may have

(2.14)

∣

∣

∣

∣

b2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

.

But if d0 6= 0, let us then suppose that

(2.15)

F (d0) = −yω1 − (ω2 + ω2
1)d0 +

(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
ω2
1 + yω1

)

d20
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which is a polynomial in d0 and hence in |d0| ≤ 1 and maximum of |F (d0)| is attained
at d0 = eiθ(0 ≤ θ < 2π). We find that max F (eiθ) = |F (1)| and
(2.16)
∣

∣

∣

∣

b2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

∣

∣

∣

∣

−ω2 +

(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
− 1

)

ωb21

∣

∣

∣

∣

,

which on using Lemma 2 shows that

(2.17)
∣

∣

∣

∣

b2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

max

{

1,

∣

∣

∣

∣

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
− 1

∣

∣

∣

∣

}

,

and this last above inequality together with (2.14) thus establishes the result. �

Theorem 2.2. Let Erf ∈ Γ of the form (1.18) belong to the class φSq(Q, β), then

(2.18)

∣

∣

∣

∣

b1

S

∣

∣

∣

∣

≤ 3(1− β)
|1− [2]q|

and for some µ ∈ C

(2.19)

∣

∣

∣

∣

b2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

max

{

1,

∣

∣

∣

∣

1− (1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2

∣

∣

∣

∣

}

where 0 < q < 1 and 0 ≤ β < 1.

Proof. Let Erf ∈ φSq(Q, β). Similar to the proof of Theorem 2.1, if ϕ(z) ≡ 1, then

(1.22) evidently implies that d0 = 1 and dn = 0, n ∈ N, hence in view of (2.8) and

(2.11) and Lemma 2, the desired result were obtained. �

The next theorem devoted for the majorization.

Theorem 2.3. If a function Erf ∈ φSq(Q, β) of the form (1.18) belong satisfies

(2.20)

z(Dq(Kφ∗F)(z))

(Kφ∗F)(z)
− β

1− β − 1 << Q(z)− 1, z ∈ U,

then

(2.21)

∣

∣

∣

∣

b1

S

∣

∣

∣

∣

≤ 3(1− β)
|1− [2]q|
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and for some µ ∈ C

(2.22)
∣

∣

∣

∣

a2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

max

{

1,

∣

∣

∣

∣

1− (1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2

∣

∣

∣

∣

}

,

where 0 < q < 1 and 0 ≤ β < 1.

Proof. Following the proof of Theorem 1, if ω(z) ≡ z in (1.24), so that ω1 = 1 and

ωn = 0, n = 2, 3, ..., then in view of (2.8) and (2.11), we have

(2.23)

∣

∣

∣

∣

b1

S

∣

∣

∣

∣

≤ 3(1− β)
|1− [2]q|

and

(2.24)
b2

S
− µ b

2
1

S2
=

10(1− β)
1− [3]q

[

−d1 − d0 +
(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2

)

d20

]

.

On putting the value of d1 from

(2.25)
b2

S
− µ b

2
1

S2
=

10(1− β)
1− [3]q

[

−y − d0 +
(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
+ y

)

d20

]

.

If d0 = 0 in (2.25), one obtain

(2.26)

∣

∣

∣

∣

b2

S
− µ a

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
|1− [3]q|

,

and if d0 6= 0, let

(2.27) G(d0) := −y − d0 +
(

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
+ y

)

d20

which being a polynomial in d0 and hence in |d0| ≤ 1 and maximum of |F (d0)| is
attained at d0 = eiθ(0 ≤ θ < 2π). We find that max G(eiθ) = |G(1)| and consequently

(2.28)

∣

∣

∣

∣

b2

S
− µ b

2
1

S2

∣

∣

∣

∣

≤ 10(1− β)
1− [3]q

∣

∣

∣

∣

(1− β)[10(1− [2]q)− 9(1− [3]q)µ]

10(1− [2]q)2
− 1

∣

∣

∣

∣

.

which together with (2.26) establishes the desired result of Theorem 3. �
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